Exam Preparation: Strategies for Success in Mathematics Courses

> Malgorzata Dubiel Alistair Lachlan Jamie Mulholland Randall Pyke

Department of Mathematics

Thought:

Mathematics is not a spectators sport.

George Polya (1887-1985)

Difference between math and other
 courses:

New topics are built on older topics - solid foundation of prerequisite material is essential.

Math is learned by doing problems. Do the homework.

You are expected to read the text, work through examples, practice more than just the assigned homework questions.

1 hour of lecture $\rightarrow 3$ hours of study
Cramming for exams will not work!

Some things to think about:

How many days do you plan to study for final exams?
When do you plan to start studying?
Will you study in a group, by yourself, or a bit of both?
Have you picked up your marked homework assignments and exams?

Have you checked your homework solutions for ALL questions?

Did you go over the midterms tests?
Will you try enough of the HARD problems in the text?

Thought:

If you keep doing what you've always done, you'll keep getting what you've always got.

Zig Zigler

What can I do now to prepare for Exams?
Learn from past mistakes - reflect on homework and midterms; you can learn from these!

Regular review
Attend classes!
Use the text; examples, exercises, review questions
Optimize your learning style; manage your time! (eg., don't just work on "easy" problems)

Develop your own practice questions
Develop and follow a study schedule
Prepare your own "cheat sheet" (study sheet)
Create your own exam - practice at home!

Regular
 Review:

Review lecture notes

- Within 24 hours
- Weekly
- 1-3 weeks pre-exam

Curve of Forgetting

Reviewing Effectively:

review material frequently during the term

Preparing for Exams What Should You Try:

Starting well in advance, breaking your studying into chunks and reviewing often.

Identify your weaknesses (in understanding)
Studying "from the top down" (big concepts to specific calculations)

Studying by stimulating your memory (what examples are illustrating this concept? Definitions?)

Ending each study session with 15 minutes of reflection

Taking in no new material the night before the exam
Expect the unexpected! (eg., new questions)

Pre-Exam Plans:

nutrition (food, fluids)
rest (relaxation \& sleep)
Transportation; Don't be late!!
Practice writing tests/exams
Review study sheet; overview of course isolation (reduce distractions; focus)

Equipment (calculator, ruler, pencils, eraser, ...) game plans: exam rituals \& strategies

Ritual:

A set of actions thought to have symbolic value.
Purpose:

- to calm, relax, focus, provide a centered state of mind
- to put you more in control of the situation

Strategy:

A plan of action designed to achieve a particular goal.
Purpose:

- to maximize results (grades/performance)

Some examples of rituals/strategies:

positive affirmations ("I will do well on this exam.")
using same pen/pencil/eraser/ruler
read ALL exam questions before beginning - choose to begin with the easiest question
have a plan if you begin to panic - close eyes, breath slowly, think of something calming (images/music).

What are your rituals and/or strategies?

Three Weeks Before the Exam

3 weeks
1 week
OK to leave hard topics

1 day
(IR; Intense Review)
for later

I hear, and I forget
I see, and I remember,
I do, and I understand,
I reflect, and I improve.
(Chinese Proverb)

Magic Key

Start studying from the first day of the semester, and have a plan.
2. Read the textbook, and other required or recommended material.
3. Do your homework!
4. Treat your homework and midterms as learning opportunities: pick up and revise your papers, make sure you understand your mistakes.
5. Organize a study group. Learn to ask questions! Teach someone!
6. Review periodically - don't wait until the end of the semester!
7. Develop your own exam rituals and strategies, and mentally rehearse them in days prior to the exam.
8. Don't cram!
9. Plan last days before your exams wisely, making sure that you have enough sleep and eat properly.
10. Exercise helps. So does music (listening to Mozart is supposed to help with math and logical thinking).

Thought:
Everyone knows that it is easy to do a puzzle if someone has shown you how. That is simply a test of memory. The test of reasoning and understanding is to solve puzzles that you have never studied before.
W.W. Sawyer

How do you organize information?

Structural hierarchy

Dumpster" Approach

Organize the material; prepare a summary sheet

Concept Summary

Title of Concept

Key
Equations/Formulas/Facts
Definition of Each Term
Additional Information

Your Own Example or Explanation

Focus on Working on Problems

Alistair Lachlan

March 18, 2009

Step 1

Step 1 (continued)
Step 2
Step 3
(continued)
Step 4
Step 3
(continued)
Step 4
Step 5
Summary

From the instructor gather information about what to expect:

Step 1

\triangleright Step 1 (continued)
Step 2
Step 3
(continued)
Step 4
Step 3
(continued)
Step 4
Step 5
Summary

From the instructor gather information about what to expect:

What fraction of the exam corresponds to material on first midterm?

Step 1

\triangleright Step 1 (continued)
Step 2
Step 3
(continued)
Step 4
Step 3
(continued)
Step 4
Step 5
Summary

From the instructor gather information about what to expect:

What fraction of the exam corresponds to material on first midterm?

What fraction of the exam corresponds to material on second midterm?

Step 1

\triangle Step 1 (continued)
Step 2
Step 3
(continued)
Step 4
Step 3
(continued)
Step 4
Step 5
Summary

From the instructor gather information about what to expect:

What fraction of the exam corresponds to material on first midterm?

What fraction of the exam corresponds to material on second midterm?

What fraction of the exam corresponds to material covered since the second midterm?

Step 1

\triangle Step 1 (continued)
Step 2
Step 3
(continued)
Step 4
Step 3
(continued)
Step 4
Step 5
Summary

From the instructor gather information about what to expect:

What fraction of the exam corresponds to material on first midterm?

What fraction of the exam corresponds to material on second midterm?

What fraction of the exam corresponds to material covered since the second midterm?

(continued)

Step 1
\triangleright (continued)
Step 2
Step 3
(continued)
Step 4
Step 3
(continued)
Step 4
Step 5
Summary

Will definitions and/or theorems be asked for?

(continued)

Step 1
\triangleright (continued)
Step 2
Step 3
(continued)
Step 4
Step 3
(continued)
Step 4
Step 5
Summary

Will definitions and/or theorems be asked for?

Is any kind of calculator permitted?

(continued)

Step 1
\triangleright (continued)
Step 2
Step 3
(continued)
Step 4
Step 3
(continued)
Step 4
Step 5
Summary

Will definitions and/or theorems be asked for?
Is any kind of calculator permitted?
Is there a specific practice exam or exams supplied by the instructor?

(continued)

Step 1
\triangleright (continued)
Step 2
Step 3
(continued)
Step 4
Step 3
(continued)
Step 4
Step 5
Summary

Will definitions and/or theorems be asked for?

Is any kind of calculator permitted?

Is there a specific practice exam or exams supplied by the instructor?

What other information about the content of the exam is there?

Step 2

Step 1
(continued)
\triangleright Step 2
Step 3
(continued)
Step 4
Step 3
(continued)
Step 4
Step 5
Summary

Gather a large collection of problems and exercises

Step 2

Step 1
(continued)
\square Step 2
Step 3
(continued)
Step 4
Step 3
(continued)
Step 4
Step 5
Summary

Gather a large collection of problems and exercises

Possible sources:

\square recent final exams

Step 2

Step 1
(continued)
\triangle Step 2
Step 3
(continued)
Step 4
Step 3
(continued)
Step 4
Step 5
Summary

Gather a large collection of problems and exercises

Possible sources:

\square recent final exams
\square recent midterm exams

Step 2

Step 1
(continued)
\triangle Step 2
Step 3
(continued)
Step 4
Step 3
(continued)
Step 4
Step 5
Summary

Gather a large collection of problems and exercises

Possible sources:

\square recent final exams
\square recent midterm exams
\square problems worked by the instructor in lecture notes

Step 2

Step 1
(continued)
\triangle Step 2
Step 3
(continued)
Step 4
Step 3
(continued)
Step 4
Step 5
Summary

Gather a large collection of problems and exercises

Possible sources:
\square recent final exams
\square recent midterm exams
\square problems worked by the instructor in lecture notes
\square problems supplied by the instructor for purposes of revision

Step 2

Step 1
(continued)
\triangleright Step 2
Step 3 (continued)
Step 4
Step 3 (continued) Step 4
Step 5
Summary

Gather a large collection of problems and exercises

Possible sources:
\square recent final exams
\square recent midterm exams
\square problems worked by the instructor in lecture notes
\square problems supplied by the instructor for purposes of revision
\square problems assigned during the term
Which sources are best depends on the particular instructor. Working on recent final exams almost always pays dividends.

Step 3

Step 1
(continued)
Step 2
\triangleright Step 3
(continued)
Step 4
Step 3
(continued)
Step 4
Step 5
Summary

Step 3

```
Step 1
(continued)
Step 2
Step 3
(continued)
Step 4
Step 3
(continued)
Step 4
Step 5
Summary
```

Classify the problems:

Some categories for MATH 155:
\square the definite integral

Step 3

Step 1
(continued)
Step 2
\triangleright Step 3
(continued)
Step 4
Step 3
(continued) Step 4
Step 5
Summary

Classify the problems:

Some categories for MATH 155:
\square the definite integral
\square area between curves

Step 3

Step 1
(continued)
Step 2
\triangleright Step 3
(continued)
Step 4
Step 3
(continued)
Step 4
Step 5
Summary

Classify the problems:

Some categories for MATH 155:
\square the definite integral
\square area between curves
\square methods of integration

Step 3

Step 1
(continued)
Step 2

- Step 3
(continued)
Step 4
Step 3
(continued)
Step 4
Step 5
Summary

Classify the problems:

Some categories for MATH 155:
\square the definite integral
\square area between curves
\square methods of integration
\square numerical approximation of integrals

Step 3

Step 1
(continued)
Step 2

- Step 3
(continued)
Step 4
Step 3
(continued)
Step 4
Step 5
Summary

Classify the problems:

Some categories for MATH 155:
\square the definite integral
\square area between curves
\square methods of integration
\square numerical approximation of integrals
\square Taylor approximation

Step 3

Step 1
(continued)
Step 2

- Step 3
(continued)
Step 4
Step 3
(continued)
Step 4
Step 5
Summary

Classify the problems:

Some categories for MATH 155:
\square the definite integral
\square area between curves
\square methods of integration
\square numerical approximation of integrals
\square Taylor approximation

(continued)

Step 1
(continued)
Step 2
Step 3
\triangleright (continued)
Step 4
Step 3
(continued)
Step 4
Step 5
Summary

\square solving differential equations

(continued)

```
Step 1
(continued)
Step 2
Step }
\(continued)
Step }
Step 3
(continued)
Step 4
Step 5
Summary
```

\square solving differential equations
\square equilibria and their stability
\square functions of two variables

(continued)

```
Step 1
(continued)
Step 2
Step }
\triangleright(continued)
Step }
Step 3
(continued)
Step 4
Step 5
Summary
```

\square solving differential equations
\square equilibria and their stability
\square functions of two variables
\square partial derivatives

Step 4

Step 1
(continued)
Step 2
Step 3
(continued)
\triangleright Step 4
Step 3
(continued)
Step 4
Step 5
Summary

Within each category make sure you know the method used for each kind of problem:

Step 4

Step 1
(continued)
Step 2
Step 3
(continued)
\triangleright Step 4
Step 3
(continued)
Step 4
Step 5
Summary

Within each category make sure you know the method used for each kind of problem:

Examples for MATH 155

Step 4

Step 1 (continued) Step 2
Step 3
(continued)
\square Step 4
Step 3
(continued)
Step 4
Step 5
Summary

Within each category make sure you know the method used for each kind of problem:

Examples for MATH 155

$\int e^{x} \sin x d x$

Step 4

Step 1 (continued) Step 2
Step 3
(continued)
\triangle Step 4
Step 3
(continued)
Step 4
Step 5
Summary

Within each category make sure you know the method used for each kind of problem:

Examples for MATH 155

$$
\int e^{x} \sin x d x \quad \text { integration by parts twice }
$$

Step 4

Step 1 (continued) Step 2
Step 3 (continued)
\triangleright Step 4
Step 3 (continued) Step 4
Step 5
Summary

Within each category make sure you know the method used for each kind of problem:

Examples for MATH 155

$$
\int e^{x} \sin x d x \quad \text { integration by parts twice }
$$

$$
\int_{-2}^{2}(1-|x|) d x=0
$$

Step 4

Step 1

(continued)

Step 2
Step 3
(continued)
\triangleright Step 4
Step 3
(continued)
Step 4
Step 5
Summary

Within each category make sure you know the method used for each kind of problem:

Examples for MATH 155

$$
\begin{aligned}
& \int e^{x} \sin x d x \quad \text { integration by parts twice } \\
& \int_{-2}^{2}(1-|x|) d x=0 \quad \text { geometrical interpretation }
\end{aligned}
$$

Step 4

Step 1
(continued)
Step 2
Step 3
(continued)
\triangleright Step 4
Step 3
(continued)
Step 4
Step 5
Summary

Within each category make sure you know the method used for each kind of problem:

Examples for MATH 155

$$
\begin{aligned}
& \int e^{x} \sin x d x \quad \text { integration by parts twice } \\
& \int_{-2}^{2}(1-|x|) d x=0 \quad \text { geometrical interpretation } \\
& 0.5 \leq \int_{0}^{1} \sqrt{1-x^{2}} d x \leq 1
\end{aligned}
$$

Step 4

Step 1 (continued) Step 2
Step 3 (continued)
\triangleright Step 4
Step 3
(continued)
Step 4
Step 5
Summary

Within each category make sure you know the method used for each kind of problem:

Examples for MATH 155

$$
\begin{aligned}
& \int e^{x} \sin x d x \quad \text { integration by parts twice } \\
& \int_{-2}^{2}(1-|x|) d x=0 \quad \text { geometrical interpretation } \\
& 0.5 \leq \int_{0}^{1} \sqrt{1-x^{2}} d x \leq 1 \quad \text { geometrical interpretation }
\end{aligned}
$$

Step 4

Step 1 (continued) Step 2
Step 3 (continued)
\triangleright Step 4
Step 3
(continued)
Step 4
Step 5
Summary

Within each category make sure you know the method used for each kind of problem:

Examples for MATH 155
$\int e^{x} \sin x d x \quad$ integration by parts twice
$\int_{-2}^{2}(1-|x|) d x=0 \quad$ geometrical interpretation
$0.5 \leq \int_{0}^{1} \sqrt{1-x^{2}} d x \leq 1 \quad$ geometrical interpretation
area between $y=|x|$ and $y=x^{2}-2$

Step 4

Step 1 (continued)
Step 2
Step 3
(continued)
\triangleright Step 4
Step 3
(continued)
Step 4
Step 5
Summary

Within each category make sure you know the method used for each kind of problem:

Examples for MATH 155
$\int e^{x} \sin x d x \quad$ integration by parts twice
$\int_{-2}^{2}(1-|x|) d x=0 \quad$ geometrical interpretation
$0.5 \leq \int_{0}^{1} \sqrt{1-x^{2}} d x \leq 1 \quad$ geometrical interpretation
area between $y=|x|$ and $y=x^{2}-2 \quad$ draw a good diagram

Step 3

```
Step 1
(continued)
Step 2
Step }
(continued)
Step 4
Step 3
(continued)
Step 4
Step 5
Summary
```


Step 3

```
Step 1
(continued)
Step 2
Step 3
(continued)
Step 4
Step 3
(continued)
Step 4
Step 5
Summary
```

Classify the problems:

Some categories for MATH 152:
\square evaluating integrals

Step 3

Step 1 (continued) Step 2
Step 3
(continued)
Step 4
\triangleright Step 3
(continued)
Step 4
Step 5
Summary

Classify the problems:

Some categories for MATH 152:
\square evaluating integrals
\square areas between curves

Step 3

Step 1 (continued) Step 2
Step 3
(continued)
Step 4
\triangleright Step 3
(continued)
Step 4
Step 5
Summary

Classify the problems:

Some categories for MATH 152:
\square evaluating integrals
\square areas between curves
\square average value of a function

Step 3

Step 1
(continued)
Step 2
Step 3
(continued)
Step 4
\triangleright Step 3
(continued)
Step 4
Step 5
Summary

Classify the problems:

Some categories for MATH 152:
\square evaluating integrals
\square areas between curves
\square average value of a function
\square approximation of integrals

Step 3

Step 1
(continued)
Step 2
Step 3
(continued)
Step 4
\triangleright Step 3
(continued)
Step 4
Step 5
Summary

Classify the problems:

Some categories for MATH 152:
\square evaluating integrals
\square areas between curves
\square average value of a function
\square approximation of integrals
\square improper integrals

Step 3

Step 1
(continued)
Step 2
Step 3
(continued)
Step 4
\triangleright Step 3
(continued)
Step 4
Step 5
Summary

Classify the problems:

Some categories for MATH 152:
\square evaluating integrals
\square areas between curves
\square average value of a function
\square approximation of integrals
\square improper integrals

(continued)

Step 1
(continued)
Step 2
Step 3
(continued)
Step 4
Step 3
\triangleright (continued)
Step 4
Step 5
Summary
\square separation of variables

(continued)

Step 1
(continued)
Step 2
Step 3
(continued)
Step 4
Step 3
\triangleright (continued)
Step 4
Step 5
Summary
\square separation of variables
\square parametric curves

(continued)

Step 1
(continued)
Step 2
Step 3
(continued)
Step 4
Step 3
D (continued)
Step 4
Step 5
Summary
\square separation of variables
\square parametric curves
\square tests for convergence of series

(continued)

Step 1
(continued)
Step 2
Step 3
(continued)
Step 4
Step 3
D (continued)
Step 4
Step 5
Summary
\square separation of variables
\square parametric curves
\square tests for convergence of series
\square numerical approximation of integrals

(continued)

Step 1
(continued)
Step 2
Step 3
(continued)
Step 4
Step 3
\triangleright (continued)
Step 4
Step 5
Summary
\square separation of variables
\square parametric curves
\square tests for convergence of series
\square numerical approximation of integrals
\square applications of Taylor polynomials

(continued)

Step 1
(continued)
Step 2
Step 3
(continued)
Step 4
Step 3
\triangleright (continued)
Step 4
Step 5
Summary
\square separation of variables
\square parametric curves
\square tests for convergence of series
\square numerical approximation of integrals
\square applications of Taylor polynomials
\square complex numbers

Step 4

Step 1
(continued)
Step 2
Step 3
(continued)
Step 4
Step 3
(continued)
\triangleright Step 4
Step 5
Summary

Within each category make sure you know the method used for each kind of problem:

Step 4

Step 1
(continued)
Step 2
Step 3
(continued)
Step 4
Step 3
(continued)
\triangle Step 4
Step 5
Summary

Within each category make sure you know the method used for

 each kind of problem:Examples for MATH 151

Step 4

Step 1 (continued)
Step 2
Step 3
(continued)
Step 4
Step 3
(continued)
\square Step 4
Step 5
Summary

Within each category make sure you know the method used for each kind of problem:
Examples for MATH 151
$\sum_{n=1}^{\infty} \frac{5(-4)^{n+2}}{3^{2 n+1}}$

Step 4

Step 1

(continued)

Step 2
Step 3
(continued)
Step 4
Step 3
(continued)
\square Step 4
Step 5
Summary

Within each category make sure you know the method used for each kind of problem:
Examples for MATH 151
$\sum_{n=1}^{\infty} \frac{5(-4)^{n+2}}{3^{2 n+1}}$
ratio test gives absolute convergence

Step 4

Step 1

(continued)

Step 2
Step 3
(continued)
Step 4
Step 3
(continued)
\square Step 4
Step 5
Summary

Within each category make sure you know the method used for each kind of problem:
Examples for MATH 151

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{5(-4)^{n+2}}{3^{2 n+1}} \quad \text { ratio test gives absolute convergence } \\
& \sum_{n=1}^{\infty} \frac{1}{n+2^{n}}
\end{aligned}
$$

Step 4

Step 1 (continued)
Step 2
Step 3
(continued)
Step 4
Step 3
(continued)
D Step 4
Step 5
Summary

Within each category make sure you know the method used for each kind of problem:
Examples for MATH 151

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{5(-4)^{n+2}}{3^{2 n+1}} \quad \text { ratio test gives absolute convergence } \\
& \sum_{n=1}^{\infty} \frac{1}{n+2^{n}} \quad \text { comparison with geometric series } \sum_{n=1}^{\infty} \frac{1}{2^{n}}
\end{aligned}
$$

Step 4

Step 1 (continued)
Step 2
Step 3 (continued)
Step 4
Step 3
(continued)
D Step 4
Step 5
Summary

Within each category make sure you know the method used for each kind of problem:
Examples for MATH 151

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{5(-4)^{n+2}}{3^{2 n+1}} \quad \text { ratio test gives absolute convergence } \\
& \sum_{n=1}^{\infty} \frac{1}{n+2^{n}} \quad \text { comparison with geometric series } \sum_{n=1}^{\infty} \frac{1}{2^{n}} \\
& \sum_{n=1}^{\infty} \frac{(n+1)\left(n^{2}-1\right)}{4 n^{3}-2 n+1}
\end{aligned}
$$

Step 4

Step 1 (continued)
Step 2
Step 3
(continued)
Step 4
Step 3
(continued)
\square Step 4
Step 5
Summary

Within each category make sure you know the method used for each kind of problem:
Examples for MATH 151

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{5(-4)^{n+2}}{3^{2 n+1}} \quad \text { ratio test gives absolute convergence } \\
& \sum_{n=1}^{\infty} \frac{1}{n+2^{n}} \quad \text { comparison with geometric series } \sum_{n=1}^{\infty} \frac{1}{2^{n}} \\
& \sum_{n=1}^{\infty} \frac{(n+1)\left(n^{2}-1\right)}{4 n^{3}-2 n+1} \quad \text { comparison with the series } \sum_{n=1}^{\infty} \frac{1}{5}
\end{aligned}
$$

Step 4

Step 1
(continued)
Step 2
Step 3
(continued)
Step 4
Step 3
(continued)
\triangle Step 4
Step 5
Summary

Within each category make sure you know the method used for each kind of problem:

Examples for MATH 151

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{5(-4)^{n+2}}{3^{2 n+1}} \quad \text { ratio test gives absolute convergence } \\
& \sum_{n=1}^{\infty} \frac{1}{n+2^{n}} \quad \text { comparison with geometric series } \sum_{n=1}^{\infty} \frac{1}{2^{n}} \\
& \sum_{n=1}^{\infty} \frac{(n+1)\left(n^{2}-1\right)}{4 n^{3}-2 n+1} \quad \text { comparison with the series } \sum_{n=1}^{\infty} \frac{1}{5} \\
& \sum_{n=1}^{\infty} \frac{(2 n)!}{n^{n}}
\end{aligned}
$$

Step 4

Step 1
(continued)
Step 2
Step 3
(continued)
Step 4
Step 3
(continued)
\triangle Step 4
Step 5
Summary

Within each category make sure you know the method used for each kind of problem:

Examples for MATH 151

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{5(-4)^{n+2}}{3^{2 n+1}} \quad \text { ratio test gives absolute convergence } \\
& \sum_{n=1}^{\infty} \frac{1}{n+2^{n}} \quad \text { comparison with geometric series } \sum_{n=1}^{\infty} \frac{1}{2^{n}} \\
& \sum_{n=1}^{\infty} \frac{(n+1)\left(n^{2}-1\right)}{4 n^{3}-2 n+1} \quad \text { comparison with the series } \sum_{n=1}^{\infty} \frac{1}{5} \\
& \sum_{n=1}^{\infty} \frac{(2 n)!}{n^{n}} \quad \text { ratio test }
\end{aligned}
$$

Step 5

```
Step 1
(continued)
Step 2
Step }
(continued)
Step 4
Step }
(continued)
Step 4
Step 5
Summary
```

Practice, practice, practice

Step 5

```
Step 1
(continued)
Step 2
Step 3
(continued)
Step 4
Step 3
(continued)
Step 4
Step 5
Summary
```

Practice, practice, practice
\square Put aside the answers to the problems

Step 5

Practice, practice, practice
\square Put aside the answers to the problems
\square Practice actually writing out the answers

Step 5

Step 1
(continued)
Step 2
Step 3
(continued)
Step 4
Step 3
(continued)
Step 4
\triangleright Step 5
Summary

Practice, practice, practice
\square Put aside the answers to the problems
\square Practice actually writing out the answers
\square Check that you have obtained the right answer and that your working is enough for full marks

Summary

Step 1
(continued)
Step 2
Step 3
(continued)
Step 4
Step 3
(continued)
Step 4
Step 5
D Summary

The same kinds of problems recur again and again on exams

Summary

Step 1
(continued)
Step 2
Step 3
(continued)
Step 4
Step 3 (continued)
Step 4
Step 5
D Summary

The same kinds of problems recur again and again on exams
Learn to recognize at once common types of problems and have at your fingertips the methods and tricks that go with them

Summary

Step 1
(continued)
Step 2
Step 3
(continued)
Step 4
Step 3
(continued)
Step 4
Step 5
D Summary

The same kinds of problems recur again and again on exams
Learn to recognize at once common types of problems and have at your fingertips the methods and tricks that go with them

The only way to get the facility you need is to have practiced each category enough

Summary

Step 1

 (continued)Step 2
Step 3

(continued)

Step 4
Step 3

The same kinds of problems recur again and again on exams
Learn to recognize at once common types of problems and have at your fingertips the methods and tricks that go with them

The only way to get the facility you need is to have practiced each category enough

Do not throw away easy points on offer for knowing definitions and theorems

Some links:

Previous years exams

http://www.math.sfu.ca/ugrad/workshops/aw/exams100.shtml
http://www.math.sfu.ca/ugrad/workshops/cw/exams150.shtml http://www.math.sfu.ca/ugrad/workshops/cw/exams151.shtml
http://www.math.sfu.ca/ugrad/workshops/acw/exams154.shtml
http://www.math.sfu.ca/ugrad/workshops/acw/exams157.shtml http://www.math.sfu.ca/ugrad/workshops/aw/exams232.shtml
http://www.math.sfu.ca/ugrad/workshops/cw/exams251.shtml

Student's guide to first year calculus;
http://www.sfu.ca/~rpyke/math/student_guide.pdf

First Year Mathematics Survival Guide;
http://www.math.sfu.ca/ugrad/guide1.shtml

