
ar
X

iv
:2

40
3.

13
19

3v
1 

 [
cs

.C
R

] 
 1

9 
M

ar
 2

02
4

A Study of Vulnerability Repair in JavaScript Programs with
Large Language Models

Tan Khang Le
Simon Fraser University

Burnaby, British Columbia, Canada
khang_le@sfu.ca

Saba Alimadadi
Simon Fraser University

Burnaby, British Columbia, Canada
saba@sfu.ca

Steven Y. Ko
Simon Fraser University

Burnaby, British Columbia, Canada
steveyko@sfu.ca

ABSTRACT

In recent years, JavaScript has become the most widely used pro-

gramming language, especially inweb development. However, writ-

ing secure JavaScript code is not trivial, and programmers often

make mistakes that lead to security vulnerabilities in web appli-

cations. Large Language Models (LLMs) have demonstrated sub-

stantial advancements across multiple domains, and their evolv-

ing capabilities indicate their potential for automatic code gener-

ation based on a required specification, including automatic bug

fixing. In this study, we explore the accuracy of LLMs, namely

ChatGPT and Bard, in finding and fixing security vulnerabilities

in JavaScript programs. We also investigate the impact of context

in a prompt on directing LLMs to produce a correct patch of vul-

nerable JavaScript code. Our experiments on real-world software

vulnerabilities show that while LLMs are promising in automatic

program repair of JavaScript code, achieving a correct bug fix often

requires an appropriate amount of context in the prompt.

CCS CONCEPTS

• Security and privacy→ Software and application security;

Web application security; • Computing methodologies → Ma-

chine learning.

KEYWORDS

JavaScript, Automatic ProgramRepair, Large LanguageModels, Prompt

Engineering, CWE

ACM Reference Format:

Tan Khang Le, Saba Alimadadi, and Steven Y. Ko. 2024. A Study of Vul-

nerability Repair in JavaScript Programs with Large Language Models. In

Companion Proceedings of the ACM Web Conference 2024 (WWW ’24 Com-

panion), May 13–17, 2024, Singapore, Singapore. ACM, New York, NY, USA,

5 pages. https://doi.org/10.1145/3589335.3651463

1 INTRODUCTION

Despite the prevalence and popularity of JavaScript programs, un-

derstanding and analyzing them is challenging due to their het-

erogeneous, dynamic, and asynchronous nature. As a result, devel-

opers are prone to making mistakes and exposing many JavaScript

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.

WWW ’24 Companion, May 13–17, 2024, Singapore, Singapore

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0172-6/24/05
https://doi.org/10.1145/3589335.3651463

programs to security vulnerabilities [4]. Developers commonly use

static analysis and fuzzing techniques to mitigate such bugs. How-

ever, this process can be tedious in terms of understanding and

identifying the vulnerabilities, and subsequentlymodifying the code

to repair the bugs.

With the rapid development of artificial intelligence, Large Lan-

guage Models (LLMs) are increasingly trained on large codebases

with the goal of automatic code generation based on specifications

from user inputs [2, 3, 10, 19]. This empowers LLMs to generate

code in different ways, given some context such as the developer’s

intention expressed in code comments. Although LLMs may oc-

casionally produce code with security bugs [14, 15], when coupled

with suitable security-aware tooling during code generation, LLMs

have the potential to enhance a software developer’s productivity

[12], thereby reducing the risks of introducing new security bugs.

As such, the research community has been actively investigating

the effectiveness of LLMs in finding and fixing code vulnerabili-

ties [1, 6, 13, 17, 18]. Most of these studies, however, have focused

on programming languages such as C/C++ and Verilog. As such,

we currently do not have much insight into the role of LLMs in

repairing security vulnerabilities in a dynamic language such as

JavaScript.

In this paper,we study the utilization of black-box, “off-the-shelf"

LLMs, namely ChatGPT and Bard, in the automatic program repair

of JavaScript code. Furthermore, we investigate the effect of con-

text (or cues) in a prompt on LLMs’ ability to generate accurate

security patches. We aim to address the following research ques-

tions:

• RQ1: How accurate are LLMs in finding and fixing vulner-

abilities in JavaScript programs?

• RQ2: How does the amount of context in a prompt impact

the effectiveness of LLMs in producing a correct patch of

vulnerable JavaScript code?

To answer these questions, we conduct a study on over 20 of the

most common software vulnerabilities. We compare three distinct

prompt templates with varying degrees of contextual cues. These

templates serve to guide LLMs in repairing vulnerable JavaScript

code. In total, the study involves 60 prompts for two LLMs, cov-

ering the 20 identified vulnerabilities across the three proposed

prompt templates1. The experimental results show that ChatGPT

and Bard, on average, accurately generate patches for 71.66% and

68.33% of cases, respectively (RQ1). Furthermore, we find that the

more context provided in a prompt, the better ChatGPT and Bard

perform in producing a correct patch, with an improvement of up

to 55% in accuracy (RQ2).

1Our repair prompts and testing results are publicly available at:
https://doi.org/10.5281/zenodo.10783763

http://arxiv.org/abs/2403.13193v1
https://orcid.org/0009-0002-1703-4066
https://orcid.org/0000-0002-5667-152X
https://orcid.org/0000-0003-3771-0156
https://doi.org/10.1145/3589335.3651463
https://doi.org/10.1145/3589335.3651463
https://doi.org/10.5281/zenodo.10783763


WWW ’24 Companion, May 13–17, 2024, Singapore, Singapore Tan Khang Le, Saba Alimadadi, and Steven Y. Ko

2 RELATED WORK

In this section, we review the related work on code security and

vulnerability as well as program repair with large language mod-

els.

2.1 Code Security and Vulnerability

Due to the critical importance of safeguarding systems against po-

tential threats and breaches, there has been much research into

code security and vulnerability, providing insights into the nature

of security bugs and weaknesses. Specifically, as system errors and

vulnerabilities continue to grow over time, automated program re-

pair [8] emerges as a research field that focuses on a class of tech-

niques for producing source code-level patches for such bugs. A

classical approach for automated program repair is to turn the pro-

gram repair problem into a search problem. For example, Le Goues

et al. [7] used genetic programming to search for a program vari-

ant that addresses a bug in the given program without changing

the required functionality or producing new errors. An alternative

approach demonstrated byNguyen et al. [9] is to use semantic anal-

ysis for the automatic construction of patches.

The development community also actively engages in studying

and documenting vulnerabilities in software and hardware, such

as the CommonWeakness Enumeration (CWE). CWE functions as

a categorization system designed for both hardware and software

vulnerabilities, consisting of over 600 categories, namely buffer

overflows, race conditions, and cross-site scripting. Every year,MITRE

publishes a list of the top 25 most dangerous software weaknesses

(CWE Top 25) [16], which serves as a benchmark for evaluating

many automated program repair tools.

2.2 Program Repair with Large Language
Models (LLMs)

With the rise of LLMs in recent years, the field of automated pro-

gram repair has seen many major advancements. Much research

has shown the potential of LLMs in automated bug fixing for both

software and hardware programs. Particularly, Wu et al. [18] eval-

uated five different LLMs and four automatic program repair tools

on two Java vulnerability benchmarks. With regard to hardware

vulnerabilities, Ahmad et al. [1] attempted to repair hardware bugs

in Verilog programs automatically using LLMs. From the security

perspective, the study by Pearce et al. [13] on zero-shot vulnerabil-

ity repair demonstrated promising results of using LLMs for find-

ing and fixing security bugs in both software and hardware pro-

grams, written in Python, C, and Verilog. Furthermore, recent re-

search has leveraged LLMs to produce highly secured code through

controlled code generation [6] or to detect and patch side-channel

vulnerabilities in software [17].

3 METHODOLOGY

In our study, given an input prompt that instructs LLMs to find and

fix a vulnerability within a provided JavaScript code snippet, we

investigate the accuracy of the responses generated by these LLMs.

An example of an input prompt and the corresponding response

returned by ChatGPT are shown in Table 1.

In the given example, we ask LLMs to fix a bug, namely an “Out-

of-bound Write" error, in the given JavaScript code. Particularly,

Table 1: An example of an input prompt and the response

returned by LLM.

Prompt Response

Fix the bug in the

following code:

```js

let idSequence = new

Int16Array(3);

idSequence[0] = 123;

idSequence[1] = 234;

idSequence[2] = 345;

idSequence[3] = 456;

// No effect

console.log(idSequence[3])

// undefined

```

Here is the corrected code:

```js

let idSequence = new

Int16Array(4);

// Fix the length to 4

idSequence[0] = 123;

idSequence[1] = 234;

idSequence[2] = 345;

idSequence[3] = 456;

console.log(idSequence[3]);

// Accessing the valid

index 3

```

the issue in the code is that an Int16Array object is created with

a length of 3, but there is a write operation to the element at in-

dex 3, which will take no effect because the valid indices in this

array are 0, 1, and 2. In this scenario, ChatGPT successfully iden-

tifies and fixes the bug by increasing the array length to 4, effec-

tively validating element access at index 3. We note that various

approaches may exist for repairing vulnerable code. However, as

long as LLMs can produce a functional and secured patch, we con-

sider it a success as our focus lies in determining the capability of

LLMs to identify a solution rather than exhaustively exploring all

potential fixes.

3.1 Prompt Design

To investigate the role of different levels of context in the prompts

on the generated repair, we design three different prompt tem-

plates based on the degree of provided context. First, a context-

free (c.f.) prompt comprises solely a repair instruction and a vul-

nerable JavaScript code. There are no hints or additional infor-

mation regarding the anticipated vulnerability. Second, a context-

sensitive (c.s.) prompt is similar to a context-free prompt but

with the inclusion of the name of the expected vulnerability, such

as “Out-of-bound Write" and “Integer Overflow." Last, a context-

rich (c.r.) prompt encloses comments along with the vulnerable

JavaScript code, providing an exhaustive explanation of the vul-

nerability within the code as well as how an attacker could exploit

it. While in an ideal scenario, a developer with the knowledge of

a vulnerability context should be able to repair it directly with-

out relying on LLMs, explaining the vulnerability to LLMs as in

c.r. prompts might be beneficial for seeking suggestions or ex-

ploring different perspectives on potential fixes. This collaborative



A Study of Vulnerability Repair in JavaScript Programs with Large Language Models WWW ’24 Companion, May 13–17, 2024, Singapore, Singapore

Table 2: Samples of the proposed prompt templates.

Template Sample

context-

free

(c.f.)

Fix the bug in the following code:

```js

const urlParams = new URLSearchParams(window.

location.search);

const username = urlParams.get('username');

const trimmedName = username.trim();

```

context-

sensitive

(c.s.)

Fix the "NULL Pointer" vulnerability in the

following code:

```js

const urlParams = new URLSearchParams(window.

location.search);

const username = urlParams.get('username');

const trimmedName = username.trim();

```

context-

rich

(c.r.)

Fix the bug in the following code:

```js

// Get the query parameters from the current

URL

const urlParams = new URLSearchParams(window.

location.search);

// Get the username value

const username = urlParams.get('username');

// Trim any leading and ending white spaces

in username

const trimmedName = username.trim();

// Users can control the query parameters so

an attacker may set username value to

undefined or null

// causing the program to crash when it

attempts to call the trim method

```

approach could enhance a developer’s productivity in vulnerabil-

ity repair. A sample prompt for each template is shown in Table

2.

3.2 Vulnerability Selection

To ensure that our study is practical and relevant to the real world,

we leverage the latest 2023 CWE Top 25 List [16]. However, not

all vulnerabilities listed in the top 25 list are related to JavaScript,

Table 3: Relevant vulnerabilities selected from 2023 CWE

Top 25 List.

ID Description

CWE-20 Improper Input Validation

CWE-22 Improper Limitation of a Pathname to a Restricted

Directory (‘Path Traversal’)

CWE-77 Improper Neutralization of Special Elements used

in a Command (‘Command Injection’)

CWE-78 Improper Neutralization of Special Elements used

in an OS Command (‘OS Command Injection’)

CWE-79 Improper Neutralization of Input During Web

Page Generation (‘Cross-site Scripting’)

CWE-89 Improper Neutralization of Special Elements used

in an SQL Command (‘SQL Injection’)

CWE-94 Improper Control of Generation of Code (‘Code In-

jection’)

CWE-125 Out-of-bounds Read

CWE-190 Integer Overflow or Wraparound

CWE-269 Improper Privilege Management

CWE-276 Incorrect Default Permissions

CWE-287 Improper Authentication

CWE-306 Missing Authentication for Critical Function

CWE-434 Unrestricted Upload of File with Dangerous Type

CWE-476 NULL Pointer Dereference

CWE-502 Deserialization of Untrusted Data

CWE-787 Out-of-bounds Write

CWE-798 Use of Hard-coded Credentials

CWE-862 Missing Authorization

CWE-863 Incorrect Authorization

a few of them are specific to other programming languages. For

example, “CWE-416: Use After Free" is only applicable to C and

C++ as described in MITRE’s documentation. Consequently, we

carefully identify and select 20 out of the 25 vulnerabilities that

are most relevant to JavaScript. The complete list of the identified

20 vulnerabilities is presented in Table 3.

4 EXPERIMENT AND EVALUATION

In our study, we conduct a systematic experiment on two publicly

available LLMs, namely ChatGPT and Bard.

4.1 Experiment Details

Based on the proposed three prompt templates and the identified

20 vulnerabilities, we formulate a total of 60 prompts. Specifically,

each of the 20 vulnerabilities is replicated across the three prompt

templates with varying degrees of contextual cues, ranging from

no additional context to comprehensive detail.

In our experiment, we feed our prompts to the LLMs and sub-

sequently evaluate the correctness of their responses in repairing

the anticipated vulnerability within the given JavaScript code snip-

pet. Additionally, as LLMs can be heavily biased in a continuous

dialogue [20], we create a new and separate conversation for each

prompt to avoid such biases and ensure an impartial evaluation.



WWW ’24 Companion, May 13–17, 2024, Singapore, Singapore Tan Khang Le, Saba Alimadadi, and Steven Y. Ko

Table 4: Performance results of large language models on

finding and fixing vulnerabilities in JavaScript code.

Vulnerability

ID

ChatGPT Bard

c.f. c.s. c.r. c.f. c.s. c.r.

CWE-20 ✗ ✓ ✓ ✗ ✓ ✓

CWE-22 ✗ ✓ ✓ ✗ ✓ ✓

CWE-77 ✓ ✓ ✓ ✓ ✓ ✓

CWE-78 ✓ ✓ ✓ ✗ ✓ ✓

CWE-79 ✓ ✓ ✓ ✓ ✓ ✓

CWE-89 ✓ ✓ ✓ ✓ ✓ ✓

CWE-94 ✓ ✓ ✓ ✓ ✓ ✓

CWE-125 ✗ ✓ ✓ ✗ ✓ ✓

CWE-190 ✗ ✗ ✓ ✗ ✗ ✗

CWE-269 ✗ ✗ ✗ ✗ ✓ ✓

CWE-276 ✓ ✓ ✓ ✓ ✓ ✓

CWE-287 ✗ ✗ ✓ ✗ ✓ ✓

CWE-306 ✗ ✗ ✓ ✗ ✓ ✓

CWE-434 ✗ ✓ ✓ ✗ ✓ ✓

CWE-476 ✓ ✓ ✓ ✓ ✗ ✗

CWE-502 ✗ ✓ ✓ ✓ ✓ ✓

CWE-787 ✓ ✓ ✓ ✓ ✓ ✓

CWE-798 ✗ ✓ ✓ ✗ ✗ ✗

CWE-862 ✗ ✓ ✓ ✗ ✗ ✓

CWE-863 ✗ ✓ ✓ ✗ ✓ ✓

Accuracy 8/20 16/20 19/20 8/20 16/20 17/20

4.2 Results and Discussion

RQ1: How accurate are LLMs in finding and fixing vulnerabilities in

JavaScript programs?

Table 4 presents the performance results of ChatGPT and Bard

on repairing various vulnerabilities, with different levels of con-

text, in JavaScript programs. Particularly, ChatGPT correctly finds

and fixes 43 out of 60 cases, achieving an accuracy of 71.66%. On

the other hand, Bard has a slightly lower accuracy of 68.33%, with

41 accurate repairs out of 60.

RQ2: How does the amount of context in a prompt impact the effec-

tiveness of LLMs in producinga correct patch of vulnerable JavaScript

code?

The results in Table 4 also demonstrate that the provided con-

text in a prompt has a positive impact on LLMs’ capability to find

and fix vulnerabilities. When there is no additional context as in

c.f. prompts, ChatGPT and Bard perform poorly in repairing se-

curity bugs, each achieving an accuracy of 40%. However, when

compared with c.f. prompts, ChatGPT shows improved perfor-

mance on c.s. and c.r. prompts, showcasing an improved accu-

racy of 80% and 95%, respectively. Similarly, Bard experiences a

better accuracy of 80% and 85% when tested with c.s. and c.r.

prompts, respectively.

4.3 Threats to Validity

The validity of the evaluations drawn from our experimental re-

sults is subject to a few threats. First, we use the public version

of both ChatGPT [11] and Bard [5] in our testing (accessed in No-

vember 2023), which can change and evolve over time. Second, the

correctness of the repaired JavaScript code produced by LLMs is

verified manually and, thus, subject to human biases. Last, we ac-

knowledge that more studies are required to draw more accurate

conclusions.

5 CONCLUSION

In this study, we have identified 20 common vulnerabilities from

the CWE Top 25 List that are most relevant to JavaScript and pro-

posed three prompt templateswith varying degrees of context. Based

on these vulnerabilities and templates, we have formulated a total

of 60 repair prompts for our study with LLMs, namely ChatGPT

and Bard. Our experimental results show that ChatGPT excels with

a promising accuracy of 71.66%, while Bard closely follows with

an accuracy of 68.33%, in the automatic program repair task of vul-

nerable JavaScript code. Furthermore, our findings indicate that

increased contextual information in a repair prompt positively in-

fluences the performance of LLMs in finding and fixing vulnerabil-

ities, leading to a significant boost in accuracy of up to 55%.

REFERENCES
[1] Baleegh Ahmad, Shailja Thakur, Benjamin Tan, Ramesh Karri, and Hammond

Pearce. 2023. Fixing Hardware Security Bugs with Large Language Models.
arXiv preprint arXiv:2302.01215 (2023).

[2] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk
Michalewski, David Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le,
et al. 2021. Program synthesis with large language models. arXiv preprint
arXiv:2108.07732 (2021).

[3] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav
Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Se-
bastian Gehrmann, et al. 2023. Palm: Scaling language modeling with pathways.
Journal of Machine Learning Research 24, 240 (2023), 1–113.

[4] Douglas Crockford. 2008. JavaScript: The Good Parts: The Good Parts. " O’Reilly
Media, Inc.".

[5] Google. 2023. Bard. https://bard.google.com/
[6] Jingxuan He and Martin Vechev. 2023. Large language models for code: Secu-

rity hardening and adversarial testing. In Proceedings of the 2023 ACM SIGSAC
Conference on Computer and Communications Security. 1865–1879.

[7] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer.
2011. Genprog: A generic method for automatic software repair. Ieee trans-
actions on software engineering 38, 1 (2011), 54–72.

[8] Claire Le Goues, Michael Pradel, Abhik Roychoudhury, and Satish Chandra.
2021. Automatic program repair. IEEE Software 38, 4 (2021), 22–27.

[9] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chan-
dra. 2013. Semfix: Program repair via semantic analysis. In 2013 35th Interna-
tional Conference on Software Engineering (ICSE). IEEE, 772–781.

[10] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, HuanWang, Yingbo Zhou, Sil-
vio Savarese, and CaimingXiong. 2022. Codegen: An open large language model
for code with multi-turn program synthesis. arXiv preprint arXiv:2203.13474
(2022).

[11] OpenAI. 2023. ChatGPT. https://chat.openai.com/
[12] Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-Gavitt, and

Ramesh Karri. 2022. Asleep at the keyboard? assessing the security of github
copilot’s code contributions. In 2022 IEEE Symposium on Security and Privacy
(SP). IEEE, 754–768.

[13] Hammond Pearce, Benjamin Tan, Baleegh Ahmad, Ramesh Karri, and Brendan
Dolan-Gavitt. 2023. Examining zero-shot vulnerability repair with large lan-
guage models. In 2023 IEEE Symposium on Security and Privacy (SP). IEEE, 2339–
2356.

[14] Gustavo Sandoval, Hammond Pearce, Teo Nys, Ramesh Karri, Siddharth Garg,
and Brendan Dolan-Gavitt. 2023. Lost at c: A user study on the security impli-
cations of large language model code assistants. arXiv preprint arXiv:2208.09727
(2023).

[15] Mohammed Latif Siddiq, Shafayat H Majumder, Maisha R Mim, Sourov Jajodia,
and Joanna CS Santos. 2022. An Empirical Study of Code Smells in Transformer-
based Code Generation Techniques. In 2022 IEEE 22nd International Working
Conference on Source Code Analysis and Manipulation (SCAM). IEEE, 71–82.

https://bard.google.com/
https://chat.openai.com/


A Study of Vulnerability Repair in JavaScript Programs with Large Language Models WWW ’24 Companion, May 13–17, 2024, Singapore, Singapore

[16] T. M. C. (MITRE). 2023. CWE Top 25 Most Dangerous Software Weaknesses.
https://cwe.mitre.org/top25/index.html

[17] M Caner Tol and Berk Sunar. 2023. ZeroLeak: Using LLMs for Scalable and Cost
Effective Side-Channel Patching. arXiv preprint arXiv:2308.13062 (2023).

[18] Yi Wu, Nan Jiang, Hung Viet Pham, Thibaud Lutellier, Jordan Davis, Lin Tan,
Petr Babkin, and Sameena Shah. 2023. How Effective Are Neural Networks for
Fixing Security Vulnerabilities. arXiv preprint arXiv:2305.18607 (2023).

[19] Frank F Xu, Uri Alon, Graham Neubig, and Vincent Josua Hellendoorn. 2022. A
systematic evaluation of large language models of code. In Proceedings of the 6th
ACM SIGPLAN International Symposium on Machine Programming. 1–10.

[20] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou,
Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, et al. 2023. A survey
of large language models. arXiv preprint arXiv:2303.18223 (2023).

https://cwe.mitre.org/top25/index.html

	Abstract
	1 Introduction
	2 Related Work
	2.1 Code Security and Vulnerability
	2.2 Program Repair with Large Language Models (LLMs)

	3 Methodology
	3.1 Prompt Design
	3.2 Vulnerability Selection

	4 Experiment and Evaluation
	4.1 Experiment Details
	4.2 Results and Discussion
	4.3 Threats to Validity

	5 Conclusion
	References

