Random Walk on Plane

Seyyed Aliasghar Hosseini

Luis Goddyn

Department of Mathematics, Simon Fraser University
Burnaby, BC V5A 1S6, Canada

March 14, 2016

Abstract

In this short note we will solve the following question: What is the probability that a random motion particle which is currently at (x, y), hits the x-axis at $x>0$ before hitting the negative side?

1 Answer

Let us first solve the problem for $(x, y)=(1,1)$. In this case the probability that the particle hits the x-axis before hitting the y-axis is $\frac{1}{2}$ by symmetry and if the particle is on the y-axis it will hit the positive half of the x-axis (before hitting the negative half of it) with probability $\frac{1}{2}$. Therefore a particle at point $(1,1)$ hits the x-axis at $x>0$ with probability $\frac{1}{2}+\frac{1}{2} \cdot \frac{1}{2}=\frac{3}{4}$.

We can generalize this idea to solve the original question. Without loss of generality we can assume that $y>0$.

It is easy to see that all points on a straight line that passes through origin have the same answer. Let $\theta=\arctan \left(\frac{y}{x}\right)$ (the slope of the line) and let $\operatorname{Pr}(\theta)$ be the answer for the points on this line. Then by generalizing the above strategy we have formula 1. See the above figure.

$$
\operatorname{Pr}(\theta)= \begin{cases}\frac{1}{2}+\frac{1}{2} \operatorname{Pr}(2 \theta) & 0<\theta \leq \frac{\pi}{2} \tag{1}\\ 1-\operatorname{Pr}(\pi-\theta) & \frac{\pi}{2}<\theta<\pi\end{cases}
$$

This is a recursive formula and we claim that

$$
\begin{equation*}
\operatorname{Pr}(\theta)=\frac{\pi-\theta}{\pi} \tag{2}
\end{equation*}
$$

which holds in 1 . Therefore if 2 is true for θ_{0} it will be true for $\frac{\theta_{0}}{2^{n}}$ and $\pi-\frac{\theta_{0}}{2^{n}}$ for every n.
We know that $\operatorname{Pr}\left(\frac{\pi}{2}\right)=\frac{1}{2}$ and this holds in 1 and 2 . To show that equation 2 is true for $\theta=\frac{k \pi}{2^{n}}$ for $0 \leq k \leq 2^{n}$, assume that 2 is true for $\theta_{0}=\frac{k \pi}{2^{n-1}}$ for $0 \leq k \leq 2^{n-1}$, therefore 2 is true for $\theta_{1}=\theta_{0} / 2=\frac{k \pi}{2^{n}}$ and also for $\theta_{2}=\pi-\theta_{1}=\pi-\frac{k \pi}{2^{n}}$ for $0 \leq k \leq 2^{n-1}$. Hence it is true for $\theta=\frac{k \pi}{2^{n}}$ for $0 \leq k \leq 2^{n}$.

The set $\left\{\frac{k \pi}{2^{n}}: \forall n, 0 \leq k \leq 2^{n}\right\}$ is dense in $[0, \pi]$ and $\operatorname{Pr}(\theta)$ is continuous by definiton, therefore 2 is true for all values of $\theta \in[0, \pi]$.

