ON THE LITTLEWOOD CYCLOTOMIC POLYNOMIALS

SHABNAM AKHTARI AND STEPHEN K. CHOI

ABSTRACT. In this article, we study the cyclotomic polynomials of degree N-1 with coefficients restricted to the set $\{+1,-1\}$. By a cyclotomic polynomial we mean any monic polynomial with integer coefficients and all roots of modulus 1. By a careful analysis of the effect of Graeffe's root squaring algorithm on cyclotomic polynomials, P. Borwein and K.K. Choi gave a complete characterization of all cyclotomic polynomials with odd coefficients. They also proved that a polynomial p(x) with coefficients ± 1 of even degree N-1 is cyclotomic if and only if $p(x) = \pm \Phi_{p_1}(\pm x)\Phi_{p_2}(\pm x^{p_1})\dots\Phi_{p_r}(\pm x^{p_1p_2\dots p_{r-1}})$, where $N=p_1p_2\dots p_r$ and the p_i are primes, not necessarily distinct. Here $\Phi_p(x):=\frac{x^p-1}{x-1}$ is the pth cyclotomic polynomial. Based on substantial computation, they also conjectured that this characterization also holds for polynomials of odd degree with ± 1 coefficients. We consider the conjecture for odd degree here. Using Ramanujan's sums, we solve the problem for some special cases. We prove that the conjecture is true for polynomials of degree $2^{\alpha}p^{\beta}-1$ with odd prime p or separable polynomials of any odd degree.

1. Introductory Remarks and Statements of Results

We are interested in studying polynomials with coefficients restricted to the set $\{+1,-1\}$. This particular set of polynomials has drawn much attention and there are a number of difficult old questions concerning it (e.g. see [1]). Littlewood raised a number of these questions in [11] and so we call these polynomials **Littlewood polynomials**. A Littlewood polynomial of degree N-1 has L_2 norm on the unit circle equal to \sqrt{N} . Many of the questions raised concern comparing the behavior of these polynomials in other norms to the L_2 norm. One of the older and more intriguing of these asks whether such polynomials can be "flat". Specifically, do there exist two positive constants C_1 and C_2 so that for each N there is Littlewood polynomial P(z) of degree N-1 with

$$C_1\sqrt{N} < |p(z)| < C_2\sqrt{N}$$

for each z of modulus 1?

The size of the L_p norm of Littlewood polynomials has been studied from a number of points of view. The problem of minimizing the L_4 norm has also attracted a lot of attention. (e.g. see [3] - [6])

Mahler raised the question of maximizing the Mahler measure of Littlewood polynomials. The Mahler measure is the limit of the L_p norm on the circle as

Date: April 3, 2007.

²⁰⁰⁰ Mathematics Subject Classification. Primary: 11R09; Secondary: 11Y99.

Key words and phrases. Cyclotomic polynomial, Littlewood polynomial, Separable polynomial, Newton's identity, Ramanujan's sum.

Research of Stephen Choi was supported by NSERC of Canada.

 $p \to 0^+$ and one would expect this to be closely related to the minimizing problem for the L_4 norm above (see [9]).

Let P(x) be a cyclotomic polynomial of degree N-1, that is

$$P(x) = a_0 + a_1 x + \dots + a_{N-1} x^{N-1}, \quad a_i \in \mathbb{Z}$$

and all the roots of P(x) are of modulus one. For convenience, we also let n = N-1 so that n is the degree and N is the length of the polynomial P(x). Let $\Phi_m(x)$ be the mth irreducible cyclotomic polynomial, that is,

$$\Phi_m(x) := \prod_{\substack{j=1\\(j,m)=1}}^m \left(x - \xi_m^j\right)$$

whose roots are the primitive mth roots of unity. Here $(j,m) = \gcd(j,m)$ and $\xi_m := e^{2\pi i/m}$.

By a classical result of Kronecker, polynomials with integer coefficients having minimal Mahler measure 1 are precisely cyclotomic polynomials, or x^n .

In [2], P. Borwein and K.K. Choi addressed the question of characterizing the cyclotomic Littlewood polynomials of even degree and showed that all cyclotomic polynomials with **odd coefficients** are characterized as follows.

Theorem 1.1. Let $N=2^tM$ with $t \geq 0$ and (2,M)=1. A polynomial, P(x), with odd coefficients of degree N-1 is cyclotomic if and only if

$$P(x) = \pm \prod_{d|M} \Phi_d^{e(d)}(x) \Phi_{2d}^{e(2d)}(x) \cdots \Phi_{2^{t+1}d}^{e(2^{t+1}d)}(x),$$

and the e(d)'s satisfy the condition

$$e(d) + \sum_{i=1}^{t+1} 2^{i-1} e(2^i d) = \begin{cases} 2^t & \text{for } d \mid M, \ d > 1; \\ 2^t - 1 & \text{for } d = 1. \end{cases}$$

Furthermore, if N is odd, then any polynomial, P(x), with odd coefficients of even degree N-1 is cyclotomic if and only if

$$P(x) = \pm \prod_{d|N,d>1} \Phi_d^{e(d)}(\pm x)$$

where the e(d)'s are non-negative integers.

They also gave an explicit formula for the number of such polynomials. Their analysis in [2] was based on a careful treatment of Graeffe's root squaring algorithm. It transpires that all cyclotomic Littlewood polynomials of fixed degree have the same fixed point on iterating Graeffe's root squaring algorithm. This gives a characterization of all cyclotomic polynomials with odd coefficients.

Among the polynomials with odd coefficients, we are particularly interested in Littlewood polynomials, i.e., with ± 1 coefficients. As a corollary of Theorem 1.1, Borwein and Choi obtained the characterization of all Littlewood cyclotomic polynomials of even degree.

Theorem 1.2. Suppose N is odd. A Littlewood polynomial, P(x), of degree N-1 is cyclotomic if and only if

$$P(x) = \pm \Phi_{p_1}(\pm x)\Phi_{p_2}(\pm x^{p_1})\cdots\Phi_{p_r}(\pm x^{p_1p_2\cdots p_{r-1}}),$$

where $N = p_1 p_2 \cdots p_r$ and the p_i are primes, not necessarily distinct.

The authors in [2] conjectured that Theorem 1.2 also holds for polynomials of odd degree. They computed up to degree 210 (except for the case n=191). The computation was based on computing all cyclotomic polynomials with odd coefficients of a given degree and then checking which were actually Littlewood and checking that this set matched the set generated by the conjecture. For example, for n=143 there are 6773464 cyclotomic polynomials with odd coefficients of which 416 are Littlewood.

Conjecture 1.3. A Littlewood polynomial, P(x), of degree N-1 is cyclotomic if and only if

$$P(x) = \pm \Phi_{p_1}(\pm x)\Phi_{p_2}(\pm x^{p_1})\cdots\Phi_{p_r}(\pm x^{p_1p_2\cdots p_{r-1}}),$$

where $N = p_1 p_2 \cdots p_r$ and all p_i are primes, not necessarily distinct.

In this article, we prove the conjecture is true for polynomials of degree $n = 2^{\alpha}p^{\beta} - 1$ with odd prime p or for separable polynomials of any odd degree.

Theorem 1.4. Conjecture 1.3 is true for separable Littlewood cyclotomic polynomials.

Theorem 1.5. Conjecture 1.3 is true for the Littlewood cyclotomic polynomials of degree N-1 where $N=2^{\alpha}p^{\beta}$ and p is an odd prime.

Here we recall that a separable polynomial is a polynomial with no repeated roots.

In [12], R. Thangadurai proves that Conjecture 1.3 is true for separable polynomials of degree $n = 2^r p^l - 1$. There is apparently a typographical error in the abstract of [12] where the word "separable" is forgotten to be written and the separability in fact is assumed in his proof. Our results improve Thangadurai's result.

2. Separable Polynomials

Let $P(x) = a_0 + a_1x + \cdots + a_nx^n$, $a_i = \pm 1$ and $N = n + 1 = 2^tM$ with $2 \nmid M$ be a Littlewood polynomial of degree N - 1. We also assume that P(x) is a product of cyclotomic polynomials. Without loss of generality, assume $a_0 = a_1 = +1$, by replacing by -P(x) or P(-x) if necessary. Now consider

$$Q(x) = -\Phi_1(x)P(x)$$

$$= (1-x)P(x)$$

$$= a_0 + (a_1 - a_0)x + \dots + (a_{N-1} - a_{N-2})x^{N-1} - a_{N-1}x^N$$

$$(2.1) := b_0 + b_1x + \dots + b_Nx^N$$

with $b_0 = a_0 = 1$ and $b_N = -a_{N-1} = \pm 1$ but $b_1, b_2, \dots, b_{N-1} \in \{-2, 0, 2\}$ because $a_i = \pm 1$. Also since $a_1 = 1$, so $b_1 = 0$. We now suppose that

$$a_0 = a_1 = \dots = a_{i-1} = 1$$
 and $a_i = -1$

for some $i \ge 2$ (If such i does not exist, the result becomes trivial because $P(x) = 1 + x + \cdots + x^n$). This corresponds to

$$(2.2) b_0 = 1, b_1 = \dots = b_{i-1} = 0 \text{ and } b_i = -2.$$

By Theorem 1.1, we have the factorization of Q(x) into cyclotomic polynomials

$$Q(x) = \prod_{d|M} \prod_{l=0}^{t+1} \Phi_{2^l d}^{e(2^l d)}(x)$$

where for any d|M

$$(2.3) e(d) + e(2d) + 2e(4d) + \dots + 2^t e(2^{t+1}d) = \sum_{l=0}^{t+1} \phi(2^l)e(2^ld) = 2^t.$$

Let S_j be the sum of the jth power of all the roots of Q(x). Since the sum of the jth power of all the roots of $\Phi_m(x)$ is

$$c_m(j) = \sum_{\substack{h=1\\(h,m)=1}}^{m} \xi_m^{hj}$$

where $c_m(j)$ is the Ramanujan's sum, so

(2.4)
$$S_j = \sum_{d|M} \sum_{l=0}^{t+1} e(2^l d) c_{2^l d}(j).$$

Since P(x) is a product of cyclotomic polynomials, it follows that $x^{N-1}P(x) = \pm P\left(\frac{1}{x}\right)$ and consequently we may write Newton's identity (e.g. p.5 of [8]) as

$$S_j + b_1 S_{j-1} + \dots + b_{j-1} S_1 + j b_j = 0$$

for $j \leq n$.

For j = 1, we have $S_1 + b_1 = 0$. However, $b_1 = 0$ and hence $S_1 = 0$.

For
$$i > 2$$
 and $j = 2$, we have $b_1 = b_2 = 0$ and so

$$S_2 = -b_1 S_1 - 2b_2 = 0$$

Inductively, we have

$$(2.5) S_1 = \dots = S_{i-1} = 0.$$

For j = i, we have

$$(2.6) S_i = -ib_i = 2i.$$

In order to prove Conjecture 1.3 for our cases, we aim to obtain some "periodic" properties for S_i .

The following two lemmas are elementary results about the greatest common divisor which are useful later.

Lemma 2.1. Let N and k be positive integers. Then for any d|N, we have

$$(d, k) = (d, (N, k)).$$

Proof. For any $d \mid N$, we first see that since $(N, k) \mid k$, so

$$(d, (N, k)) \mid (d, k).$$

On the other hand, since d|N so (d,k)|(N,k). Thus (d,k)|(d,(N,k)). This proves the lemma.

For the remainder of this section, we write the length N of P(x) as $N = 2^t M$ with M odd.

Lemma 2.2. If $2^{t+1} \nmid k$, then $(2^{t+1}d, k) = (2^{t+1}d, (N, k))$ for any $d \mid M$.

Proof. Let d|M. Since (N,k)|k, we first have

$$(2^{t+1}d, (N, k)) \mid (2^{t+1}d, k).$$

It remains to prove that

$$(2^{t+1}d, k) \mid (2^{t+1}d, (N, k)).$$

Let p be an odd prime. If $p^{\alpha} \mid (2^{t+1}d, k)$ then $p^{\alpha} \mid (d, k)$. Clearly, $p^{\alpha} \mid (N, k)$. Thus $p^{\alpha} \mid (2^{t+1}d, (N, k))$.

If $2^{\alpha} \mid (2^{t+1}d, k)$ then $2^{\alpha} \mid k$. Because $2^{t+1} \nmid k$ we get $\alpha \leq t$. Since $N = 2^t M$, so $2^{\alpha} \mid N$ and hence $2^{\alpha} \mid (N, k)$. Therefore, $2^{\alpha} \mid (2^{t+1}d, (N, k))$. This proves (2.7). \square

It is well known (e.g. Theorem 272 of [10]) that

(2.8)
$$c_q(m) = \mu\left(\frac{q}{(m,q)}\right)\phi(q)\left(\phi\left(\frac{q}{(m,q)}\right)\right)^{-1}.$$

where $\mu(n)$ is the Möbius function and $\phi(n)$ is Euler's totient function. We note from (2.8) that if $(q, m_1) = (q, m_2)$ then

$$(2.9) c_q(m_1) = c_q(m_2).$$

We next establish some "periodic" properties for S_j .

Lemma 2.3. If $2^{t+1} \nmid k$, then we have

$$S_k = S_{(N,k)}.$$

Proof. In view of Lemma 2.1 (for $0 \le j \le t$) and Lemma 2.2 (for j = t + 1), if $2^{t+1} \nmid k$, then $(2^j d, k) = (2^j d, (N, k))$ for $j = 0, 1, \dots, t + 1$ and $d \mid M$. Hence from (2.4) we have

$$S_k = \sum_{d|M} \sum_{l=0}^{t+1} e(2^l d) c_{2^l d}(k)$$

$$= \sum_{d|M} \sum_{l=0}^{t+1} e(2^l d) c_{2^l d}((N, k))$$

$$= S_{(N,k)}.$$

Lemma 2.4. If $2^{t+1} | k \text{ and } k \leq N-1$, then $S_k = 0$.

Proof. Let $k = 2^{t+1}k'$. Then for any $0 \le j \le t+1$ and $d \mid M$, we have

$$c_{2^{j}d}(k) = \mu\left(\frac{2^{j}d}{(2^{j}d,k)}\right)\phi(2^{j}d)\left(\phi\left(\frac{2^{j}d}{(2^{j}d,k)}\right)\right)^{-1}$$
$$= \mu\left(\frac{d}{(d,k)}\right)\phi(2^{j})\phi(d)\left(\phi\left(\frac{d}{(d,k)}\right)\right)^{-1}$$
$$= c_{d}(k)\phi(2^{j}).$$

It thus follows that from (2.4) that

$$S_k = \sum_{d|M} \sum_{j=0}^{t+1} e(2^j d) c_{2^j d}(k)$$

$$= \sum_{d|M} \sum_{j=0}^{t+1} e(2^j d) \phi(2^j) c_d(k)$$

$$= \sum_{d|M} c_d(k) \sum_{j=0}^{t+1} e(2^j d) \phi(2^j)$$

$$= 2^t \sum_{d|M} c_d(k)$$

by (2.3). We note that $k \not\equiv 0 \pmod{M}$; otherwise N|k and $k \geq N$. The lemma now follows from the fact that $\sum_{d|M} c_d(k) = 0$ for $k \not\equiv 0 \pmod{M}$.

Lemma 2.5. For the integer i defined in (2.2), we have $i \mid N$.

Proof. Since $S_i = 2i \neq 0$, by Lemma 2.4, $2^{t+1} \nmid i$. By Lemma 2.3, $S_i = S_{(N,i)}$. If (N,i) < i then $S_{(N,i)} = 0 \neq S_i$ by (2.2). Hence (N,i) = i and $i \mid N$.

We end this section by proving Theorem 1.4.

Proof of Theorem 1.4. Suppose P(x) is a separable cyclotomic Littlewood polynomial of degree N-1 with $N=2^tM$, $t\geq 1$ and odd integer M (for the case t=0, the result follows from Theorem 1.2). Then

$$P(x) = \prod_{d \mid M} \Phi_d^{e(d)}(x) \Phi_{2d}^{e(2d)} \cdots \Phi_{2^{t+1}d}^{e(2^{t+1}d)}$$

where e(l) is either 0 or 1 (because P(x) is separable) and satisfies

$$e(d) + \sum_{i=1}^{t+1} 2^{i-1} e(2^i d) = \begin{cases} 2^t & \text{if } d \mid M, d > 1; \\ 2^t - 1 & \text{if } d = 1. \end{cases}$$

For d = 1, we have

$$e(1) + e(2) + 2e(4) + \dots + 2^{t}e(2^{t+1}) = 2^{t} - 1.$$

Since e(j) is either 0 or 1, so we must have $e(2^{t+1}) = 0$ and

$$e(1) + e(2) = e(4) = e(8) = \dots = e(2t) = 1.$$

Hence by the well-known property of $\Phi_n(x)$ that for $k \geq 1$,

$$\Phi_{2^k}(x) = \Phi_2(x^{2^{k-1}}),$$

we have

$$\Phi_1^{e(1)}(x)\Phi_2^{e(2)}(x)\cdots\Phi_{2^{t+1}}^{e(2^{t+1})}(x) = \Phi_1^{e(1)}(x)\Phi_2^{e(2)}(x)\Phi_4(x)\cdots\Phi_{2^t}(x)
= \Phi_2(\pm x)F_1(x^2)$$

for some polynomial $F_1(x)$ in $\mathbb{Z}[x]$. For d > 1, we have

$$e(d) + e(2d) + 2e(4d) + \dots + 2^{t}e(2^{t+1}d) = 2^{t}$$
.

So we have either

$$e(2^{t+1}d) = 1$$
 and $e(d) = \cdots = e(2^td) = 0$

or

$$e(2^{t+1}d) = 0$$
 and $e(d) = \cdots = e(2^td) = 1$.

So $\Phi_d^{e(d)}(x)\Phi_{2d}^{e(2d)}(x)\cdots\Phi_{2^{i+1}d}^{e(2^{i+1}d)}(x)$ is either

$$\Phi_{2^{t+1}d}(x) = \Phi_{2d}(x^{2^t})$$

or

$$\Phi_d(x)\Phi_{2d}(x)\cdots\Phi_{2^td}(x)=F_2(x^2)$$

for some $F_2(x)$ in $\mathbb{Z}[x]$. In either case, it is in the form of $F_2(x^2)$ for some $F_2(x)$ in $\mathbb{Z}[x]$. Therefore,

$$P(x) = \Phi_2(\pm x)F(x^2)$$

for some polynomial F(x) in $\mathbb{Z}[x]$. Hence induction applies to F(x) and this proves Theorem 1.4.

3. The case of $N=2^{\alpha}p^{\beta}$ and Proof of Theorem 1.5

As we mention in §2, we aim to obtain some "periodic" properties for S_j . We wish to show that (c.f. (2.5))

$$S_1 = \dots = S_{i-1} = 0$$

 $S_{i+1} = \dots = S_{2i-1} = 0$
 \vdots
 $S_{(N/i-1)i+1} = \dots = S_{N-1} = 0$

i.e.

(3.10)
$$S_j = 0 \text{ for all } j \not\equiv 0 \pmod{i}.$$

Suppose (3.10) is proved. Then we claim that

(3.11)
$$b_j = 0 \text{ for all } j \not\equiv 0 \pmod{i}.$$

If (3.11) holds then one can easily observe that the coefficients of P(x) are equal in runs of length i, which implies that the polynomial $(1 + x + \cdots + x^{i-1})$ can be factored out and this gives

$$P(x) = (1 + x + \dots + x^{i-1})P_1(x^i)$$

for some cyclotomic Littlewood polynomial $P_1(x)$ of degree N/i - 1. Hence from this, we can apply the induction to $P_1(x)$ on the degree.

To prove the claim (3.11) from (3.10), by Newton's identity, if $j \not\equiv 0 \pmod{i}$, then we have

$$S_j + \sum_{l=1}^{j-1} b_l S_{j-l} + j b_j = 0.$$

For $1 \leq l \leq j-1$, either $l \not\equiv 0 \pmod i$ or $j-l \not\equiv 0 \pmod i$ because $j \not\equiv 0 \pmod i$. By (3.10) and the induction assumption, we have $b_l S_{j-l} = 0$ for $1 \leq l \leq j-1$. Hence $S_j + jb_j = 0$. From (3.10) again, $b_j = 0$. This proves the claim (3.11). From now on, we may assume the set

$$(3.12) E := \{ 0 \le k < N : S_k \ne 0, i \nmid k \}$$

is non-empty and let j be the least positive integer in this set. From the definition of j, we have, if there exists l < j such that $S_l \neq 0$, then i|l.

Lemma 3.1. Let i be defined in (2.2) and j be the least positive integer of the set E defined in (3.12). Then we have

- (i) $j \mid N$,
- (ii) $b_k = 0$, for any k < j and $i \nmid k$,
- (iii) $S_j = -jb_j$, (iv) $S_{i+j} \neq 0$,
- (v) $(i+i) \mid N$

Proof. (i) Since $S_i \neq 0$, so $2^{t+1} \nmid j$ by Lemma 2.4 and hence by Lemma 2.3, $S_j = S_{(j,N)}$. So, if (j,N) < j then by the definition of j, we have $i \mid (j,N)$. It follows that $i \mid j$ which contradicts the definition of j. Therefore, (j, N) = j and hence $j \mid N$.

(ii) For any k < j and $i \nmid k$, by the definition of j, we have $S_k = 0$. By Newton's identity,

$$S_k + b_1 S_{k-1} + \dots + b_{i-1} S_{k-(i-1)} + b_i S_{k-i} + b_{i+1} S_{k-(i+1)} + \dots + b_{k-1} S_1 + k b_k = 0.$$

Since $i \nmid k$, so either $i \nmid l$ or $i \nmid k-l$. That is either $b_l = 0$ or $S_{k-l} = 0$ by the definition of j and the induction assumption. So $S_k + kb_k = 0$ and hence $b_k = 0$.

(iii) By Newton's identity, we have

$$S_j + \sum_{l=1}^{j-1} b_l S_{j-l} + j b_j = 0$$

and by (ii), so

$$S_j + \sum_{1 \le l \le (j-1)/i} b_{il} S_{j-il} + j b_j = 0.$$

But $i \nmid j - il$ because $i \nmid j$, so $S_{j-il} = 0$. Thus $S_j + jb_j = 0$ and hence $S_j = -jb_j$. (iv) We first note that i + j < N from (i). By Newton's identity, we have

$$S_{i+j} + \sum_{l=1}^{i-1} b_l S_{i+j-l} + b_i S_j + \sum_{l=1}^{j-i-1} b_{i+l} S_{j-l} + b_j S_i + \sum_{l=1}^{i-1} b_{j+l} S_{i-l} + (i+j) b_{i+j} = 0.$$

Now we note that since $b_1 = \cdots = b_{i-1} = 0$, so

$$\sum_{l=1}^{i-1} b_l S_{i+j-l} = 0.$$

For $1 \leq l \leq j-i-1$, then i+l < j. If $i \nmid l$, then we have $b_{i+l} = 0$ by (ii). If $i \mid l$ then $i \nmid j - l$ and by the definition of j, we have $S_{j-l} = 0$. Thus we have

$$\sum_{l=1}^{j-i-1} b_{i+l} S_{j-l} = 0.$$

For $1 \le l \le i-1$, we have $i \nmid i-l$ and hence $S_{i-l} = 0$. We conclude that

$$S_{i+j} + b_i S_i + b_i S_j + (i+j)b_{i+j} = 0.$$

Since $S_i = 2i$ and $S_j = -jb_j$ by (2.6) and (iii), we get

$$S_{i+j} = -(i+j)(2b_i + b_{i+j}).$$

Suppose $S_{i+j}=0$. Then $2b_j+b_{i+j}=0$. Since $b_N=\pm 1$, so $i+j\neq N$ and hence $b_{i+j}\in\{-2,0,+2\}$. Because $b_j\neq 0$, so $b_{i+j}\neq 0$ and hence

$$b_{i+j} = \pm 2 \equiv 2 \pmod{4}.$$

Therefore,

$$0 \equiv b_{i+j} + 2b_j \pmod{4}$$
$$\equiv 2 + 2b_j \pmod{4}.$$

It follows that $1 + b_j \equiv 0 \pmod{2}$ and hence $b_j \equiv 1 \pmod{2}$. This contradicts $b_j \in \{-2, 0, +2\}$.

(v) Since $S_{i+j} \neq 0$ and i+j < N, we have $2^{t+1} \nmid (i+j)$ by Lemma 2.4 and $S_{i+j} = S_{(N,i+j)}$ by Lemma 2.3. If k = (N,i+j) < i+j then since i+j < 2j, every proper divisor of i+j is less than j. In particular, k < j but $S_k = S_{i+j} \neq 0$ by the definition of j. So i|k and hence i|j. This contradiction shows that k = (N,i+j) = i+j and (i+j)|N.

Proof of Theorem 1.5. Let i and j be as above. Since $i, j \mid N$, we have $i = 2^{\alpha_1} p^{\beta_1}$ and $j = 2^{\alpha_2} p^{\beta_2}$ where $0 \le \alpha_1, \alpha_2 \le \alpha$ and $0 \le \beta_1, \beta_2 \le \beta$. Since $i \nmid j$, either " $\alpha_1 > \alpha_2$ and $\beta_2 > \beta_1$ " or " $\alpha_2 > \alpha_1$ and $\beta_1 > \beta_2$ ". In both cases, one finds that i + j has a factor of the form $2^r + p^s$ with r and s positive. By Lemma 3.1 (v), $(i+j) \mid N$, but $(2^r + p^s) \nmid 2^{\alpha} p^{\beta}$. This is a contradiction. Thus we conclude that the set E defined in (3.12) is empty and as we explained before, P(x) can be written as

$$P(x) = (1 + x + \dots + x^{i-1})P_1(x^i)$$

for some cyclotomic Littlewood polynomial $P_1(x)$ of degree N/i-1. So one can complete the proof of Conjecture 1.3 for $N=2^{\alpha}p^{\beta}$ by induction. This proves Theorem 1.5.

Acknowledgement. The authors would like to thank the referee for his/her careful reading and suggestion of the manuscript.

REFERENCES

- P. Borwein, Computational Excursions in Analysis and Number Theory, Springer-Verlag, 2002.
- P. Borwein and K.K. Choi, On Cyclotomic Polynomials with ±1 Coefficients, Experiment. Math. 8 (1999), no. 4, 399-407.
- [3] P. Borwein and K.K. Choi, Merit factors of character polynomials, J. London Math. Soc. (2), 61 (2000), no. 3, 706–720.
- [4] P. Borwein and K.K. Choi Merit factors of polynomials formed by Jacobi symbols, Canad. J. Math., 53 (2001), no. 1, 33–50.
- [5] P. Borwein and K.K. Choi, Explicit merit factor formulae for Fekete and Turyn Polynomials, Trans. Amer. Math. Soc., 354 (2002), 219–234.
- [6] P. Borwein and K.K. Choi, The average norm of polynomials of fixed height, Trans. Amer. Math. Soc. 359 (2007) 923–936.
- [7] P. Borwein, K.K. Choi and R. Ferguson, Norm of Littlewood Cyclotomic Polynomials, Mathematical Proceedings Cambridge Philosophical Society, 138 (2005) 315–326.
- [8] P. Borwein and T. Erdelyi, Polynomials and Polynomial Inequalities, GTM 161, Springer-Verlag, New York, 1995.
- [9] K.K. Choi and M. Mossinghoff, Mahlers Measure and Lp Norms of Polynomials with Restricted Coefficients, in preparation (2007).

- [10] G. Hardy and E. Wright, An Introduction to the Theory of Numbers, 5th Ed., Oxford Science Publications, 1979.
- [11] J.E. Littlewood, Some Problems in Real and Complex Analysis, Heath Mathematical Monographs, Lexington, Massachusetts, 1968.
- [12] R. Thangadurai, A note on the conjecture of Borwein and Choi, Arch. Math. (Basel) 78 (2002), no. 5, 386–396.

Department of Mathematics, University of British Columbia, Vancouver, British Columbia V6T 1Z2, CANADA

 $E ext{-}mail\ address: akhtari@math.ubc.ca}$

Department of Mathematics, Simon Fraser University, Burnaby, British Columbia V5A 1S6, CANADA

 $E ext{-}mail\ address: kkchoi@cecm.sfu.ca}$