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Abstract—The use of prior distribution is often a contro-
versial topic in Bayesian inference. Informative priors are
often avoided at all costs. However, when prior information
is available informative priors are an appropriate way of
introducing this information into the model. Furthermore,
informative priors, when used properly and creatively,
can provide solutions to computational issues and improve
modeling efficiency. Through three examples in different
applications we demonstrate the importance and usefulness
of informative priors in incorporating external information
into the model and overcoming computational difficulties.
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I. INTRODUCTION

In most scientific problems, in addition to the observed
data, the researcher has some prior or external infor-
mation about the unknowns, e.g., the range of plausible
values. In classical statistics such information is incorpo-
rated into the model in form of (hard) constraints. How-
ever, hard constraints do not allow expressing uncertainty
about the available information. Moreover, presence of
constraints often results in inference and computational
challenges and in many cases relaxation of the con-
straints or slight departure from available information
facilitates statistical analysis.

In the Bayesian framework constraints are formu-
lated into prior distributions. In [1] it is argued that
the common Bayesian approach for incorporating hard
constraints is not equivalent to imposing the constraint
in frequentist approaches. They consider the constraint
as a set that the parameter is believed to belong to and
argue that defining an even flat prior on the constraint
set is a much stronger assumption than the frequentist
alternative that assumes no more than mere membership
of the set since a flat prior assumes that all values in the
constraint set are equally likely. In [2] similar arguments
are made about imposing hard constraints using “non-
informative” priors that can result in misleading the
posterior. They consider inference about a continuous

monotonic function based on discretized observations
and explain mathematically why imposing the mono-
tonicity constraints strictly can result in biased estimates.

Bayesian inference is often criticized for its reliance
on prior distributions [3]. We emphasize the role of
prior distributions in presence of modeling constraints
and external information. In this paper, we consider
scenarios where hard constraints need to be replaced
by soft constraints due to either prior uncertainty or
methodological/computational challenges created by the
constraints. We showcase the use of informative priors in
a Bayesian framework to formally introduce uncertainty
about the prior knowledge or temporarily departing from
the constraints for computational purposes through three
different examples.

Our first example (Section [[I) is a Bayesian hier-
archical model to analyze aggregated relational data
proposed by [4]. External information about some of
the model parameters is required to identify the model.
We show that informative priors can be used to re-
alistically incorporate external information about some
of the model parameters to overcome nonidentifiability,
thereby addressing efficient computation, accessibility of
the models to the general user and interpretability of the
results.

In our second example (Section [[II) we consider
Bayesian analysis of the data used to discover the
Higgs boson. We review the Bayesian hierarchical model
proposed by [5] and illustrate the role of the informative
prior used in their model in providing the statistical
power to detect the signal by comparing the results to
those obtained by using an “objective” prior.

In the third example (Section [[V) we consider in-
ference for a system of ordinary differential equations
(ODE) where adherence to the ODE is a hard constraint
that creates computational difficulties. By introducing a
prior distribution that allows departure from the ODE
model one can overcome computational challenges while
leaving the results unaffected by relaxation of the con-



straints. Section [V] follows with concluding remarks.

II. ANALYSIS OF AGGREGATED RELATIONAL DATA

Aggregated relational data (ARD) in social surveys are
collected by asking the respondents about the number
of their acquaintances in various groups that are chosen
either due to their significance to the researcher or as
auxiliary groups with known demographic information
(male and female names). While most ARD has been
collected to infer social structure they are perceived
as a summary of full network data (nodes and edges)
and therefore can arise in other areas of science where
networks appear. Full network data is transformed into
ARD by aggregating the links of a set of sample nodes
over specific communities and ignoring the community
membership of the sample nodes. While such aggrega-
tion results in loss of information it appears necessary
in various contexts for preservation of privacy.

Suppose that y;; is the number of acquaintances of
individual ¢ in group k. The goal is to recover as much
information as possible about the underlying network
from these counts. [4] propose the following model

Yir ~ Poisson(\) (D

with \jr = v, exp(a; + Bx) where «; is the degree or
network size of respondent 7, 3 is the gregariousness of
group k, and -y, is the individual propensity parameter
that represents the tendency of respondent i to make
ties with group k. Due to computational limitations, [4]]
were not able to fit this highly parametrized model. They
integrate over the propensity parameters with respect to
a gamma prior distribution with mean 1 and variance,
var(yig) = #ﬁﬁk) where wy, represents the overdis-
persion associated with group k. The prior variance
of the propensity parameters is assumed to be smaller
if the corresponding network sizes and gregariousness
parameters are larger. [4] integrate the -~y;; parameters
out of the likelihood with respect to this prior distribution
that results in the following negative binomial likelihood;

yir. ~ NB(mean = exp(a; + Br),
var = wy exp(a; + Br)), 2

This simplification reduces the number of parameters
by K(I —1). We refer to the above negative binomial
likelihood as the overdispersed model. However, even af-
ter this simplification the model is non-identifiable since
the likelihood depends on «; and ) through their sum.
Therefore the value of the likelihood remains unchanged
for infinite number of values of & and 3. [4] address non-
identifiability by renormalizing the model parameters

according to known demographics of certain groups at
each iteration of their Gibbs sampling algorithm.

The demographic information that is available about
a subset of groups is the key component of this model
since without this information the renormalization step
in [4] is entirely arbitrary that could result in unreli-
able parameter estimates. We argue that in a Bayesian
framework any additional information should be used
formally, i.e., in form of a prior distribution that would
allow incorporation of uncertainty.

In the following we explain the choice of informative
priors that allow us to incorporate this information into
the model to overcome non-identifiability. The result-
ing model is fit using Hamiltonian Monte Carlo and
is implemented in Stan (http://mc-stan.org/). The same
strategy can be used to gain computational efficiency and
improvements in the inference for related models in [6],
(71, 8.

Consider the original Poisson model in (I). The main
advantage of this model is interpretability of the model
parameters: the individual propensity parameters can be
used as a relative distance metric between the respon-
dents and the subpopulations. In addition to the data
the subpopulation sizes for the male and female names
in the US population are available. Following [4] we
use normal prior distributions for the log group size
parameters ;. However, we incorporate the additional
information as the mean of the normal priors for the
corresponding (). Small variances are chosen for these
normal priors that allow slight deviations from the mean
allowing for introducing uncertainty. For the subset of
(). that such information is not available we use diffuse
normal priors centered at the mean of the known means:

N,
B NN(log(Wk),ag),k =1,....Ki, (3
K1
1 Ni. 5
~ — log(— k=K 1,.... K.

ﬁk N(Klgog(N)vTﬁ)a 1+ 1, )

4)
The prior distribution for «; is,

Qg NN(MQ,Ui), (5)

where ji,, and 02 are assigned non-informative priors.

For the propensity parameters ;; we define a prior
that assumes that individuals are equally likely to form
ties with all groups (E(;; = 1)) with enough flexibility
that would let the data decide otherwise. The following
gamma distribution represents this assumption

Yik ~~ F(a'ya b'y) (6)


http://mc-stan.org/
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Fig. 1: Posterior predictive checks for (a) the overdis-
persed model and (b) the proposed model.

if a, = b, are chosen such that the prior variance is
relatively large. We choose, a, = b, = 0.25 that is
equivalent to a variance of 4.

Having resolved non-identifiability, we are able to
implement the above model in Stan, taking advantage
of the efficiency of the Hamiltonian Monte Carlo sam-
pler. The Stan implementation of the model is given
in Appendix The Stan implementation removes the
computational obstacles in making the model accessible
to the users.

We fit the two models to the data collected by [9]
that was also used in [4]. Figures [Ib] and [Ta] present
the plots of data generated from the posterior predictive
distribution against the observed data for the overdis-
persed model and the proposed model, respectively. The
proposed model clearly provides a better fit to the data.

The estimated values of the shared parameters be-
tween the two models, i.e., a; and [ are plotted
in Figure 2] For the sake of interpretability we plot
exp(«;), the network sizes or degrees and exp(fk),
the proportion of subpopulations for the two models.
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Fig. 2: Comparison of the estimates for (a) degrees and
(b) group sizes obtained by the overdispersed model and
the explicit parametrization of individual propensities -
the groups in red are those with informative priors.

In Figure 24| the degree estimates are for the most
part in agreement under the two models. For the group
proportions (Figure [2b)), the estimates are aligned except
for a few larger subpopulations (popular male names).
This discrepancy is mostly due to the recall bias, i.e., the
fact that respondents often under/over-report the number
of their acquaintances in larger/smaller groups. In the
original overdispersed model in [4]] this bias is ignored.
A correction function is proposed for the overdispersed
model in [6]]. The full model on the other hand corrects
for the recall bias implicitly by allowing individuals
to vary in their propensity to make ties with different
groups.

III. A BAYESIAN MODEL FOR PARTICLE DETECTION

In this section we consider a Bayesian analysis of
the data generated by particle detctors for the purpose
of discovering the Higgs particle. The Bayesian model
proposed by [5] relies on information provided by the



theory and Monte Carlo studies that are independent of
the data being analyzed. This information is incorporated
through informative priors. In the following we review
the model and emphasize the role of the informative prior
in a comparison with a more “objective” prior.

The Standard Model (SM) of particle physics de-
scribes the dynamics of subatomic particles. The Higgs
particle is an essential component of the SM ([LO], [11],
[12], [13]). The existence of the Higgs boson needs to
be confirmed by experiments run at the Large Hadron
Collider (LHC) at the European organization for nuclear
research, known as CERN, a high energy collider that is
specifically designed and constructed to detect the Higgs
particle.

A simplified description of the experiment given by
[S] is as follows. Two beams of protons circulating at
very high speeds in the LHC collide inside two detectors
(ATLAS and CMS). Collisions or “events” result in gen-
eration of new particles, possibly including the Higgs bo-
son. The Higgs particle cannot be detected directly since,
if generated, decays extremely quickly into other known
SM particles. Therefore, the existence of the Higgs parti-
cle is inferred by the combinations of detectable particles
predicted by the SM. Once a Higgs particle is created
there are several different “decay modes” through which
it may decay. The decay process can be reconstructed
based on the detected collision byproducts. Events with
reconstructed processes that match one of the possible
Higgs decay modes are recorded as “Higgs candidates”
and the invariant mass of the unobserved particle is
computed from the reconstruction. A histogram of the
estimator of the mass is then created. However, there are
other processes, not involving the Higgs boson, that can
result in the generation of Higgs event byproducts which
also pass the cuts; these are called “background events”.
Therefore, the histogram created is either a histogram
of background-only events if the Higgs particle does not
exist or a histogram of background-plus-signal events,
otherwise.

Figure |3| shows a typical background-plus-signal data
that is simulated by computer models that simulate the
behavior of particle detectors. The slight overflow of
events about m = 125 shows the level of evidence
that generally appears in such data. A glance at these
data suggests that without any prior knowledge about
the distribution of the background events little statistical
power is available in signal detection.

In the current practice the background function is
described as a smooth forth order polynomial whose
parameters are estimated using background-only data
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Fig. 3: Simulated data representing the invariant masses
of events.

that are simulated using Monte Carlo. The estimated
background model is used in the analysis. Using plug-in
estimates in this manner would not allow incorporation
of uncertainty about the background model.

[S] proposed a Bayesian hierarchical model for the
analysis of the output of the particle detector. They incor-
porate the additional information about the background
function through a Gaussian process prior centered at
the polynomial model used in the current practice. The
Gaussian process allows deviations from this mean func-
tion.

In the following we review the model given by [3]
and compare it with a variation of the model with an
“objective” prior over the background function. In doing
so we make the point that an appropriate informative
prior is a formal and statistically justifiable tool for
incorporating external knowledge to the model that can
be crucial in detecting the signal.

The data presented in Figure [3] are modeled as real-
izations of a Poisson process whose intensity function
is given by the sum of a background process A(m)
and a signal function s,,, (m). The shape of the sig-
nal function is given by the theory and its location
is determined by the parameter of interest, i.e., the
unknown mass of the Higgs particle my € M, where
M = {0} U (mo,my) ((mo,m,) C RT — {0}.
mpy € (mg, my) means that the Higgs boson has a mass
in the search window, (mg, m,,), while my = () refers to
the case that the particle does not exist, at least not with a
mass in (mg, my, ). The uncertainty about the background



A(m) is modeled by a log-Gaussian process,

log AU,UZ (m) ~ gP(f(m), Pn,o2 (m, ml))7
m e (ﬂ107N1n)' (7)

with mean function, £(m), and covariance function given
by,
Pn.on(m,m') = o exp(—n(m —m')?),  (8)

where o2 is the variance parameter and 7 is the cor-

relation parameter that controls the smoothness of the
background function.

The signal function is chosen as a Gaussian probabil-
ity density function with the location parameter my,

m-—-—mg

Smpu (m) =Cmy ¢( ) mpg € (m07mn)7

sp(m) =0, )

where c¢,,,, is a scaling constant, and ¢ is the normal
probability density function with standard deviation e.

The likelihood is given by,

n

7T()/|[\777lff) = ]TI

i=1

exp(—T)T'Y
— (10)

where

m;
;= / [A(Mm) + Sy (M)]dm. (11)
mi—1
The grid m = (mg,mq,...,m,) is the vector of bin
boundaries over the search window.
The posterior distribution of the model parameters 6 =
(n,0%, A, my) given the data y is as follows,

m(0)m(yl0)
J (@) (yl0)do”

with independent prior, 7(0) = 7(n)7(c?)7(mg)mw(A).
The prior distribution, 7(my) is a mixture of a point
mass at my = () and a continuous distribution on
(mg, my). The hyper-priors on 7 and o2 are inverse
Gamma distributions with shape and scale parameters
equal to one.

[S] suggest that the prior mean of the background
&(m) should be determined from Monte Carlo studies
that are used in the current practice [11] to obtain the
functional form of the background model and the uncer-
tainties associated with it. In absence of such information
[5] replace £(m) with a polynomial fit to the simulated
data provided by the CMS group and described in [14]
and [15].

In addition to this choice of prior we fit the same
model with a constant mean log-Gaussian prior on the

(0 |y) = (12)
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Fig. 4: Kernel density estimates of the posterior distribu-
tion of the mass of the Higgs particle with (a) informative
prior and (b) objective prior on the background function.
The vertical red lines are drawn at the reported mass of
the Higgs particle

background. We use the sequential Monte Carlo algo-
rithm outlined in Algorithm 1 in [5] to sample from
the posterior distribution (I2) with the two different
choices of prior mean for the background. Figures [a]
and [b] show kernel density estimates of marginal pos-
terior distribution of the mass over the search window
with the informative and ‘“non-informative” priors over
the background. The estimated posterior probability of
mpyg = 0 is zero under the model with informative
background prior suggesting discovery while it is .05
under the objective background prior. Clearly, without
using the information available about the distribution of
background events the signal is not detectable as seen in
Figure {b] where the background fluctuations for small
masses are mistaken for signal.



IV. INFERENCE FOR ORDINARY DIFFERENTIAL
EQUATIONS

Consider the problem of estimating the parameters of
a system of ordinary differential equations (ODE) from
noisy observations of the system. In most real problems
the ODE cannot be solved analytically and evaluation
of the likelihood relies on numerically solving the ODE
that in turn relies on initial state values. Inference for
these type of problems is challenging due to sensitivity
of the likelihood to small changes in the parameters.
In Bayesian inference the challenges are translated into
highly peaked and often multimodal posterior surfaces
that are very difficult to explore using MCMC [16], [17].

[18] address Bayesian inference for ODEs by relax-
ation of the assumption of adherence ot the ODE. The
data is modeled as the summation of the ODE solution
and a discrepancy term that facilitates computation by
fitting the deviation of the data from the ODE solution
for “incorrect” parameter values. [[18] propose a sequen-
tial Monte Carlo based algorithm that reduces the role
of the discrepancy term at each step until it completely
diminishes from the model.

The discrepancy term used by [18] is a kernel
smoother. In this section we propose replacing the kernel
smoother with a zero mean Gaussian process (GP) that
essentially performs similarly in relaxation of adherence
to the ODE but is also interpretable as a probability
distribution around the ODE solution. In other words,
Bayesian computation is facilitated by a prior distri-
bution about the ODE that is made more informative
at each step converging to a point mass at the ODE
solution.

The example used in [18] is a Susceptible-Infected-
Removed (SIR) epidemiological model for the deaths
occurred during the black plague epidemic of 1666,
in the village of Eyam, UK, that was quarantined.
The grave digger kept records of the deaths. The data
refers to the second outbreak of the plague from June
19, 1666 to November 1, 1666, with a population of
fixed size N = 261. At time v the population is split
into groups of Susceptible S(v), Infected, I(v), and
Removed, R(v) [19], [20]. Since there is no recovery
from the plague, R(v) is the number of deaths up to time
v. The epidemiological model for the rates of change of

states S(v), I(v) and R(v) is given by:

S)

= B T ),

dld(t” = BSW)IW) —al(v), (3)
dR(v) _

g7 = ol (v)

where [ describes the plague transmissivity and « de-
scribes the rate of death once an individual is infected.

At time 0 the population only consists of susceptible
and infectious individuals therefore we have, R(0) =
0 and S(0) = N — I(0). Consequently Iy = I(0) is
included in the vector of parameters to estimate: § =
(O[, /B s I 0)‘

Based on a finite population of size N, the likelihood
for the n = 136 observed cumulative deaths y(v) at
times {v1,...,1,} are modeled as a binomial with
expected value equal to the solution to Ry(v) from :

om0 (52

i=1
o (1 o) ()
~ :

Similarly to the approach by [18] we replace Ry(v)
in the likelihood by Ry(v) plus a discrepancy term.
However, we use a zero mean GP instead of the ker-
nel smoother used by [18]. Every evaluation of the
likelihood requires solving (I3) numerically to obtain
R(0,v) and fitting a zero mean GP to the residuals,
y(v)—R (0, v). More explicitly, for each set of parameter

values 6 a sample path is given by
Roe (v) = Ry (v) + 2 (v), (14)

where z¢(v) is a zero mean GP with a covariance
function parametrized by ¢ = (n, 02, 72),

2 ol — N2 if ,
antedoh s = { L) 02
(15)

The GP is then interpreted as a prior distribution about
the ODE solution that can be tuned to allow relaxation
of adherence to the ODE model. The sequentially con-
strained Monte Carlo (SCMC) algorithm of [18]] can
be used to sample from the target posterior distribu-
tion 77 (0 | y). The intermediate densities are defined
through covariance parameter values of the GP,

T (0, R \ 9) x P (y|R9> T (Rg’gt | Rg) 7 (0),
(16)



where T (1%9,& |R9) represents the GP prior in the
posterior. As t increases the parameters &; are adjusted to
make the prior more focused about the ODE solution by
making the GP sample paths smoother (decreasing 7;)
and the variance smaller (decreasing o2). Eventually, the
GP prior converges to a point mass at the ODE solution,
i.e., ™ (Rg,gt | Rg) =1.

Following [18] the prior on « and S is gamma (1, 1)
and Iy ~ binomial(N,5/N). Figure [35] shows the final
sample of the joint posterior of o and [ in form of
separate clouds that correspond to initial values I that
closely resembles the results of [18]].
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Fig. 5: Samples from the joint posterior distribution of
the model parameters. The three large clouds of particles
correspond to Iy = 6, Iy = 5 and Iy = 4, respectively,
from left to right.

V. CONCLUSION

In this article we have demonstrated the use of in-
formative priors in Bayesian inference and computation
through three examples in different contexts. In the first
example the choice of informative priors play a crucial
role from both inference and computational point of
views — external information that is required to identify
the model are incorporated in a formal and interpretable
manner resulting in a hierarchical model that can be
implemented into Stan and made accessible to users.

In our second example, the informative prior is used
to incorporate external information provided by theory
and experiments together with appropriate level of un-
certainty. Discovery of new physics would not have been
possible without proper usage of all the information. We
demonstrate the importance of an informative prior by
comparing the results to the case that an objective prior
is used.

In the third example, we use an informative prior
from a purely computational perspective. In fact, the
prior is completely eliminated from the model in the
final step of the sampling algorithm. The role of the
prior is to provide means of relaxation of model assump-
tions that create challenges in Bayesian computation. By
reformulating the model adherence assumptions into a
probability distribution posterior sampling is facilitated.
However, inference results are not affected since the
additional uncertainty is sequentially eliminated from the
model.

APPENDIX A
STAN IMPLEMENTATION FOR THE MODEL PROPOSED
IN SECTION

data {
int<lower=0> 1;
int<lower=0> K;
vector [K] mu_beta;
vector<lower=0>[K]
int y[I,K];

}

parameters {
vector[I] alpha;
vector [K] beta;
matrix <lower=0>[I ,K] gam;
real mu_alpha;

real <lower=0> sigma_alpha;

}

sigma_beta;

model {

alpha normal (mu_alpha, sigma_alpha);
beta normal (mu_beta, sigma_beta);
for (i in 1:1)

for (k in 1:K)

gam[i,k] 7 gamma(.25, .25);
mu_alpha = normal(0 , 25);
sigma_alpha normal (0 , 5);

for (k in 1:K) {
for (i in 1:1) {
real xi_i_k;
xi_i_k <—
gam[i,k] * exp(alpha[i] + betal[k]);
y[i,k] poisson(xi_i_k);
}
}
}
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