STAT 270- Chapter 2

May 13, 2012

Descriptive Statistics

- Numerical
- Graphical

Dotplots \rightarrow Graphical
Used for univariate data, i.e., single measurments on subjects.

$$
x_{1}, x_{2}, \ldots, x_{n}
$$

Dotplots

Distribution of \mathbf{x}

Dotplots

Characteristics that can be detected from dotplots:

- Outliers (extreme observations)
- Centrality (concentration of data in the middle portion)
- Dispersion (Spread of data along the axis)

Not useful for large data sets; not very common in general!

Histograms \rightarrow graphical

Used to describe univariate data
Constructed by statistical software for large data sets
Characteristics that can be detected form the histogram:

- Outliers
- Centrality
- Dispersion
- Modality
- Skewness and symmetry

Histogram

Histogram of weights

Modality

bimodal

unimodal

Skewness and Symmetry

skewed to right

symmetric

Histograms

How to construct histograms:

- Construct consecutive intervals of equal size
- Calculate frequencies and relative frequencies
- Label the axes and provide a title

Example: Weight data,

$$
47,55,79,63,64,67,54,59,58,84,70,61,65,59
$$

How many intervals?

Extreme cases:

- A few long intervals \rightarrow too much summarization
- Many short intervals \rightarrow not enough summarization

A rule of thumb: number of intervals $=\sqrt{n}$
n : sample size

Number of Intervals

Vertical axis scale in a histogram

Histogram of \mathbf{x}

Histogram of \mathbf{x}

Histogram for categorical data - Barplot/Bar graph

Unequal intervals

Intervals of equal size are recommended.
For reasonable visual understanding when unequal intervals are used: vertical axis:

relative frequency

length of interval

Measures of location

Describe centrality of univariate data

$$
x_{1}, x_{2}, \ldots, x_{n}
$$

Sample mean \rightarrow Numerical

$$
\bar{x}=\frac{x_{1}+x_{2}+\ldots+x_{n}}{n}=\frac{\sum_{i=1}^{n} x_{i}}{n}
$$

Sample median \rightarrow Numerical
sorted data

$$
\begin{gathered}
x_{(1)}, x_{(2)}, \ldots, x_{(n)} \\
\tilde{x}= \begin{cases}x_{\left(\frac{n+1}{2}\right)} & \text { if } n \text { is odd } \\
\left(x_{\left(\frac{n}{2}\right)}+x_{\left(\frac{n}{2}+1\right)}\right) / 2 & \text { if } n \text { is even }\end{cases}
\end{gathered}
$$

Sample mean is more sensitive to outliers that the sample median.

Comparability of mean and median

nearly symmetric

skewed to right

skewed to left

Measures of variability (dispersion)

Why does variability matter?

- Range

$$
R=\max \left(x_{1}, \ldots, x_{n}\right)-\min \left(x_{1}, \ldots, x_{n}\right)
$$

Depends only on two data values \rightarrow inefficient (like median)

- Variance

$$
s^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}
$$

Variance

- $s^{2} \geq 0$
- $s^{2}=0$ when $x_{1}=x_{2}=\ldots=x_{n}$ (no variability)
- Denominator is $(n-1)$ NOT n
- s^{2} is in squared units
- More convinient formula for s^{2} :

Standard deviation (sd)

$s=\sqrt{s^{2}} \rightarrow$ same units as the data
3 -sigma rule: roughly 99% of the data falls into ($\bar{x}-3 s, \bar{x}+3 s$)

Boxplots \rightarrow graphical

- Useful for grouped univariate data
- Constructed by statistical softwares; we will focus on interpretation
- Variation and skewness of the data can be detected from boxplots

Boxplots

Paired data (bivariate data)

$$
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)
$$

We want to study the relationship between x and y that can be

- No relationship
- Association
- Causal

Scatterplots

First thing to look at to detect a relationship between two variables

decreasing relationship

no relationship

Prediction

- model the relationship between two variables x and y
\rightarrow predict y at a new point $x=x^{*}$
- Be causious of extrapolation

Correlation Coefficient (correlation/sample correlation)

is used to study paired data,

$$
r=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}}
$$

- r is dimensionless
- $-1 \leq r \leq 1$
- $r \approx 1 \rightarrow$ strong positive correlation
- $r \approx-1 \rightarrow$ strong negative correlation
- $r \approx 0$ does NOT imply no relationship, it implies no linear relationship

correlation coefficient

- r measures the degree of linear association, If $y_{i}=a+b x_{i}$ (exact linear relationship) then

$$
r= \begin{cases}1 & \text { if } b>0 \\ -1 & \text { if } b<0\end{cases}
$$

- The intuition behind the sign of r :
- Easier to calculate formula:

$$
r=\frac{\sum x_{i} y_{i}-n \bar{x} \bar{y}}{\sqrt{\left(\sum x_{i}^{2}-n \bar{x}^{2}\right)\left(\sum y_{i}^{2}-n \bar{y}^{2}\right)}}
$$

correlation

strong positive correlation

strong negative correlation

