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Statistical inference

Use the sample to study the population

Sampled units might be different from the unsampled units ⇒
Uncertainty

Mathematical reasoning: general ⇒ specific
Statistical inference: specific ⇒ general

Main inferential problems:

Estimation*

Testing*

Prediction

This chapter: Random sampling - Single sample
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Estimation

Unknown parameters of a distriution, e.g., µ in Normal(µ, 1)
Point estimation: Use the observed data to provide a number for the
unknown parameter
Example: x1, . . . , xn random sample from Normal(µ, 1). µ̂ =?

Focus of the course:
Interval estimation:

An interval (a, b) is provided where a and b are functions of data

We have some confidence that the interval contains the unknown
parameter
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Normal

X1, . . . ,Xn iid Normal(µ, σ2) where µ is unknown and σ2 is known
(unrealistic).

X̄ ∼ Normal(µ,
σ2

n
)

X̄ − µ
σ√
n

∼ Normal(0, 1)

Therefore,

P(−1.96 <
X̄ − µ

σ√
n

< 1.96) = 0.95

by rearranging,

P(X̄ − 1.96
σ√
n
< µ < X̄ + 1.96

σ√
n

)

Note: The interval is random Replace X̄ with the observed sample mean x̄
to obtain a 95% confidence interval for µ.
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(1− α)% confidence interval (CI)

(X̄ − zα
2

σ√
n
, X̄ + zα

2

σ√
n

)

where zα
2

is the (1− α
2 )100-th percentile of the standard normal

distribution.

Note: the interval is a function of the observed statistic.
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Large sample, known σ2

X1, . . . ,Xn iid with E (Xi ), var(Xi ) = σ2 where µ is unknown and σ2 is
known and no assumptions are made about the distribution of Xi s. By CLT

X̄ − µ
σ√
n

∼ Normal(0, 1)

and therefore the (1− α)% confidence interval for µ is given by

(X̄ − zα
2

σ√
n
, X̄ + zα

2

σ√
n

)
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Large sample, unknown σ2

X1, . . . ,Xn iid with E (Xi ), var(Xi ) = σ2 where both µ and σ2 are
unknown and no assumptions are made about the distribution of Xi s. Use
the sample standard deviation s = 1

n−1
∑n

i=1(xi − x̄)2 as an estimate for
σ, i.e., replace σ by σ̂ = s:
The (1− α)% confidence interval is given by

(X̄ − zα
2

s√
n
, X̄ + zα

2

s√
n

)
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Example 6.1

Suppose X1, . . . ,Xn are heat measurments in degrees Celsius where
n = 100, E (Xi ) = µ and var(Xi ) = 16.
(a) If x̄ = 6.1 construct a 90% confidence interval for µ.
(b) How large should n be such that a 90% CI is no wider than 0.6
degrees Celsius?

Statistical design: Use statistical theory to address questions regarding
how to conduct the experiment before collecting the data.
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Finite sample, Normal, unknown variance

X1, . . . ,Xn iid Normal(µ, σ2) where µ and σ2 are unknown. Use σ̂ = s as
the estimate of σ. We have

X̄ − µ
s√
n

∼ t(n−1)

Student t distribution with n − 1 degrees of freedom A (1− α)% CI for µ
is given by

(x̄ − tn−1,α
2

s√
n
, x̄ + tn−1,α

2

s√
n

)

where tn−1,α
2

is the (1− α
2 )100-th percentile of the tn−1 distribution.

Shirin Golchi () STAT270 July 16, 2012 9 / 28



t distribution

If X ∼ tn−1 the pdf of X is given by

f (x) =
Γ(n2 )

Γ(n−12 )
√
π(n − 1)

(1 +
x2

n − 1
)−

n
2 −∞ < x <∞

Symmetric, longer tails than the normal pdf

Probabilities are obtained from table B.1.

tn → Normal(0, 1) as n→∞.

Pivotal quantity: A statistic whose distribution does not depend on the
unknown parameters.
e.g.,

X̄ − µ
s√
n
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Interpretation of confidence intervals

(a, b) is a (1− α)100% CI for µ:

Wrong: with probability (1− α), µ ∈ (a, b).
Because µ is the true value fo the parameter which is assumed to be fixed.

Correct interpretation:
Using frequency definition of probability: As we repeat sampling and
construct CI’s for the generated samples, we expect (1− α)100% of these
CI’s contain µ.
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Some notes on CI’s

As n gets large the width of the CI decreases:
more information → more precise estimation

With fixed n as our confidence (1− α) increases, zα
2

increases and
therefore the width of the CI increases: A wider CI covers a larger
part of the parameter space which results in more confidence that it
contains the true value of the parameter.

Confidence intervals are not unique:
e.g. (x̄ − z.04

σ√
n
, x̄ + z.01

σ√
n

) is an asymmetric 95% CI.

Symmetric CI’s are the shortest.
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Binomial case

Suppose X ∼ binomial(n, p) where n is known and p is unknown. Suppose
np ≥ 5 and n(1− p) ≥ 5 so that we can apply the normal approximation

X ∼ Normal(np, np(1− p))

then

p̂ ∼ Normal(p,
p(1− p)

n
)

where p̂ = X
n is the proportion of the successes.

Then an approximate (1− α)100% CI for p is given by

(p̂obs − zα
2

√
p(1− p)

n
, p̂obs + zα

2

√
p(1− p)

n
)

where p̂obs = xobs
n .
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Example

6 marbles out of 15 randomly selected marbles from a bag containing
marbles of different colors are red. Construct a 99% CI for the proportion
of red marbles in the bag.
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Example

Consider the CI x̄obs ± zα
2

σ√
n

.

(a) How much should the sample size n increase to reduce the width by
half?
(b) What is the effect of increasing the sample size by a factor of 25?
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Hypothesis testing

Addresses scientific questions in the presence of random variation,

Steps:
1 Determine the null hypothesis and alternative hypothesis:

H0: null hypothesis:
the statement of no effect
assumed to be true at the begining of the testing process
the experimenter wishes to reject H0 using the evidence provided by
the data

H1: alternative hypothesis:
the state that the experimenter attempts to establish by collecting data

H0 and H1 are
disjoint
the only possible states of nature; exactly one must be true.
not interchangeable

2 Collect data
3 Make inference:

data compatible with H0: do not reject H0

data incompatible with H0: reject H0
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Discussion

Example 6.3
Example 6.4
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P-value

Probability of observing a result as extreme or more extreme than what we
observed given thet H0 is true.

small p-value ⇒ data incompatible with H0

Compare p-value with the significance level α (.05 if not mentioned):
reject H0 if p-value< α.
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Example 1

A restaurant’s monthly profit has a normal distribution with average $1500
and standard deviation of $200. The owner hires a new chef and decides
to keep him only of there is a significant increase in the profit. If the profit
is $1650 at the end of the following month will the owner keep or fire the
chef?

Read example 6.5.
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Example 2 (Example 6.6)
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Example 3

It is claimed that in each bag of M&M’s chocolate candies there are equal
numbers of each color. If we randomly select 15 candies out of a bag and
only one of them is yellow, do we believe the claim? (use significance level
of α =.05)
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Examples 4 and 5 (Examples 6.7 and 6.8)
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Example 6

Suppose that mice weight has a normal distribution with mean 20 gr and
unknown variance. A new nutrition program which is supposed to cause
weight loss is tested on 17 mice and the weights are measured. The
sample mean and standard deviation are 18 gr and 2 gr respectively. Has
the diet been effective? (Use a significance level of .01).
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Error probabilities

α = P(type I error) = P(reject H0|H0 true)

β = P(type II error) = P(not reject H0|H1 true)

H0 true H1 true

reject H0 α 1− β no error

do not reject H0 no error β

Note that:

A perfect test (no error) does not exist!

A compromise should be made between α and β

Fix α, let β be a function of the test; controlling α is more important.
Discussion: Example 6.10.

1− β = power = P(reject H0|H1 is true)
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Types of hypothesis

Simple hypothesis: Completely specified, e.g., µ = µ0

Composite hypothesis: A range of values, e.g., µ > µ0

H1 is usually composite, therefore β and the power 1− β are functions of
the parameter.

Critical/rejection region: A subset of the ample space where H0 gets
rejected.
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Example 7 (Examples 6.11, 6.12 and 6.13)
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Statistical significance (p-value< α)

Notes:

Report p-value instead of the final decision based on p-value< α.

α = 0.05 is of no magical importance!

Statistical significance is not necessarily scientific significance: other
factors should also be considered.
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Example

Consider X ∼ binomial(500, p) where we want to test H0 : p = .7 versus
H1 : p 6= .7 at α = .01.
(a) Find the critical region of the test.
(b) Calculate the power at p = .6.
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