# STAT 270 - Chapter 6 Inference: Single Sample 

July 16, 2012

## Statistical inference

- Use the sample to study the population
- Sampled units might be different from the unsampled units $\Rightarrow$ Uncertainty

Mathematical reasoning: general $\Rightarrow$ specific Statistical inference: specific $\Rightarrow$ general

Main inferential problems:

- Estimation*
- Testing*
- Prediction

This chapter: Random sampling - Single sample

## Estimation

Unknown parameters of a distriution, e.g., $\mu$ in $\operatorname{Normal}(\mu, 1)$
Point estimation: Use the observed data to provide a number for the unknown parameter
Example: $x_{1}, \ldots, x_{n}$ random sample from $\operatorname{Normal}(\mu, 1) . \hat{\mu}=$ ?

Focus of the course:
Interval estimation:

- An interval $(a, b)$ is provided where $a$ and $b$ are functions of data
- We have some confidence that the interval contains the unknown parameter


## Normal

$X_{1}, \ldots, X_{n}$ iid $\operatorname{Normal}\left(\mu, \sigma^{2}\right)$ where $\mu$ is unknown and $\sigma^{2}$ is known (unrealistic).

$$
\begin{gathered}
\bar{X} \sim \operatorname{Normal}\left(\mu, \frac{\sigma^{2}}{n}\right) \\
\frac{\bar{X}-\mu}{\frac{\sigma}{\sqrt{n}}} \sim \operatorname{Normal}(0,1)
\end{gathered}
$$

Therefore,

$$
P\left(-1.96<\frac{\bar{X}-\mu}{\frac{\sigma}{\sqrt{n}}}<1.96\right)=0.95
$$

by rearranging,

$$
P\left(\bar{X}-1.96 \frac{\sigma}{\sqrt{n}}<\mu<\bar{X}+1.96 \frac{\sigma}{\sqrt{n}}\right)
$$

Note: The interval is random Replace $\bar{X}$ with the observed sample mean $\bar{x}$ to obtain a $\mathbf{9 5 \%}$ confidence interval for $\mu$.

## ( $1-\alpha$ )\% confidence interval (CI)

$$
\left(\bar{X}-z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \bar{X}+z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right)
$$

where $z_{\frac{\alpha}{2}}$ is the $\left(1-\frac{\alpha}{2}\right) 100$-th percentile of the standard normal distribution.

Note: the interval is a function of the observed statistic.

## Large sample, known $\sigma^{2}$

$X_{1}, \ldots, X_{n}$ iid with $E\left(X_{i}\right), \operatorname{var}\left(X_{i}\right)=\sigma^{2}$ where $\mu$ is unknown and $\sigma^{2}$ is known and no assumptions are made about the distribution of $X_{i}$ s. By CLT

$$
\frac{\bar{X}-\mu}{\frac{\sigma}{\sqrt{n}}} \sim \operatorname{Normal}(0,1)
$$

and therefore the $(1-\alpha) \%$ confidence interval for $\mu$ is given by

$$
\left(\bar{X}-z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \bar{X}+z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right)
$$

## Large sample, unknown $\sigma^{2}$

$X_{1}, \ldots, X_{n}$ iid with $E\left(X_{i}\right), \operatorname{var}\left(X_{i}\right)=\sigma^{2}$ where both $\mu$ and $\sigma^{2}$ are unknown and no assumptions are made about the distribution of $X_{i}$ s. Use the sample standard deviation $s=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$ as an estimate for $\sigma$, i.e., replace $\sigma$ by $\hat{\sigma}=s$ :
The $(1-\alpha) \%$ confidence interval is given by

$$
\left(\bar{X}-z_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}}, \bar{X}+z_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}}\right)
$$

## Example 6.1

Suppose $X_{1}, \ldots, X_{n}$ are heat measurments in degrees Celsius where $n=100, E\left(X_{i}\right)=\mu$ and $\operatorname{var}\left(X_{i}\right)=16$.
(a) If $\bar{x}=6.1$ construct a $90 \%$ confidence interval for $\mu$.
(b) How large should $n$ be such that a $90 \% \mathrm{Cl}$ is no wider than 0.6 degrees Celsius?

Statistical design: Use statistical theory to address questions regarding how to conduct the experiment before collecting the data.

## Finite sample, Normal, unknown variance

$X_{1}, \ldots, X_{n}$ iid $\operatorname{Normal}\left(\mu, \sigma^{2}\right)$ where $\mu$ and $\sigma^{2}$ are unknown. Use $\hat{\sigma}=s$ as the estimate of $\sigma$. We have

$$
\frac{\bar{X}-\mu}{\frac{s}{\sqrt{n}}} \sim t_{(n-1)}
$$

Student t distribution with $n-1$ degrees of freedom $\mathrm{A}(1-\alpha) \% \mathrm{CI}$ for $\mu$ is given by

$$
\left(\bar{x}-t_{n-1, \frac{\alpha}{2}} \frac{s}{\sqrt{n}}, \bar{x}+t_{n-1, \frac{\alpha}{2}} \frac{s}{\sqrt{n}}\right)
$$

where $t_{n-1, \frac{\alpha}{2}}$ is the $\left(1-\frac{\alpha}{2}\right) 100$-th percentile of the $t_{n-1}$ distribution.

## t distribution

If $X \sim t_{n-1}$ the pdf of $X$ is given by

$$
f(x)=\frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right) \sqrt{\pi(n-1)}}\left(1+\frac{x^{2}}{n-1}\right)^{-\frac{n}{2}} \quad-\infty<x<\infty
$$

- Symmetric, longer tails than the normal pdf
- Probabilities are obtained from table B.1.
- $t_{n} \rightarrow \operatorname{Normal}(0,1)$ as $n \rightarrow \infty$.

Pivotal quantity: A statistic whose distribution does not depend on the unknown parameters. e.g.,

$$
\frac{\bar{X}-\mu}{\frac{s}{\sqrt{n}}}
$$

## Interpretation of confidence intervals

$(a, b)$ is a $(1-\alpha) 100 \% \mathrm{Cl}$ for $\mu$ :
Wrong: with probability $(1-\alpha), \mu \in(a, b)$.
Because $\mu$ is the true value fo the parameter which is assumed to be fixed.

## Correct interpretation:

Using frequency definition of probability: As we repeat sampling and construct Cl's for the generated samples, we expect $(1-\alpha) 100 \%$ of these Cl's contain $\mu$.

## Some notes on Cl's

- As $n$ gets large the width of the Cl decreases: more information $\rightarrow$ more precise estimation
- With fixed $n$ as our confidence $(1-\alpha)$ increases, $z_{\frac{\alpha}{2}}$ increases and therefore the width of the Cl increases: A wider Cl covers a larger part of the parameter space which results in more confidence that it contains the true value of the parameter.
- Confidence intervals are not unique:
e.g. $\left(\bar{x}-z .04 \frac{\sigma}{\sqrt{n}}, \bar{x}+z .01 \frac{\sigma}{\sqrt{n}}\right)$ is an asymmetric $95 \% \mathrm{Cl}$.
- Symmetric Cl's are the shortest.


## Binomial case

Suppose $X \sim \operatorname{binomial}(n, p)$ where $n$ is known and $p$ is unknown. Suppose $n p \geq 5$ and $n(1-p) \geq 5$ so that we can apply the normal approximation

$$
X \sim \operatorname{Normal}(n p, n p(1-p))
$$

then

$$
\hat{p} \sim \operatorname{Normal}\left(p, \frac{p(1-p)}{n}\right)
$$

where $\hat{p}=\frac{X}{n}$ is the proportion of the successes.
Then an approximate $(1-\alpha) 100 \% \mathrm{Cl}$ for p is given by

$$
\left(\hat{p}_{o b s}-z_{\frac{\alpha}{2}} \sqrt{\frac{p(1-p)}{n}}, \hat{p}_{o b s}+z_{\frac{\alpha}{2}} \sqrt{\left.\frac{p(1-p)}{n}\right)}\right.
$$

where $\hat{p}_{o b s}=\frac{x_{o b s}}{n}$.

## Example

6 marbles out of 15 randomly selected marbles from a bag containing marbles of different colors are red. Construct a $99 \% \mathrm{Cl}$ for the proportion of red marbles in the bag.

## Example

Consider the $\mathrm{Cl} \bar{x}_{o b s} \pm z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$.
(a) How much should the sample size $n$ increase to reduce the width by half?
(b) What is the effect of increasing the sample size by a factor of 25 ?

## Hypothesis testing

Addresses scientific questions in the presence of random variation, Steps:
(1) Determine the null hypothesis and alternative hypothesis:
$H_{0}$ : null hypothesis:

- the statement of no effect
- assumed to be true at the begining of the testing process
- the experimenter wishes to reject $H_{0}$ using the evidence provided by the data
$H_{1}$ : alternative hypothesis:
- the state that the experimenter attempts to establish by collecting data $H_{0}$ and $H_{1}$ are
- disjoint
- the only possible states of nature; exactly one must be true.
- not interchangeable
(2) Collect data
(3) Make inference:
- data compatible with $H_{0}$ : do not reject $H_{0}$
- data incompatible with $H_{0}$ : reject $H_{0}$


## Discussion

## Example 6.3

Example 6.4

## P-value

Probability of observing a result as extreme or more extreme than what we observed given thet $H_{0}$ is true.
small p-value $\Rightarrow$ data incompatible with $H_{0}$

Compare p -value with the significance level $\alpha$ (. 05 if not mentioned): reject $H_{0}$ if p -value $<\alpha$.

## Example 1

A restaurant's monthly profit has a normal distribution with average $\$ 1500$ and standard deviation of $\$ 200$. The owner hires a new chef and decides to keep him only of there is a significant increase in the profit. If the profit is $\$ 1650$ at the end of the following month will the owner keep or fire the chef?

Read example 6.5.

## Example 2 (Example 6.6)

## Example 3

It is claimed that in each bag of M\&M's chocolate candies there are equal numbers of each color. If we randomly select 15 candies out of a bag and only one of them is yellow, do we believe the claim? (use significance level of $\alpha=.05$ )

## Examples 4 and 5 (Examples 6.7 and 6.8)

## Example 6

Suppose that mice weight has a normal distribution with mean 20 gr and unknown variance. A new nutrition program which is supposed to cause weight loss is tested on 17 mice and the weights are measured. The sample mean and standard deviation are 18 gr and 2 gr respectively. Has the diet been effective? (Use a significance level of .01 ).

## Error probabilities

$$
\begin{aligned}
& \alpha=P(\text { type I error })=P\left(\text { reject } H_{0} \mid H_{0} \text { true }\right) \\
& \beta=P(\text { type II error })=P\left(\text { not reject } H_{0} \mid H_{1} \text { true }\right) \\
& \begin{array}{|c|c|c|}
\hline & H_{0} \text { true } & H_{1} \text { true } \\
\hline \text { reject } H_{0} & \alpha & 1-\beta \text { no error } \\
\hline \text { do not reject } H_{0} & \text { no error } & \beta \\
\hline
\end{array}
\end{aligned}
$$

Note that:

- A perfect test (no error) does not exist!
- A compromise should be made between $\alpha$ and $\beta$

Fix $\alpha$, let $\beta$ be a function of the test; controlling $\alpha$ is more important. Discussion: Example 6.10.

$$
1-\beta=\text { power }=P\left(\text { reject } H_{0} \mid H_{1} \text { is true }\right)
$$

## Types of hypothesis

Simple hypothesis: Completely specified, e.g., $\mu=\mu_{0}$
Composite hypothesis: A range of values, e.g., $\mu>\mu_{0}$
$H_{1}$ is usually composite, therefore $\beta$ and the power $1-\beta$ are functions of the parameter.

Critical/rejection region: A subset of the ample space where $H_{0}$ gets rejected.

## Example 7 (Examples 6.11, 6.12 and 6.13)

## Statistical significance ( p -value $<\alpha$ )

Notes:

- Report p-value instead of the final decision based on p -value $<\alpha$.
- $\alpha=0.05$ is of no magical importance!
- Statistical significance is not necessarily scientific significance: other factors should also be considered.


## Example

Consider $X \sim \operatorname{binomial}(500, p)$ where we want to test $H_{0}: p=.7$ versus $H_{1}: p \neq .7$ at $\alpha=.01$.
(a) Find the critical region of the test.
(b) Calculate the power at $p=.6$.

