STAT 270- Reviw Examples

July 23, 2012

Example 1

It is known that 65% of SFU Business School professors read the Wall Street Journal, 55\% read the Vancouver Sun and 45% read both. (a) What is the probability that a randomly selected professor reads exactly one of the two papers?
(b) Consider the hypotheses, H_{0} : the given proportions are correct, versus $H_{1}: P(W S)=.55, P(V S)=.55, P(W S \cap V S)=.25$. If a randomly selected professor reads none of the two papers which one of H_{0} or H_{1} does the data support?

Example 2

Let X, Y, and Z be rv's with the following joint pdf

$$
f(x, y, z)= \begin{cases}8 x y z & 0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Compute the covariance between X and Y.
(b) Are X and Y independent?

Example 3

Let X and Y have the joint pdf

$$
f(x, y)= \begin{cases}8 x y & 0 \leq x \leq y \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Calculate $E\left(X Y^{2}\right)$.
(b) Define $Z=\frac{X}{Y}$. Obtain cdf and pdf of Z.

Example 4 (truncated Poisson)

Consider the rv X with pmf

$$
p(x)= \begin{cases}c \frac{e^{-\lambda} \lambda^{x}}{x!} & x=2,3, \ldots \\ 0 & \text { otherwise }\end{cases}
$$

(a) Obtain c.
(b) Define $Y=X-1$. Obtain pmf of Y. (c) Calculate $E(X)$.

Example 5

Let \bar{X} be the mean of a random sample of size n from a $\operatorname{Normal}(\mu, 9)$ distribution. Find n such that $(\bar{X}-1, \bar{X}+1)$ is a $90 \% \mathrm{Cl}$ for μ.

Example 6

Let X have a pdf of the form $f(x)=\theta x^{\theta-1}, 0<x<1$ where $\theta \in\{\theta: \theta=1,2\}$. To test the simple hypothesis $H_{0}: \theta=1$ against the alternative simple hypotehsis $H_{1}: \theta=2$. Use a random sample of size $n=2: X_{1}, X_{2}$ and a critical region defined as $C=\left\{\left(x_{1}, x_{2}\right): x_{1}+x_{2} \geq \frac{3}{4}\right\}$.
Find the power of the test.

Example 7

The lifetime of a tire in miles, X, is normally distributed with mean θ and standard deviation 5000. Past experience indicates that $\theta=30,000$. The manufacturer claimes that tires made by a new process have mean $\theta>30,000$. To check this claim we test the hypothesis $H_{0}: \theta=30,000$ versus $H_{1}: \theta>30,000$. A random sample of size n, x_{1}, \ldots, x_{n} is observed and H_{0} is rejected if $\bar{x}>c$. Determine n and c such that $1-\beta(30,000)=0.01,1-\beta(35,000)=0.98$.

