Improved Composition Theorems for Functions and Relations

Sajin Koroth

University of Haifa

joint work with

Or Meir

University of Haifa

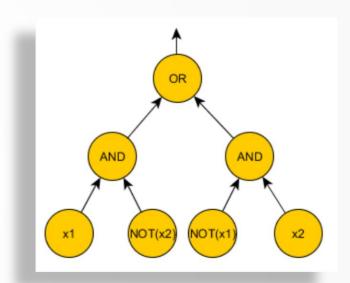
Outline

- Background
- Our results
- **Proof Overview**
- Highlight of the key ideas of our improvement
- 5 minutes break

Technical details of the key ideas in our improvement

Background

- P vs NP
- Attack via Boolean Circuits
- Size: The number of internal gates in the circuit
- Depth: The length of the longest path from root to a leaf
- Size ~ Time in T.M.
- Depth ~ Parallel Time, Space in T.M.
- Fan in: number of inputs to a gate, fixed to 2



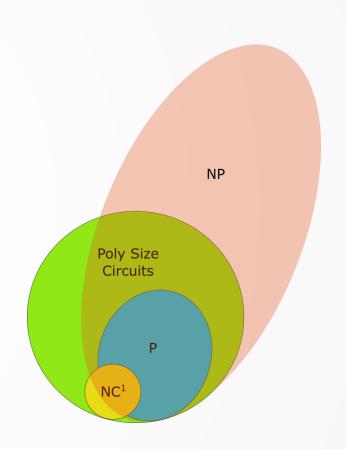
Circuit computing Parity on 2 bits

P vs NP through circuits

- P has Poly Size circuits
- NP is believed not to have Poly Size circuits
- Unfortunately the best known for NP: (5-o(1))n
- Natural Strategy: super poly lower bounds for weaker class of circuits
- Making circuit class weaker: restrict depth

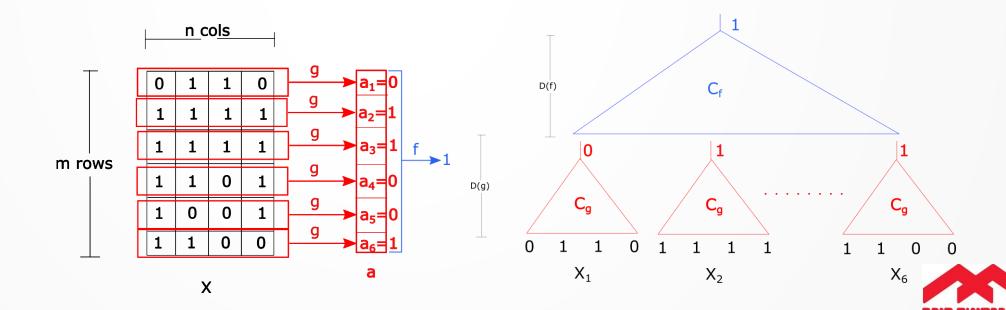
$NP vs NC^1$ and $P vs NC^1$

- NC¹: poly size, $O(\log n)$ depth, fan-in 2
- $ightharpoonup NC^1$: efficient parallel algorithms
- Weaker goal : Prove that NP does not have NC¹ circuits
- Belief: there are functions in P which does not have efficient parallel algorithms
- Goal: explicit function f in P with $D(f) = \omega(\log n)$
- D(f) is the **minimum depth** of any circuit computing f



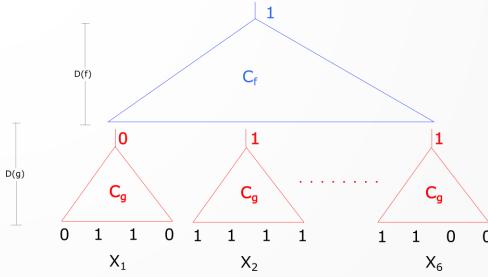
Compositions and $P vs NC^1$

- Karchmer Raz and Wigderson '91: study composition of functions to study depth
- Given two arbitrary functions $f: \{0,1\}^m \to \{0,1\}$ and $g: \{0,1\}^n \to \{0,1\}$ define their composition $f \circ g$ as a function on mn bits



KRW Conjecture

- ► KRW'91 : Given two arbitrary functions $f: \{0,1\}^m \to \{0,1\}$ and $g: \{0,1\}^n \to \{0,1\}$
- The composition $f \diamond g$ as the function on mn bits as before
- ► Fact: $D(f \diamond g) \leq D(f) + D(g)$
- ► KRW Conjecture : $D(f \diamond g) \approx D(f) + D(g)$
- If KRW Conjecture is true then there is a function f in P such that $D(f) = \omega(\log n)$
- Implies $P \neq NC^1$



Karchmer Wigderson Relations

Let $f: \{0,1\}^m \to \{0,1\}$ be an arbitrary Boolean function

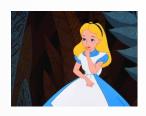
$$x \in f^{-1}(0)$$

$$y\in f^{-1}(1)$$

- Goal: Find an index $i \in [m]$ for which $x_i \neq y_i$
- **Objective**: Minimize the total number of bits spoken

Communication Complexity

- Alice can't see Bob's input
- Bob can't see Alice's input
- Can: agree on a protocol and send messages to each other
- Cost of a protocol on (x,y): The total number of bits spoken
- Cost of a protocol: worst case over all possible (x,y)
- For this talk : players have no randomness
- Communication complexity of R, CC(R): Minimum cost of a protocol solving R

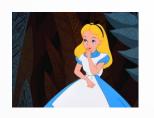


$$x\in f^{-1}(0)$$

$$y \in f^{-1}(1)$$

Circuit complexity to communication

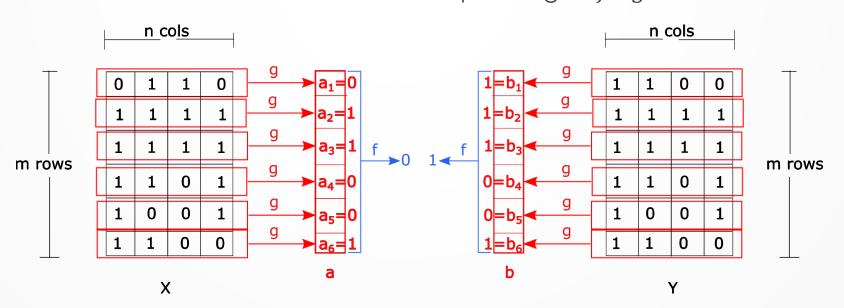
 $KW'90 : CC(KW_f) = D(f)$



 $x \in f^{-1}(0)$

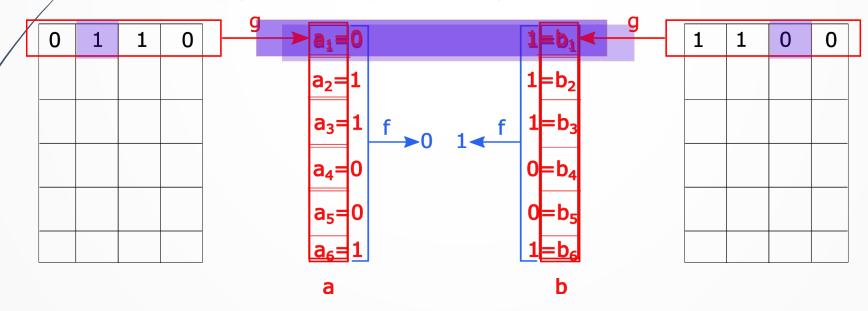
KRW conjecture (communication version)

- ► Karchmer Wigderson relation of f, $KW_f = \{(i, x, y) \mid x_i \neq y_i, f(x) = 0, f(y) = 1\}$
- $KW'90 : CC(KW_f) = D(f)$
- Restating KRW conjecture: $CC(KW_{f \circ g}) \approx CC(KW_{f}) + CC(KW_{g})$
- ▶ What does the KW relation corresponding to $f \diamond g$ look like



$KW_{f \diamond g}$: an easy upper bound

- Solve KW_f first finding $a_i \neq b_i$
- Solve KW_g on the resulting rows X_i , Y_i
- $CC(KW_{fog}) \le CC(KW_f) + CC(KW_g)$



Simplifying functions – Universal relation

- NRW conjecture implies $P \neq NC^1$ and this is a very hard problem
- KRW suggested a simplification : universal relation
- Known : $CC(U_n) = n$

 $x \in f\bar{x}^{-1}(0)$

remove 1

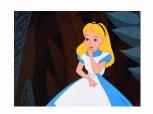
Goal: find $i, x_i \neq y_i$

Promise : $x \neq y$

$$y \in f^{\mathcal{Y}-1}(1)$$

Composition of Universal Relations

- Similar to $f \diamond g$, but drop f, drop g
- NRW Conjecture adapted to Universal relations (suggested by KRW'95): $CC(U_m \diamond U_n) \approx CC(U_m) + CC(U_n)$



n_co<u>ls</u>

	•	-				
$Pr \cap I$	mise	- 1	•	α	+	h
1101	コニュ	- 1		ш	_	IJ

n cols

	_	_		
T	0	1	1	0
	1	1	1	1
n rows	1	1	1	1
IIIOWS	1	1	0	1
	1	0	0	1
	1	1	0	0

)	1
L	1
L	1
)	0
)	C
L	1

				_
1	1	0	0	
1	1	1	1	
1	1	1	1	_
1	1	0	1	m r
1	0	0	1	
1	1	0	0	

m rows

Χ

Promise 2: $a_i \neq b_i$ implies $X_i \neq Y_i$

Known results

- First progress: result by Edmonds, Impagliazzo, Rudich and Sgall (EIRS)
- EIRS'91: $CC(U_m \diamond U_n) \geq m + n O(\sqrt{m})$
- The result is for m = n, but can be generalized in a straightforward manner
- Håstad and Wigderson '90: Alternate proof. Almost tight for m=n, weak for $m \neq n$
- $\qquad \qquad \mathsf{HW'90} : CC(U_m \diamond U_n) \geq 2n o(1)$

Composition of functions with universal relation : $f \diamond U_n$

- Gavinsky, Meir, Weinstein and Wigderson (GMWW'14) defined $f \diamond U_n$ for any function $f: \{0,1\}^m \to \{0,1\}$
- GMWW'14 : suggested studying $f \diamond U_n$ as a next step between $U_m \diamond U_n$ and $f \diamond g$
- GMWW'14: $CC(f \diamond U_n) \ge \log L(f) + n O(\frac{m}{n} \log m)$
- This talk: $\log L(f) = D(f)$ (this is not true in reality, but we can handle this)

Our Results

- $ightharpoonup \mathcal{CC}(f \diamond U_n) \ge \log L(f) + n O(\log m)$
- $ightharpoonup \mathcal{CC}(U_m \diamond U_n) \geq m + n O(\log m)$

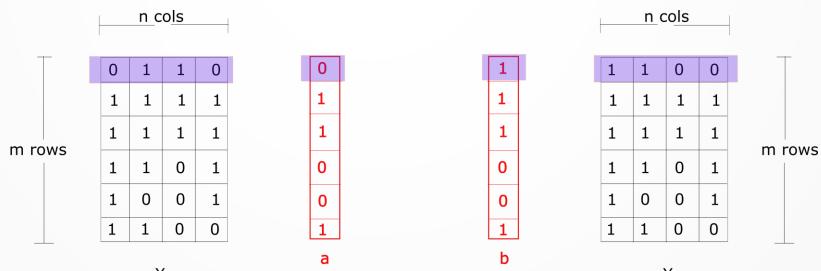
Relation	Known Lower bounds		Trivial Upper Bounds	Our Results
$U_m \diamond U_n$	$m+n-O(\sqrt{m})$	EIRS'91	m + n	$m+n-O(\log m)$
$f \diamond g$	$\log L(f) + n - O\left(1 + \frac{m}{n}\right) \log m$	GMWW'14	$\log L(f) + n$	$\log L(f) + n - O(\log m)$

Motivation

- The results are interesting in itself
- To get $P \neq NC^1$ from the KRW conjecture :
 - Prove the conjecture $f \diamond g$ for **arbitrary** f, random g
 - lacktriangle Close to $f \diamond U_n$
 - **But:** need $m = \frac{2^n}{\log n}$
 - The losses in all earlier bounds are significant even when $m = \omega(n^2)$
 - ▶ Avoiding $m = \omega(n^2)$: Prove the conjecture $f \circ g$ for random f, arbitrary g
 - **Problem**: Close to $U_m \diamond g$, and we don't know any lower bounds!

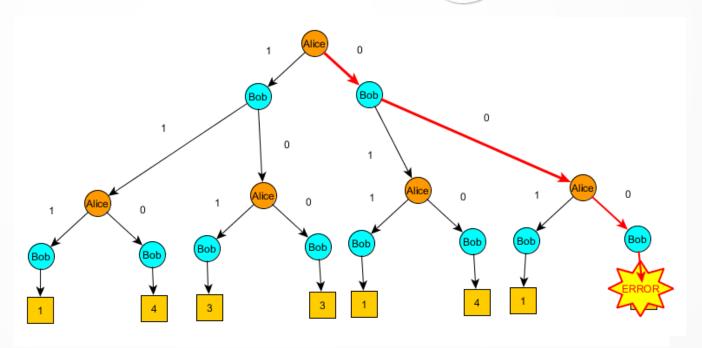
Basic intuition

- We will show the proof for $U_m \diamond U_n$
- Players **have to** solve U_n on at least one row. Say row i.
- They need the promise: $X_i \neq Y_i$
- For this promise: they need to solve U_m , i.e., know for sure $a_i \neq b_i$
- Hence: $CC(U_m \diamond U_n) \approx CC(U_m) + CC(U_n) \approx m + n$
- Notation : matrix part, vector part of players input



Adversarial Argument

Maintains a path and a set of inputs



Deterministic protocol

High Level Idea

- Divide communication into two stages
- **First stage**: where players must solve U_m
- **Defined to be first m \alpha bits** (α : slack term)
- Second Stage : rest of the communication
- Lower bound :
 - Adversary constructs a good first stage transcript
 - lacktriangle On this transcript, players must speak pprox n bits in the second stage

An easy case

- Recall: Input to $U_m \diamond U_n : ((X,a),(Y,b))$. Matrix part: X,Y, vector part: a,b
- Suppose the players don't speak about matrix part in the first stage
- They haven't solved U_m yet
- No matter which row they find where $a_i \neq b_i$, they know nothing about the row
- ▶ Hence second stage : at least $\approx n$ bits $(CC(U_n))$

Another easy case

- Recall: Input to $U_m \diamond U_n : ((X,a),(Y,b))$. Matrix part: X,Y, vector part: a,b
- Suppose the players don't speak about vector part in the first stage
- They haven't solved U_m at all
- #rows for which the players have learned at least 1 bit of information < m α
- Make these rows useless. Set $a_i = b_i$ for such rows
- Complexity of U_m after fixing $a_i = b_i : m (m \alpha)$
- If $\alpha > 1$, at least one index which is not fixed
- ▶ Hence second stage : at least $\approx n-1$ bits $(CC(U_n))$

Challenging case

- Recall: Input to $U_m \diamond U_n : ((X,a),(Y,b))$. Matrix part: X,Y, vector part: a,b
- The players do speak about matrix part in the first stage
- They haven't solved U_m yet.
- They don't know any row where $X_i \neq Y_i$ is guaranteed
- **Goal**: communication in the first stage about matrix part is wasted on rows $X_i = Y_i$
- Strategy:
 - Adversary fixes a good transcript of the first stage
 - Classify rows into: revealed and unrevealed
 - ightharpoonup Revealed : players spoke more than τ bits about the row.
 - Unrevealed row: players have to speak $\approx n \tau$ bits in the second stage
 - lacktriangle For every revealed row : fix $a_i=b_i$

Fixing Revealed Rows

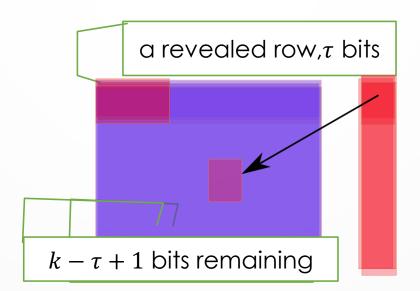
- For the strategy to work: need to fix $a_i = b_i$ for every revealed row
- lacktriangle Suppose: players spoke k bits about the matrix part
- Number of revealed rows : k/τ (by an averaging argument)
- **Constraint due to fixing:** # (revealed rows) < β (β : bits remaining to solve U_m)
- Lower bound : $\approx m \alpha + n \tau$ subject to $\frac{k}{\tau} < \beta$
- EIRS:
 - $k \leq m \alpha$
 - $au au = \sqrt{m}, \ \alpha = \sqrt{m}$
 - $-\frac{k}{\tau} < \sqrt{m}, \ \beta > \alpha$
 - Lower bound : $\approx m \sqrt{m} + n \sqrt{m}$

Our analysis

- ightharpoonup Suppose: players spoke k bits about the matrix part
- Constraint due to fixing: #(revealed rows) < β (β : bits remaining to solve U_m)
- Main Idea: first stage ≥ communication (matrix part) + communication (vector part)
- Hence $\beta \ge \alpha + k$ (#bits(vector part) <= $m \alpha k$)
- Lower bound : $\approx m \alpha + n \tau$ subject to $\frac{k}{\tau} < \beta$
 - \blacksquare Set $\tau > 1$
 - $\frac{k}{\tau} < k + \alpha$.
 - Hence $\frac{k}{\tau} < \beta$ is satisfied

A complication

- first stage : communication (matrix part), k bits + communication (vector part), $m-\alpha-k$ bits
- Fixing a bit $a_i = b_i$, could reveal a bit of information about the matrices
- Unrevealed row at the end of fixing : $\tau + k/\tau$ bits
- Solution : An Iterative Adversary



Iterative Adversary

After fixing i revealed rows, #bits known about the remaining rows: $k - (\tau)$

Thank you

- Questions?
- Technical details of the key ideas after the break!

