Branching Program size lower bounds via Projective Dimension

Sajin Koroth (joint work with Krishnamoorthy Dinesh and Jayalal Sarma)

Indian Institute of Technology, Madras

Theory Lunch, Technion

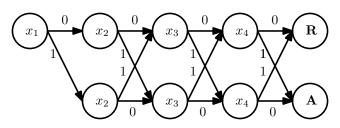
Outline

- Branching Programs model and motivation
- Projective Dimension and BP size lower bounds
- Gap Between Projective Dimension and BP Size
- Bridging the Gap: Bitwise Projective Dimension
- 5 A lower bound for Bitwise Projective Dimension that matches state of the art Branching program lower bound
- 6 Discussions and Future Work

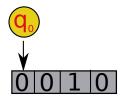
2 / 23

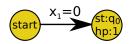
Branching Programs

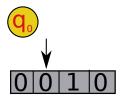
- Directed Acyclic Graphs with designated start, accept and reject nodes
- Each node queries a variable
- Edges emanating out of a node are labeled by the bit value of the variable queried by the variable



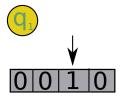
 $\mathsf{PARITY}_4 = x_1 \oplus x_2 \oplus x_3 \oplus x_4$

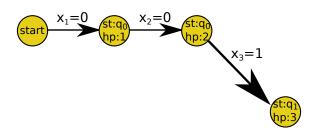


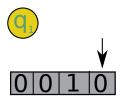


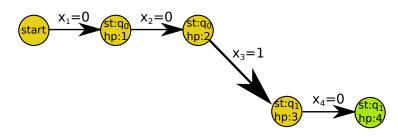


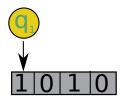


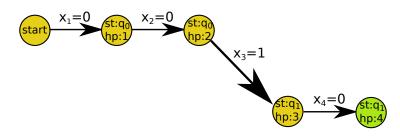


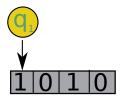


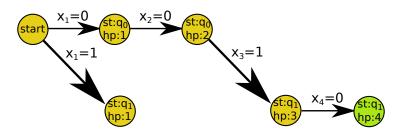


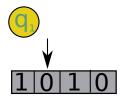


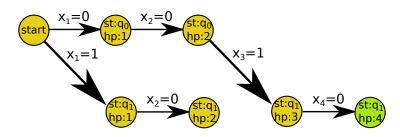


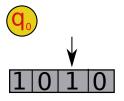


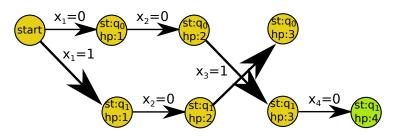


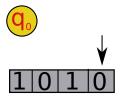


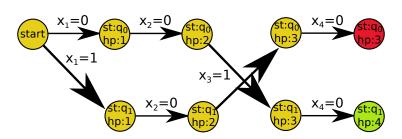


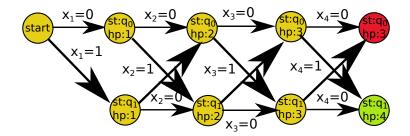






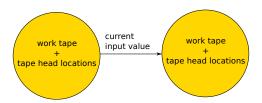






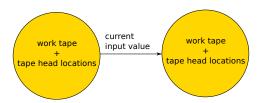
Is $\mathbf{L} \neq \mathbf{P}$

- For every TM with space bound S there is a Deterministic Branching Program with size $2^{O(S)}$
- Thus to prove that L the class of log-space solvable problems is separate from P the class of polynomial time solvable problems, its enough to prove a super-polynomial size lower bound for BP's



Is $\mathbf{L} \neq \mathbf{P}$

- For every TM with space bound S there is a Deterministic Branching Program with size $2^{O(S)}$
- Thus to prove that L the class of log-space solvable problems is separate from P the class of polynomial time solvable problems, its enough to prove a super-polynomial size lower bound for BP's



- For deterministic branching programs it is $n^2/\log^2 n$ by Nechiporuk from 60's
- Nechiporuk's method applies for many functions. We consider the Element Distinctness function
 - $ED_m: \{0,1\}^{n=m2\log m} \to \{0,1\}$
 - m inputs x_1, \ldots, x_m each representing a number in $[m^2]$
 - $f(x_1,...,x_m)=1$ iff no two x_i,x_i are equal
- Let there be a size S branching program computing ED_n . Let S_i be the number of nodes in the BP which queries a bit from x_i (x_i is a $2 \log m$ bit input).
- The number of different branching programs on S_i nodes is at most $2^{3S_i \log S_i}$
- $\mathrm{ED}_4(1,*,3,4) \not\equiv \mathrm{ED}_4(1,*,2,3)$. There are $2^{\Omega(n)}$ restrictions which give different restrictions of ED_n for each $i \in [m]$.
- For every i, $2^{3S_i \log S_i} \ge 2^{\Omega(n)}$, that is $S_i = \Omega(n/\log n)$
- $S = \sum_{i=1}^{m=n/\log n} S_i = \Omega(n^2/\log^2 n)$.

4□ > 4□ > 4 = > 4 = > = 90

- For deterministic branching programs it is $n^2/\log^2 n$ by Nechiporuk from 60's
- Nechiporuk's method applies for many functions. We consider the Element Distinctness function
 - $ED_m: \{0,1\}^{n=m2\log m} \to \{0,1\}$
 - m inputs $x_1, ..., x_m$ each representing a number in $[m^2]$
 - $f(x_1,...,x_m)=1$ iff no two x_i,x_j are equal
- Let there be a size S branching program computing ED_n . Let S_i be the number of nodes in the BP which queries a bit from x_i (x_i is a $2 \log m$ bit input).
- The number of different branching programs on S_i nodes is at most $2^{3S_i \log S_i}$
- $\mathrm{ED}_4(1,*,3,4) \not\equiv \mathrm{ED}_4(1,*,2,3)$. There are $2^{\Omega(n)}$ restrictions which give different restrictions of ED_n for each $i \in [m]$.
- For every i, $2^{3S_i \log S_i} \ge 2^{\Omega(n)}$, that is $S_i = \Omega(n/\log n)$
- $S = \sum_{i=1}^{m=n/\log n} S_i = \Omega(n^2/\log^2 n)$.

4 D > 4 A > 4 B > 4 B > B 9 Q (

- For deterministic branching programs it is $n^2/\log^2 n$ by Nechiporuk from 60's
- Nechiporuk's method applies for many functions. We consider the Element Distinctness function
 - $ED_m: \{0,1\}^{n=m2\log m} \to \{0,1\}$
 - m inputs x_1, \ldots, x_m each representing a number in $[m^2]$
 - $f(x_1,...,x_m)=1$ iff no two x_i,x_i are equal
- Let there be a size S branching program computing ED_n . Let S_i be the number of nodes in the BP which queries a bit from x_i (x_i is a $2 \log m$ bit input).
- The number of different branching programs on S_i nodes is at most $2^{3S_i \log S_i}$
- $\mathrm{ED}_4(1,*,3,4) \not\equiv \mathrm{ED}_4(1,*,2,3)$. There are $2^{\Omega(n)}$ restrictions which give different restrictions of ED_n for each $i \in [m]$.
- For every i, $2^{3S_i \log S_i} \ge 2^{\Omega(n)}$, that is $S_i = \Omega(n/\log n)$
- $S = \sum_{i=1}^{m=n/\log n} S_i = \Omega(n^2/\log^2 n)$.

4 D > 4 A > 4 B > 4 B > B = 994

- For deterministic branching programs it is $n^2/\log^2 n$ by Nechiporuk from 60's
- Nechiporuk's method applies for many functions. We consider the Element Distinctness function
 - $ED_m: \{0,1\}^{n=m2\log m} \to \{0,1\}$
 - m inputs $x_1, ..., x_m$ each representing a number in $[m^2]$
 - $f(x_1,...,x_m)=1$ iff no two x_i,x_j are equal
- Let there be a size S branching program computing ED_n . Let S_i be the number of nodes in the BP which queries a bit from x_i (x_i is a $2 \log m$ bit input).
- The number of different branching programs on S_i nodes is at most $2^{3S_i \log S_i}$
- $\mathrm{ED}_4(1,*,3,4) \not\equiv \mathrm{ED}_4(1,*,2,3)$. There are $2^{\Omega(n)}$ restrictions which give different restrictions of ED_n for each $i \in [m]$.
- For every i, $2^{3S_i \log S_i} \ge 2^{\Omega(n)}$, that is $S_i = \Omega(n/\log n)$
- $S = \sum_{i=1}^{m=n/\log n} S_i = \Omega(n^2/\log^2 n)$.

4□ > 4□ > 4□ > 4□ > □

- For deterministic branching programs it is $n^2/\log^2 n$ by Nechiporuk from 60's
- Nechiporuk's method applies for many functions. We consider the Element Distinctness function
 - $ED_m: \{0,1\}^{n=m2\log m} \to \{0,1\}$
 - m inputs $x_1, ..., x_m$ each representing a number in $[m^2]$
 - $f(x_1,...,x_m) = 1$ iff no two x_i,x_j are equal
- Let there be a size S branching program computing ED_n . Let S_i be the number of nodes in the BP which queries a bit from x_i (x_i is a $2 \log m$ bit input).
- The number of different branching programs on S_i nodes is at most $2^{3S_i \log S_i}$
- $\mathrm{ED}_4(1,*,3,4) \not\equiv \mathrm{ED}_4(1,*,2,3)$. There are $2^{\Omega(n)}$ restrictions which give different restrictions of ED_n for each $i \in [m]$.
- For every i, $2^{3S_i \log S_i} \ge 2^{\Omega(n)}$, that is $S_i = \Omega(n/\log n)$
- $S = \sum_{i=1}^{m=n/\log n} S_i = \Omega(n^2/\log^2 n)$.

4□ > 4□ > 4□ > 4□ > □

- For deterministic branching programs it is $n^2/\log^2 n$ by Nechiporuk from 60's
- Nechiporuk's method applies for many functions. We consider the Element Distinctness function
 - $ED_m: \{0,1\}^{n=m2\log m} \to \{0,1\}$
 - m inputs $x_1, ..., x_m$ each representing a number in $[m^2]$
 - $f(x_1,...,x_m) = 1$ iff no two x_i,x_j are equal
- Let there be a size S branching program computing ED_n . Let S_i be the number of nodes in the BP which queries a bit from x_i (x_i is a $2 \log m$ bit input).
- The number of different branching programs on S_i nodes is at most $2^{3S_i \log S_i}$
- $\mathrm{ED}_4(1,*,3,4) \not\equiv \mathrm{ED}_4(1,*,2,3)$. There are $2^{\Omega(n)}$ restrictions which give different restrictions of ED_n for each $i \in [m]$.
- For every i, $2^{3S_i \log S_i} \ge 2^{\Omega(n)}$, that is $S_i = \Omega(n/\log n)$
- $S = \sum_{i=1}^{m=n/\log n} S_i = \Omega(n^2/\log^2 n)$.

- For deterministic branching programs it is $n^2/\log^2 n$ by Nechiporuk from 60's
- Nechiporuk's method applies for many functions. We consider the Element Distinctness function
 - $ED_m: \{0,1\}^{n=m2\log m} \to \{0,1\}$
 - m inputs $x_1, ..., x_m$ each representing a number in $[m^2]$
 - $f(x_1,...,x_m) = 1$ iff no two x_i,x_j are equal
- Let there be a size S branching program computing ED_n . Let S_i be the number of nodes in the BP which queries a bit from x_i (x_i is a $2 \log m$ bit input).
- The number of different branching programs on S_i nodes is at most $2^{3S_i \log S_i}$
- $\mathrm{ED}_4(1,*,3,4) \not\equiv \mathrm{ED}_4(1,*,2,3)$. There are $2^{\Omega(n)}$ restrictions which give different restrictions of ED_n for each $i \in [m]$.
- For every i, $2^{3S_i \log S_i} \ge 2^{\Omega(n)}$, that is $S_i = \Omega(n/\log n)$
- $S = \sum_{i=1}^{m=n/\log n} S_i = \Omega(n^2/\log^2 n)$.

4 0 5 4 0 5 5 6 5 5 5

- For deterministic branching programs it is $n^2/\log^2 n$ by Nechiporuk from 60's
- Nechiporuk's method applies for many functions. We consider the Element Distinctness function
 - $ED_m: \{0,1\}^{n=m2\log m} \to \{0,1\}$
 - m inputs $x_1, ..., x_m$ each representing a number in $[m^2]$
 - $f(x_1,...,x_m) = 1$ iff no two x_i,x_j are equal
- Let there be a size S branching program computing ED_n . Let S_i be the number of nodes in the BP which queries a bit from x_i (x_i is a $2 \log m$ bit input).
- The number of different branching programs on S_i nodes is at most $2^{3S_i \log S_i}$
- $\mathrm{ED}_4(1,*,3,4) \not\equiv \mathrm{ED}_4(1,*,2,3)$. There are $2^{\Omega(n)}$ restrictions which give different restrictions of ED_n for each $i \in [m]$.
- For every i, $2^{3S_i \log S_i} \ge 2^{\Omega(n)}$, that is $S_i = \Omega(n/\log n)$
- $S = \sum_{i=1}^{m=n/\log n} S_i = \Omega(n^2/\log^2 n)$.

- For deterministic branching programs it is $n^2/\log^2 n$ by Nechiporuk from 60's
- Nechiporuk's method applies for many functions. We consider the Element Distinctness function
 - $ED_m: \{0,1\}^{n=m2\log m} \to \{0,1\}$
 - m inputs $x_1, ..., x_m$ each representing a number in $[m^2]$
 - $f(x_1,...,x_m)=1$ iff no two x_i,x_j are equal
- Let there be a size S branching program computing ED_n . Let S_i be the number of nodes in the BP which queries a bit from x_i (x_i is a $2 \log m$ bit input).
- The number of different branching programs on S_i nodes is at most $2^{3S_i \log S_i}$
- $\mathrm{ED}_4(1,*,3,4) \not\equiv \mathrm{ED}_4(1,*,2,3)$. There are $2^{\Omega(n)}$ restrictions which give different restrictions of ED_n for each $i \in [m]$.
- For every i, $2^{3S_i \log S_i} \ge 2^{\Omega(n)}$, that is $S_i = \Omega(n/\log n)$
- $S = \sum_{i=1}^{m=n/\log n} S_i = \Omega(n^2/\log^2 n).$

- For deterministic branching programs it is $n^2/\log^2 n$ by Nechiporuk from 60's
- Nechiporuk's method applies for many functions. We consider the Element Distinctness function
 - $ED_m: \{0,1\}^{n=m2\log m} \to \{0,1\}$
 - m inputs $x_1, ..., x_m$ each representing a number in $[m^2]$
 - $f(x_1,...,x_m) = 1$ iff no two x_i,x_j are equal
- Let there be a size S branching program computing ED_n . Let S_i be the number of nodes in the BP which queries a bit from x_i (x_i is a $2 \log m$ bit input).
- The number of different branching programs on S_i nodes is at most $2^{3S_i \log S_i}$
- $\mathrm{ED}_4(1,*,3,4) \not\equiv \mathrm{ED}_4(1,*,2,3)$. There are $2^{\Omega(n)}$ restrictions which give different restrictions of ED_n for each $i \in [m]$.
- For every i, $2^{3S_i \log S_i} \ge 2^{\Omega(n)}$, that is $S_i = \Omega(n/\log n)$
- $S = \sum_{i=1}^{m=n/\log n} S_i = \Omega(n^2/\log^2 n)$.

◆ロト ◆部 → ◆草 > ◆草 > ・草 ・ 夕 Q G

Projective Dimension

- Measure on bipartite graphs introduced by Pudlak and Rodl
- Graph G(U, V, E). Assign subspaces from \mathbb{F}^d to vertices so that

$$(x,y) \in E \iff \phi(x) \cap \phi(y) \neq \{0\}$$

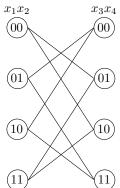
• Smallest such $d : pd_{\mathbb{F}}(G)$.

Projective Dimension

- Measure on bipartite graphs introduced by Pudlak and Rodl
- Graph G(U, V, E). Assign subspaces from \mathbb{F}^d to vertices so that

$$(x,y) \in E \iff \phi(x) \cap \phi(y) \neq \{0\}$$

• Smallest such d : $pd_{\mathbb{F}}(G)$.

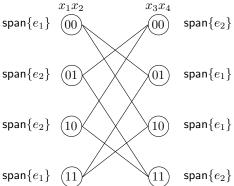


Projective Dimension

- Measure on bipartite graphs introduced by Pudlak and Rodl
- Graph G(U, V, E). Assign subspaces from \mathbb{F}^d to vertices so that

$$(x,y) \in E \iff \phi(x) \cap \phi(y) \neq \{0\}$$

• Smallest such d : $pd_{\mathbb{F}}(G)$.



$$bpsize(f) \ge pd(f)$$

Theorem, (Pudlak and Rodl (1992))

Over any \mathbb{F} , bpsize $(f) \geq \operatorname{pd}_{\mathbb{F}}(G_f)$.

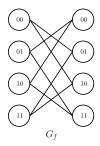
• To define the bipartite graph G_f associated with a function f on 2n variables, take some natural partition of the variable set into two equals parts

$$bpsize(f) \ge pd(f)$$

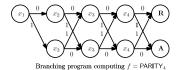
Theorem, (Pudlak and Rodl (1992))

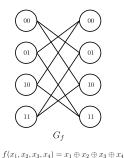
Over any \mathbb{F} , bpsize $(f) \geq \operatorname{pd}_{\mathbb{F}}(G_f)$.

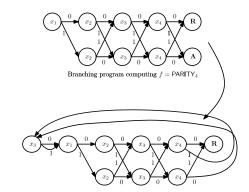
• To define the bipartite graph G_f associated with a function f on 2n variables, take some natural partition of the variable set into two equal parts

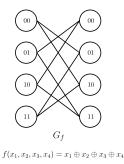


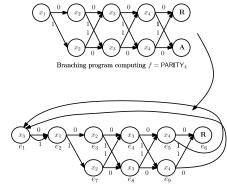
 $f(x_1, x_2, x_3, x_4) = x_1 \oplus x_2 \oplus x_3 \oplus x_4$



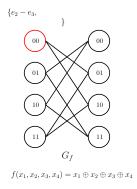


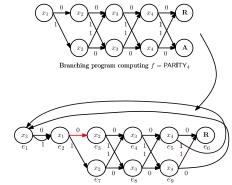




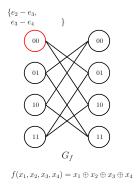


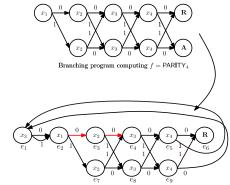
Modified graph giving subspace assignment for G_f





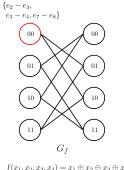
Modified graph giving subspace assignment for G_f

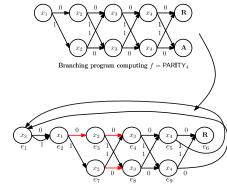




Modified graph giving subspace assignment for G_f

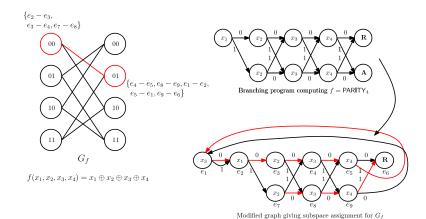
Proof of the Pudalk Rodl theorem



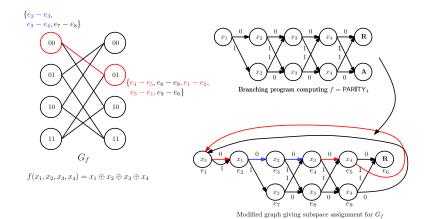


Modified graph giving subspace assignment for G_f

Proof of the Pudalk Rodl theorem



Proof of the Pudalk Rodl theorem



- Let (x, y) be an input. And H_x be the edge-subgraph of the branching program whose edges query variables in x. Similarly define H_y .
- After the transformation f(x,y) = 1 iff $H_x \cup H_y$ contains a cycle
- Make sure that for any (x,y) s.t. f(x,y) = 1 this unique cycle has edges from both H_x and H_y .
- Any linear dependence in $span\{\phi(x),\phi(y)\}$ corresponds to a cycle in $H_x \cup H_y$

- Let (x,y) be an input. And H_x be the edge-subgraph of the branching program whose edges query variables in x. Similarly define H_y .
- After the transformation f(x,y) = 1 iff $H_x \cup H_y$ contains a cycle
- Make sure that for any (x,y) s.t. f(x,y) = 1 this unique cycle has edges from both H_x and H_y .
- Any linear dependence in $span\{\phi(x),\phi(y)\}$ corresponds to a cycle in $H_x \cup H_y$

- Let (x,y) be an input. And H_x be the edge-subgraph of the branching program whose edges query variables in x. Similarly define H_y .
- After the transformation f(x,y) = 1 iff $H_x \cup H_y$ contains a cycle
- Make sure that for any (x,y) s.t. f(x,y) = 1 this unique cycle has edges from both H_x and H_y .
- Any linear dependence in $span\{\phi(x),\phi(y)\}$ corresponds to a cycle in $H_x \cup H_y$

- Let (x,y) be an input. And H_x be the edge-subgraph of the branching program whose edges query variables in x. Similarly define H_y .
- After the transformation f(x,y) = 1 iff $H_x \cup H_y$ contains a cycle
- Make sure that for any (x,y) s.t. f(x,y) = 1 this unique cycle has edges from both H_x and H_y .
- Any linear dependence in $span\{\phi(x),\phi(y)\}$ corresponds to a cycle in $H_x \cup H_y$

Known Bounds on $pd_{\mathbb{F}}$

• (Existential) N vertex bipartite G such that

$pd_{\mathbb{F}}(\mathit{G})$	Field	Result
$\Omega\left(\sqrt{\frac{N}{\log N}}\right)$	Infinite	Babai et.al, 2002
$\Omega\left(\sqrt{N}\right)$	Finite	Pudlak and Rodl, 1992

- (Explicit) G = Complement of N perfect matchings. $\operatorname{pd}_{\mathbb{R}}(G) = \Omega(\log N)$
- (Upper bounds) Bipartite G, $\operatorname{pd}_{\mathbb{R}}(G) = O\left(\frac{N}{\log N}\right)$
- To summarize, we only know linear lower bounds for projective dimension of explicit functions.

Known Bounds on $pd_{\mathbb{F}}$

• (Existential) N vertex bipartite G such that

$pd_{\mathbb{F}}(\mathit{G})$	Field	Result
$\Omega\left(\sqrt{\frac{N}{\log N}}\right)$	Infinite	Babai et.al, 2002
$\Omega\left(\sqrt{N}\right)$	Finite	Pudlak and Rodl, 1992

- (Explicit) G = Complement of N perfect matchings. $pd_{\mathbb{R}}(G) = \Omega(\log N)$
- (Upper bounds) Bipartite G, $\operatorname{pd}_{\mathbb{R}}(G) = O\left(\frac{N}{\log N}\right)$
- To summarize, we only know linear lower bounds for projective dimension of explicit functions.

Known Bounds on pd_𝔽

• (Existential) N vertex bipartite G such that

$pd_{\mathbb{F}}(\mathit{G})$	Field	Result
$\Omega\left(\sqrt{\frac{N}{\log N}}\right)$	Infinite	Babai et.al, 2002
$\Omega\left(\sqrt{N}\right)$	Finite	Pudlak and Rodl, 1992

- (Explicit) G = Complement of N perfect matchings. $pd_{\mathbb{R}}(G) = \Omega(\log N)$
- (Upper bounds) Bipartite G, $\operatorname{pd}_{\mathbb{R}}(G) = O\left(\frac{N}{\log N}\right)$
- To summarize, we only know linear lower bounds for projective dimension of explicit functions.

Known Bounds on $pd_{\mathbb{F}}$

• (Existential) N vertex bipartite G such that

$pd_{\mathbb{F}}(G)$	Field	Result
$\Omega\left(\sqrt{\frac{N}{\log N}}\right)$	Infinite	Babai et.al, 2002
$\Omega\left(\sqrt{N}\right)$	Finite	Pudlak and Rodl, 1992

- (Explicit) G = Complement of N perfect matchings. $pd_{\mathbb{R}}(G) = \Omega(\log N)$
- (Upper bounds) Bipartite G, $\operatorname{pd}_{\mathbb{R}}(G) = O\left(\frac{N}{\log N}\right)$
- To summarize, we only know linear lower bounds for projective dimension of explicit functions.

| **イロト 4回ト 4** 巨ト 4 巨ト | 巨 | 夕久()

Our Result, a similar result known for Formulas and Graph Complexity by Jukna

There exists (non-explicit) function $f: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}$ such that pd(f) = O(n), but $bpsize(f) = \Omega(2^n/n)$.

Our Result, a similar result known for Formulas and Graph Complexity by Jukna

There exists (non-explicit) function $f: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}$ such that pd(f) = O(n), but $bpsize(f) = \Omega(2^n/n)$.

- Projective dimension of a bipartite graph G(U, V, E) is invariant under relabeling vertices on the right side
- Move the subspace assignments of the vertices along with the vertices
- The Equality function denoted by EQ(x,y) checks whether two n bit strings x and y are equal. Has BP of size O(n). Hence $\operatorname{pd}(G_{\operatorname{EQ}_n}) = O(n)$
- Let $\pi \in S_{2^n}$ be a permutation of the right vertices (y's). For any two different permutations the resulting bipartite graph has same projective dimension as EQ_n .
- But for any two different permutations the corresponding Boolean function is different.
- There are only $2^{O(S \log S)}$ different branching programs of size at most S

4 D > 4 A > 4 E > 4 E > 9 Q P

- Projective dimension of a bipartite graph G(U, V, E) is invariant under relabeling vertices on the right side
- Move the subspace assignments of the vertices along with the vertices
- The Equality function denoted by EQ(x,y) checks whether two n bit strings x and y are equal. Has BP of size O(n). Hence $pd(G_{EO_n}) = O(n)$
- Let $\pi \in S_{2^n}$ be a permutation of the right vertices (y's). For any two different permutations the resulting bipartite graph has same projective dimension as EQ_n .
- But for any two different permutations the corresponding Boolean function is different.
- There are only $2^{O(S\log S)}$ different branching programs of size at most S

4日 → 4億 → 4 差 → 4 差 → 1 型 9 9 9 9

- Projective dimension of a bipartite graph G(U, V, E) is invariant under relabeling vertices on the right side
- Move the subspace assignments of the vertices along with the vertices
- The Equality function denoted by EQ(x,y) checks whether two n bit strings x and y are equal. Has BP of size O(n). Hence $pd(G_{EQ_n}) = O(n)$
- Let $\pi \in S_{2^n}$ be a permutation of the right vertices (y)'s). For any two different permutations the resulting bipartite graph has same projective dimension as EQ_n .
- But for any two different permutations the corresponding Boolean function is different.
- There are only $2^{O(S\log S)}$ different branching programs of size at most S

- Projective dimension of a bipartite graph G(U, V, E) is invariant under relabeling vertices on the right side
- Move the subspace assignments of the vertices along with the vertices
- The Equality function denoted by EQ(x,y) checks whether two n bit strings x and y are equal. Has BP of size O(n). Hence $pd(G_{EQ_n}) = O(n)$
- Let $\pi \in S_{2^n}$ be a permutation of the right vertices (y's). For any two different permutations the resulting bipartite graph has same projective dimension as EQ_n .
- But for any two different permutations the corresponding Boolean function is different.
- There are only $2^{O(S\log S)}$ different branching programs of size at most S

◆□ → ◆□ → ◆ □ → □ ● の ○ ○

- Projective dimension of a bipartite graph G(U, V, E) is invariant under relabeling vertices on the right side
- Move the subspace assignments of the vertices along with the vertices
- The Equality function denoted by EQ(x,y) checks whether two n bit strings x and y are equal. Has BP of size O(n). Hence $pd(G_{EQ_n}) = O(n)$
- Let $\pi \in S_{2^n}$ be a permutation of the right vertices (y's). For any two different permutations the resulting bipartite graph has same projective dimension as EQ_n .
- But for any two different permutations the corresponding Boolean function is different.
- There are only $2^{O(S\log S)}$ different branching programs of size at most S

4 D > 4 D > 4 E > 4 E > E 9 9 9

- Projective dimension of a bipartite graph G(U, V, E) is invariant under relabeling vertices on the right side
- Move the subspace assignments of the vertices along with the vertices
- The Equality function denoted by EQ(x,y) checks whether two n bit strings x and y are equal. Has BP of size O(n). Hence $pd(G_{EQ_n}) = O(n)$
- Let $\pi \in S_{2^n}$ be a permutation of the right vertices (y's). For any two different permutations the resulting bipartite graph has same projective dimension as EQ_n .
- But for any two different permutations the corresponding Boolean function is different.
- There are only $2^{O(S\log S)}$ different branching programs of size at most S

◆□ > ◆問 > ◆ = > → = ● の Q G

- The gap example gave an assignment which is of low projective dimension, but it may not be easy (read poly in *n*) to describe
- The assignment constructed from branching program by Pudlak and Rodl is easy to describe.
- There are 4n subspaces, 2 for each of the 2n bits whose various spans create all the subspaces assigned to the $2^n + 2^n$ vertices of the bipartite graph
- For each $i \in [2n]$ and $b \in \{0,1\}$, look at the edges querying $x_i = b$. The span of the vectors assigned to these edges constitute these building block sub-spaces.

- The gap example gave an assignment which is of low projective dimension, but it may not be easy (read poly in *n*) to describe
- The assignment constructed from branching program by Pudlak and Rodl is easy to describe.
- There are 4n subspaces, 2 for each of the 2n bits whose various spans create all the subspaces assigned to the $2^n + 2^n$ vertices of the bipartite graph
- For each $i \in [2n]$ and $b \in \{0,1\}$, look at the edges querying $x_i = b$. The span of the vectors assigned to these edges constitute these building block sub-spaces.

- The gap example gave an assignment which is of low projective dimension, but it may not be easy (read poly in n) to describe
- The assignment constructed from branching program by Pudlak and Rodl is easy to describe.
- There are 4n subspaces, 2 for each of the 2n bits whose various spans create all the subspaces assigned to the $2^n + 2^n$ vertices of the bipartite graph
- For each $i \in [2n]$ and $b \in \{0,1\}$, look at the edges querying $x_i = b$. The span of the vectors assigned to these edges constitute these building block sub-spaces.

- The gap example gave an assignment which is of low projective dimension, but it may not be easy (read poly in n) to describe
- The assignment constructed from branching program by Pudlak and Rodl is easy to describe.
- There are 4n subspaces, 2 for each of the 2n bits whose various spans create all the subspaces assigned to the $2^n + 2^n$ vertices of the bipartite graph
- For each $i \in [2n]$ and $b \in \{0,1\}$, look at the edges querying $x_i = b$. The span of the vectors assigned to these edges constitute these building block sub-spaces.

Definition

For $f: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}$, $bpdim(f) \le d$ if there exists $\mathscr{C} = \{U_i^a \mid a \in \{0,1\}, i \in [n]\}$, $\mathscr{D} = \{V_i^a \mid a \in \{0,1\}, i \in [n]\}$, such that

- Each U_i^a is a span of difference of standard basis vectors. Similarly each V_i^a
- If $e_i e_j \in spanU_k^0 \cup U_k^1$ then for any e_l , $e_i e_l$ and $e_j e_l$ are not in $span_{m \neq k, a\{0,1\}} U_m^a$. Similar condition for \mathscr{D} .
- \mathscr{C}, \mathscr{D} subspaces from \mathbb{F}_2^d

Main Result

$$\mathsf{bitpdim}(f) = \Omega(\mathsf{bpsize}(f)^{1/6})$$

4 D > 4 P > 4 E > 4 E > E 9 Q C

Definition

For $f: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}$, $bpdim(f) \le d$ if there exists $\mathscr{C} = \{U_i^a \mid a \in \{0,1\}, i \in [n]\}$, $\mathscr{D} = \{V_i^a \mid a \in \{0,1\}, i \in [n]\}$, such that

- Each U_i^a is a span of difference of standard basis vectors. Similarly each V_i^a
- If $e_i e_j \in spanU_k^0 \cup U_k^1$ then for any e_l , $e_i e_l$ and $e_j e_l$ are not in $span_{m \neq k, a\{0,1\}} U_m^a$. Similar condition for \mathscr{D} .
- \mathscr{C}, \mathscr{D} subspaces from \mathbb{F}_2^d

Main Result

$$\mathsf{bitpdim}(f) = \Omega(\mathsf{bpsize}(f)^{1/6})$$

4 D > 4 A > 4 B > 4 B > B 9 Q G

Definition

For $f: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}$, $bpdim(f) \le d$ if there exists $\mathscr{C} = \{U_i^a \mid a \in \{0,1\}, i \in [n]\}$, $\mathscr{D} = \{V_i^a \mid a \in \{0,1\}, i \in [n]\}$, such that

- Each U_i^a is a span of difference of standard basis vectors. Similarly each V_i^a
- If $e_i e_j \in spanU_k^0 \cup U_k^1$ then for any e_l , $e_i e_l$ and $e_j e_l$ are not in $span_{m \neq k, a\{0,1\}} U_m^a$. Similar condition for \mathscr{D} .
- \mathscr{C}, \mathscr{D} subspaces from \mathbb{F}_2^d

Main Result

$$\mathsf{bitpdim}(f) = \Omega(\mathsf{bpsize}(f)^{1/6})$$

4 D > 4 A > 4 B > 4 B > B 9 9 9

Definition

For $f: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}$, $bpdim(f) \le d$ if there exists $\mathscr{C} = \{U_i^a \mid a \in \{0,1\}, i \in [n]\}$, $\mathscr{D} = \{V_i^a \mid a \in \{0,1\}, i \in [n]\}$, such that

- Each U_i^a is a span of difference of standard basis vectors. Similarly each V_i^a
- If $e_i e_j \in spanU_k^0 \cup U_k^1$ then for any e_l , $e_i e_l$ and $e_j e_l$ are not in $span_{m \neq k, a\{0,1\}} U_m^0$. Similar condition for \mathscr{D} .
- \mathscr{C}, \mathscr{D} subspaces from \mathbb{F}_2^d

Main Result

$$\mathsf{bitpdim}(f) = \Omega(\mathsf{bpsize}(f)^{1/6})$$

4014914111111111111

Definition

For $f: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}$, $bpdim(f) \le d$ if there exists $\mathscr{C} = \{U_i^a \mid a \in \{0,1\}, i \in [n]\}$, $\mathscr{D} = \{V_i^a \mid a \in \{0,1\}, i \in [n]\}$, such that

- Each U_i^a is a span of difference of standard basis vectors. Similarly each V_i^a
- If $e_i e_j \in spanU_k^0 \cup U_k^1$ then for any e_l , $e_i e_l$ and $e_j e_l$ are not in $span_{m \neq k, a\{0,1\}} U_m^0$. Similar condition for \mathscr{D} .
- ullet \mathscr{C},\mathscr{D} subspaces from \mathbb{F}_2^d

Main Result

$$\mathsf{bitpdim}(f) = \Omega(\mathsf{bpsize}(f)^{1/6})$$

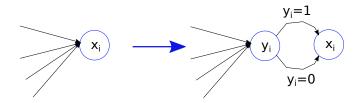
4014914111111111111

- Excpet for, If $e_i e_j \in spanU_k^0 \cup U_k^1$ then for any e_l , $e_i e_l$ and $e_j e_l$ are not in $span_{m \neq k, a\{0,1\}} U_m^a$, all the other conditions are satisfied by Pudlak Rodl Construction
- Modify the branching program so that no two edges which share an end vertex query variables from the same partition
- This can be done by blowing up the size of the given branching program by a factor of at most 4.

- Except for, If $e_i e_j \in spanU_k^0 \cup U_k^1$ then for any e_l , $e_i e_l$ and $e_j e_l$ are not in $span_{m \neq k, a\{0,1\}} U_m^a$, all the other conditions are satisfied by Pudlak Rodl Construction
- Modify the branching program so that no two edges which share an end vertex query variables from the same partition
- This can be done by blowing up the size of the given branching program by a factor of at most 4.

- Excpet for, If $e_i e_j \in spanU_k^0 \cup U_k^1$ then for any e_l , $e_i e_l$ and $e_j e_l$ are not in $span_{m \neq k, a\{0,1\}} U_m^a$, all the other conditions are satisfied by Pudlak Rodl Construction
- Modify the branching program so that no two edges which share an end vertex query variables from the same partition
- This can be done by blowing up the size of the given branching program by a factor of at most 4.

- Excpet for, If $e_i e_j \in spanU_k^0 \cup U_k^1$ then for any e_l , $e_i e_l$ and $e_j e_l$ are not in $span_{m \neq k, a\{0,1\}} U_m^a$, all the other conditions are satisfied by Pudlak Rodl Construction
- Modify the branching program so that no two edges which share an end vertex query variables from the same partition
- This can be done by blowing up the size of the given branching program by a factor of at most 4.



Theorem

$$\mathsf{bitpdim}(f) \le d(n) \implies \mathsf{bpsize}(f) \le (d(n))^6$$

Proof.

- We describe a space bounded algorithm which given the bitpdim assignment as an advice, and two inputs (x,y) computes whether f(x,y) = 1.
- implicit G, vertices standard basis vectors in ϕ , $(u, v) \in E(G^*)$ iff $e_u e_v \in U_i^{x_i}$ or $V_i^{y_j}$.
- Argue that any linear dependence in $span\{\phi(x)\cup\phi(y)\}$ is a cycle in G^* .
- Coordinate-wise disjointedness of the basis vectors constituting $U_i^{x_i}$ and $U_i^{x_j}$ ensure that there is no cycle involving just edges from H_x

Theorem

$$\mathsf{bitpdim}(f) \le d(n) \implies \mathsf{bpsize}(f) \le (d(n))^6$$

Proof.

- We describe a space bounded algorithm which given the bitpdim assignment as an advice, and two inputs (x,y) computes whether f(x,y) = 1.
- implicit G, vertices standard basis vectors in ϕ , $(u, v) \in E(G^*)$ iff $e_u e_v \in U_i^{x_i}$ or $V_i^{y_j}$.
- Argue that any linear dependence in $span\{\phi(x)\cup\phi(y)\}$ is a cycle in G^* .
- Coordinate-wise disjointedness of the basis vectors constituting $U_i^{x_i}$ and $U_i^{x_j}$ ensure that there is no cycle involving just edges from H_x

Theorem

$$\mathsf{bitpdim}(f) \le d(n) \implies \mathsf{bpsize}(f) \le (d(n))^6$$

Proof.

- We describe a space bounded algorithm which given the bitpdim assignment as an advice, and two inputs (x,y) computes whether f(x,y) = 1.
- implicit G, vertices standard basis vectors in ϕ , $(u, v) \in E(G^*)$ iff $e_u e_v \in U_i^{x_i}$ or $V_i^{y_j}$.
- Argue that any linear dependence in $span\{\phi(x)\cup\phi(y)\}$ is a cycle in G^* .
- Coordinate-wise disjointedness of the basis vectors constituting $U_i^{x_i}$ and $U_i^{x_j}$ ensure that there is no cycle involving just edges from H_x

Theorem

$$\mathsf{bitpdim}(f) \le d(n) \implies \mathsf{bpsize}(f) \le (d(n))^6$$

Proof.

- We describe a space bounded algorithm which given the bitpdim assignment as an advice, and two inputs (x,y) computes whether f(x,y) = 1.
- implicit G, vertices standard basis vectors in ϕ , $(u, v) \in E(G^*)$ iff $e_u e_v \in U_i^{x_i}$ or $V_i^{y_j}$.
- Argue that any linear dependence in $span\{\phi(x)\cup\phi(y)\}$ is a cycle in G^* .
- Coordinate-wise disjointedness of the basis vectors constituting $U_i^{x_i}$ and $U_i^{x_j}$ ensure that there is no cycle involving just edges from H_x

Theorem

$$\mathsf{bitpdim}(f) \le d(n) \implies \mathsf{bpsize}(f) \le (d(n))^6$$

Proof.

- implicit G, vertices standard basis vectors in ϕ , $(u, v) \in E(G^*)$ iff $e_u e_v \in U_i^{x_i}$ or $V_i^{y_j}$.
- f(x,y) = 1 iff there is a cycle in G^*
- check for a cycle in G^* . Can be done in space $5 \log |G^*|$
- $|G^*| = bitpdim(f)$.

Theorem

$$\mathsf{bitpdim}(f) \le d(n) \implies \mathsf{bpsize}(f) \le (d(n))^6$$

Proof.

- implicit G, vertices standard basis vectors in ϕ , $(u, v) \in E(G^*)$ iff $e_u e_v \in U_i^{x_i}$ or $V_i^{y_j}$.
- f(x,y) = 1 iff there is a cycle in G^*
- check for a cycle in G^* . Can be done in space $5 \log |G^*|$
- $|G^*| = bitpdim(f)$.

Theorem

$$\mathsf{bitpdim}(f) \le d(n) \implies \mathsf{bpsize}(f) \le (d(n))^6$$

Proof.

- implicit G, vertices standard basis vectors in ϕ , $(u, v) \in E(G^*)$ iff $e_u e_v \in U_i^{x_i}$ or $V_i^{y_j}$.
- f(x,y) = 1 iff there is a cycle in G^*
- check for a cycle in G^* . Can be done in space $5 \log |G^*|$
- $|G^*| = bitpdim(f)$.

Theorem

$$\mathsf{bitpdim}(f) \le d(n) \implies \mathsf{bpsize}(f) \le (d(n))^6$$

Proof.

- implicit G, vertices standard basis vectors in ϕ , $(u, v) \in E(G^*)$ iff $e_u e_v \in U_i^{x_i}$ or $V_i^{y_j}$.
- f(x,y) = 1 iff there is a cycle in G^*
- check for a cycle in G^* . Can be done in space $5 \log |G^*|$
- $|G^*| = bitpdim(f)$.

- The best bitpdim lower bound we get from the best known branching programs lower bounds is only sub-linear
- The best known pd lower bound is linear
- Can we get a super-linear lower bound ?
- Yes, but the proof we could come up with relies on using Nechiporuk's method

- The best bitpdim lower bound we get from the best known branching programs lower bounds is only sub-linear
- The best known pd lower bound is linear
- Can we get a super-linear lower bound ?
- Yes, but the proof we could come up with relies on using Nechiporuk's method

- The best bitpdim lower bound we get from the best known branching programs lower bounds is only sub-linear
- The best known pd lower bound is linear
- Can we get a super-linear lower bound ?
- Yes, but the proof we could come up with relies on using Nechiporuk's method

- The best bitpdim lower bound we get from the best known branching programs lower bounds is only sub-linear
- The best known pd lower bound is linear
- Can we get a super-linear lower bound ?
- Yes, but the proof we could come up with relies on using Nechiporuk's method

Recall the function ED.

- $ED_m: \{0,1\}^{n=m2\log m} \to \{0,1\}$
- m inputs x_1, \ldots, x_m each representing a number in $[m^2]$
- $f(x_1,...,x_m)=1$ iff no two x_i,x_j are equal
- Let $U_1^0, U_1^1, \dots, U_{m/2 \times 2\log m}^0, U_{m/2 \times 2\log m}^1$ and $V_1^0, V_1^1, \dots, V_{m/2 \times 2\log m}^0, V_{m/2 \times 2\log m}^1$ be a bitwise assignment for ED_m
- ullet For $1 \leq i \leq m/2$ let $d_i = \dim span\left\{U_j^b\right\}_{j ext{is a bit of } x_i, b \in \{0,1\}}$
- We will show that $d_i = \Omega(n/\log n)$, thus $d = \sum_{i=1}^{m/2} d_i = \Omega(\frac{n^2}{2\log n})$. as the subspace constituting the left are disjoint.
- Let $\rho: \{0,1\}^{n=m2\log m} \to \{0,1,*\}$ be a restriction that fixes all the bit except the $2\log m$ bits representing x_i . Also $\mathrm{ED}_m \mid_{\rho}$ is not a constant function.

◆□ → ◆□ → ◆□ → □ → ○○○

Recall the function ED.

- $ED_m: \{0,1\}^{n=m2\log m} \to \{0,1\}$
- m inputs x_1, \ldots, x_m each representing a number in $[m^2]$
- $f(x_1,...,x_m) = 1$ iff no two x_i,x_j are equal
- Let $U_1^0, U_1^1, \dots, U_{m/2 \times 2\log m}^0, U_{m/2 \times 2\log m}^1$ and $V_1^0, V_1^1, \dots, V_{m/2 \times 2\log m}^0, V_{m/2 \times 2\log m}^1$ be a bitwise assignment for ED_m
- ullet For $1 \leq i \leq m/2$ let $d_i = \dim span\left\{U_j^b
 ight\}_{j ext{is a bit of } x_i, b \in \{0,1\}}$
- We will show that $d_i = \Omega(n/\log n)$, thus $d = \sum_{i=1}^{m/2} d_i = \Omega(\frac{n^2}{2\log n})$. as the subspace constituting the left are disjoint.
- Let $\rho: \{0,1\}^{n=m2\log m} \to \{0,1,*\}$ be a restriction that fixes all the bit except the $2\log m$ bits representing x_i . Also $\mathrm{ED}_m \mid_{\rho}$ is not a constant function.

4□ > 4□ > 4□ > 4□ > □
900

- Recall the function ED.
 - $ED_m: \{0,1\}^{n=m2\log m} \to \{0,1\}$
 - m inputs $x_1, ..., x_m$ each representing a number in $[m^2]$
 - $f(x_1,...,x_m)=1$ iff no two x_i,x_i are equal
- Let $U_1^0, U_1^1, \ldots, U_{m/2 \times 2\log m}^0, U_{m/2 \times 2\log m}^1$ and $V_1^0, V_1^1, \ldots, V_{m/2 \times 2\log m}^0, V_{m/2 \times 2\log m}^1$ be a bitwise assignment for ED_m
- ullet For $1 \leq i \leq m/2$ let $d_i = \dim span\left\{U_j^b
 ight\}_{j ext{is a bit of } x_i, b \in \{0,1\}}$
- We will show that $d_i = \Omega(n/\log n)$, thus $d = \sum_{i=1}^{m/2} d_i = \Omega(\frac{n^2}{2\log n})$. as the subspace constituting the left are disjoint.
- Let $\rho: \{0,1\}^{n=m2\log m} \to \{0,1,*\}$ be a restriction that fixes all the bit except the $2\log m$ bits representing x_i . Also $\mathrm{ED}_m \mid_{\rho}$ is not a constant function.

4□ → 4回 → 4 = → 4 = → 9 < 0</p>

- Recall the function ED.
 - $ED_m: \{0,1\}^{n=m2\log m} \to \{0,1\}$
 - m inputs $x_1, ..., x_m$ each representing a number in $[m^2]$
 - $f(x_1,...,x_m) = 1$ iff no two x_i,x_j are equal
- Let $U_1^0, U_1^1, \ldots, U_{m/2 \times 2\log m}^0, U_{m/2 \times 2\log m}^1$ and $V_1^0, V_1^1, \ldots, V_{m/2 \times 2\log m}^0, V_{m/2 \times 2\log m}^1$ be a bitwise assignment for ED_m
- ullet For $1 \leq i \leq m/2$ let $d_i = \dim span\left\{U_j^b
 ight\}_{j ext{ is a bit of } x_i, b \in \{0,1\}}$
- We will show that $d_i = \Omega(n/\log n)$, thus $d = \sum_{i=1}^{m/2} d_i = \Omega(\frac{n^2}{2\log n})$. as the subspace constituting the left are disjoint.
- Let $\rho: \{0,1\}^{n=m2\log m} \to \{0,1,*\}$ be a restriction that fixes all the bit except the $2\log m$ bits representing x_i . Also $\mathrm{ED}_m \mid_{\rho}$ is not a constant function.

- Recall the function ED.
 - $ED_m: \{0,1\}^{n=m2\log m} \to \{0,1\}$
 - m inputs $x_1, ..., x_m$ each representing a number in $[m^2]$
 - $f(x_1,...,x_m) = 1$ iff no two x_i,x_i are equal
- Let $U_1^0, U_1^1, \dots, U_{m/2 \times 2\log m}^0, U_{m/2 \times 2\log m}^1$ and $V_1^0, V_1^1, \dots, V_{m/2 \times 2\log m}^0, V_{m/2 \times 2\log m}^1$ be a bitwise assignment for ED_m .
- ullet For $1 \leq i \leq m/2$ let $d_i = \dim span\left\{U_j^b
 ight\}_{j ext{is a bit of } x_i, b \in \{0,1\}}$
- We will show that $d_i = \Omega(n/\log n)$, thus $d = \sum_{i=1}^{m/2} d_i = \Omega(\frac{n^2}{2\log n})$. as the subspace constituting the left are disjoint.
- Let $\rho: \{0,1\}^{n=m2\log m} \to \{0,1,*\}$ be a restriction that fixes all the bit except the $2\log m$ bits representing x_i . Also $\mathrm{ED}_m \mid_{\rho}$ is not a constant function.

4□ > 4□ > 4□ > 4□ > 4□ > 900

- Recall the function ED.
 - $ED_m: \{0,1\}^{n=m2\log m} \to \{0,1\}$
 - m inputs $x_1, ..., x_m$ each representing a number in $[m^2]$
 - $f(x_1,...,x_m) = 1$ iff no two x_i,x_i are equal
- Let $U_1^0, U_1^1, \ldots, U_{m/2 \times 2\log m}^0, U_{m/2 \times 2\log m}^1$ and $V_1^0, V_1^1, \ldots, V_{m/2 \times 2\log m}^0, V_{m/2 \times 2\log m}^1$ be a bitwise assignment for ED_m .
- ullet For $1 \leq i \leq m/2$ let $d_i = \dim span\left\{U_j^b
 ight\}_{j ext{is a bit of } x_i, b \in \{0,1\}}$
- We will show that $d_i = \Omega(n/\log n)$, thus $d = \sum_{i=1}^{m/2} d_i = \Omega(\frac{n^2}{2\log n})$. as the subspace constituting the left are disjoint.
- Let $\rho: \{0,1\}^{n=m2\log m} \to \{0,1,*\}$ be a restriction that fixes all the bit except the $2\log m$ bits representing x_i . Also $\mathrm{ED}_m \mid_{\rho}$ is not a constant function.

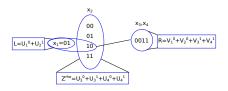
4□ > 4□ > 4□ > 4□ > 4□ > 900

- Recall the function ED.
 - $ED_m: \{0,1\}^{n=m2\log m} \to \{0,1\}$
 - m inputs $x_1, ..., x_m$ each representing a number in $[m^2]$
 - $f(x_1,...,x_m) = 1$ iff no two x_i,x_i are equal
- Let $U_1^0, U_1^1, \dots, U_{m/2 \times 2\log m}^0, U_{m/2 \times 2\log m}^1$ and $V_1^0, V_1^1, \dots, V_{m/2 \times 2\log m}^0, V_{m/2 \times 2\log m}^1$ be a bitwise assignment for ED_m .
- ullet For $1 \leq i \leq m/2$ let $d_i = \dim span\left\{U_j^b
 ight\}_{j ext{is a bit of } x_i, b \in \{0,1\}}$
- We will show that $d_i = \Omega(n/\log n)$, thus $d = \sum_{i=1}^{m/2} d_i = \Omega(\frac{n^2}{2\log n})$. as the subspace constituting the left are disjoint.
- Let $\rho: \{0,1\}^{n=m2\log m} \to \{0,1,*\}$ be a restriction that fixes all the bit except the $2\log m$ bits representing x_i . Also $\mathrm{ED}_m \mid_{\rho}$ is not a constant function.

メロト (個) (注) (注) (注) (2) (2)

- Recall the function ED.
 - $ED_m: \{0,1\}^{n=m2\log m} \to \{0,1\}$
 - m inputs $x_1, ..., x_m$ each representing a number in $[m^2]$
 - $f(x_1,...,x_m)=1$ iff no two x_i,x_i are equal
- Let $U_1^0, U_1^1, \dots, U_{m/2 \times 2\log m}^0, U_{m/2 \times 2\log m}^1$ and $V_1^0, V_1^1, \dots, V_{m/2 \times 2\log m}^0, V_{m/2 \times 2\log m}^1$ be a bitwise assignment for ED_m .
- ullet For $1 \leq i \leq m/2$ let $d_i = \dim span\left\{U_j^b
 ight\}_{j ext{is a bit of } x_i, b \in \{0,1\}}$
- We will show that $d_i = \Omega(n/\log n)$, thus $d = \sum_{i=1}^{m/2} d_i = \Omega(\frac{n^2}{2\log n})$. as the subspace constituting the left are disjoint.
- Let $\rho: \{0,1\}^{n=m2\log m} \to \{0,1,*\}$ be a restriction that fixes all the bit except the $2\log m$ bits representing x_i . Also $\mathrm{ED}_m \mid_{\rho}$ is not a constant function.

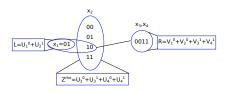
$ED_{m=2}(x_1,x_2,x_3,x_4)$ rho=(1,*,0,3)



- Since ρ doesn't make the function constant $L \cap R = \{0\}$.
- Replace R with $\Pi_{Z^p}(R)$, that is project away L from R
- On the left side consider only vectors from Z^{ρ}
- For two different restrictions say ρ_1 and ρ_2 both of which fixes everything but bits of x_i , $Z^{\rho_1} = Z^{\rho_2}$ and the assignment on the left is the same.
- Thus the only thing that changes is $\Pi_{Z^p}(R)$.
- Let $S = \{e_u e_v | e_u e_v \in Z^{\rho}\}$. We show that there exist $S' \subseteq S$ s.t. $\Pi_{Z^{\rho}}(R) = span\{S'\}$.

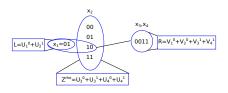
Sajin Koroth (joint work with Krishnamo BP lower bounds via Projective Dimensio Technion, 2016 21 / 23

 $ED_{m=2}(x_1,x_2,x_3,x_4)$ rho=(1,*,0,3)

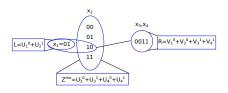


- Since ρ doesn't make the function constant $L \cap R = \{0\}$.
- Replace R with $\Pi_{Z^p}(R)$, that is project away L from R
- On the left side consider only vectors from Z^{ρ}
- For two different restrictions say ρ_1 and ρ_2 both of which fixes everything but bits of x_i , $Z^{\rho_1} = Z^{\rho_2}$ and the assignment on the left is the same.
- Thus the only thing that changes is $\Pi_{Z^p}(R)$.
- Let $S = \{e_u e_v | e_u e_v \in Z^{\rho}\}$. We show that there exist $S' \subseteq S$ s.t. $\Pi_{Z^{\rho}}(R) = span\{S'\}$.

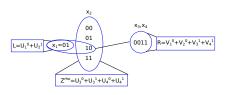
 $ED_{m=2}(x_1,x_2,x_3,x_4)$ rho=(1.*.0.3)



- Since ρ doesn't make the function constant $L \cap R = \{0\}$.
- Replace R with $\Pi_{Z^p}(R)$, that is project away L from R
- On the left side consider only vectors from Z^{ρ}
- For two different restrictions say ρ_1 and ρ_2 both of which fixes
- Thus the only thing that changes is $\Pi_{ZP}(R)$.
- Let $S = \{e_{ii} e_{v} | e_{ii} e_{v} \in Z^{\rho}\}$. We show that there exist $S' \subseteq S$ s.t.

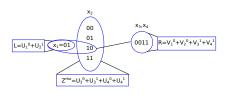


- Since ρ doesn't make the function constant $L \cap R = \{0\}$.
- Replace R with $\Pi_{Z^p}(R)$, that is project away L from R
- ullet On the left side consider only vectors from $Z^
 ho$
- For two different restrictions say ρ_1 and ρ_2 both of which fixes everything but bits of x_i , $Z^{\rho_1} = Z^{\rho_2}$ and the assignment on the left is the same.
- Thus the only thing that changes is $\Pi_{Z^p}(R)$.
- Let $S = \{e_u e_v | e_u e_v \in Z^{\rho}\}$. We show that there exist $S' \subseteq S$ s.t. $\Pi_{Z^{\rho}}(R) = span\{S'\}$.



- Since ρ doesn't make the function constant $L \cap R = \{0\}$.
- Replace R with $\Pi_{Z^p}(R)$, that is project away L from R
- ullet On the left side consider only vectors from $Z^
 ho$
- For two different restrictions say ρ_1 and ρ_2 both of which fixes everything but bits of x_i , $Z^{\rho_1} = Z^{\rho_2}$ and the assignment on the left is the same.
- Thus the only thing that changes is $\Pi_{Z^{\rho}}(R)$.
- Let $S = \{e_u e_v | e_u e_v \in Z^{\rho}\}$. We show that there exist $S' \subseteq S$ s.t. $\Pi_{Z^{\rho}}(R) = span\{S'\}$.

 $ED_{m=2}(x_1,x_2,x_3,x_4)$ rho=(1,*,0,3)



- Since ρ doesn't make the function constant $L \cap R = \{0\}$.
- Replace R with $\Pi_{Z^p}(R)$, that is project away L from R
- ullet On the left side consider only vectors from $Z^{
 ho}$
- For two different restrictions say ρ_1 and ρ_2 both of which fixes everything but bits of x_i , $Z^{\rho_1} = Z^{\rho_2}$ and the assignment on the left is the same.
- Thus the only thing that changes is $\Pi_{Z^{\rho}}(R)$.
- Let $S = \{e_u e_v | e_u e_v \in Z^{\rho}\}$. We show that there exist $S' \subseteq S$ s.t. $\Pi_{Z^{\rho}}(R) = span\{S'\}$.

Can we come up with a super-linear lower bound which doesn't use Nechiporuk's method

- Nechiporuk's method cannot prove better than n^2 .
- Sub-function count bottleneck : Let ρ fix n-k bits of the n bits of a function. The number of different sub functions is $\min 2^{n-k}, 2^{2^k}$.
- Element Distinctness has an n^2 sized branching program
- A candidate function: Given two d × d matrices A, B, f(A, B) = 1 iff and only rowspace (A) ∩ rowspace (B) ≠ {0}
- Not believed to be in L, but is in P
- Projective dimension of this function is just d, which is sub-linear in input size
- One can prove super linear bitpdim lower bounds for this function using Nechiporuk's method. But we would like to prove a super linear lower bound using a purely algebraic method.

- Can we come up with a super-linear lower bound which doesn't use Nechiporuk's method
 - Nechiporuk's method cannot prove better than n^2 .
 - Sub-function count bottleneck : Let ρ fix n-k bits of the n bits of a function. The number of different sub functions is $\min 2^{n-k}, 2^{2^k}$.
 - Element Distinctness has an n^2 sized branching program
- A candidate function: Given two d × d matrices A, B, f(A, B) = 1 iff and only rowspace (A) ∩ rowspace (B) ≠ {0}
- Not believed to be in L, but is in P
- Projective dimension of this function is just d, which is sub-linear in input size
- One can prove super linear bitpdim lower bounds for this function using Nechiporuk's method. But we would like to prove a super linear lower bound using a purely algebraic method.

- Can we come up with a super-linear lower bound which doesn't use Nechiporuk's method
 - Nechiporuk's method cannot prove better than n^2 .
 - Sub-function count bottleneck : Let ρ fix n-k bits of the n bits of a function. The number of different sub functions is min 2^{n-k} , 2^{2^k} .
 - Element Distinctness has an n^2 sized branching program
- A candidate function : Given two $d \times d$ matrices A, B, f(A, B) = 1 iff and only rowspace $(A) \cap \text{rowspace}(B) \neq \{0\}$
- Not believed to be in L, but is in P
- Projective dimension of this function is just d, which is sub-linear in input size
- One can prove super linear bitpdim lower bounds for this function using Nechiporuk's method. But we would like to prove a super linear lower bound using a purely algebraic method.

- Can we come up with a super-linear lower bound which doesn't use Nechiporuk's method
 - Nechiporuk's method cannot prove better than n^2 .
 - Sub-function count bottleneck : Let ρ fix n-k bits of the n bits of a function. The number of different sub functions is $\min 2^{n-k}, 2^{2^k}$.
 - Element Distinctness has an n^2 sized branching program
- A candidate function : Given two $d \times d$ matrices A, B, f(A, B) = 1 iff and only rowspace $(A) \cap \text{rowspace}(B) \neq \{0\}$
- Not believed to be in L, but is in P
- Projective dimension of this function is just d, which is sub-linear in input size
- One can prove super linear bitpdim lower bounds for this function using Nechiporuk's method. But we would like to prove a super linear lower bound using a purely algebraic method.

- Can we come up with a super-linear lower bound which doesn't use Nechiporuk's method
 - Nechiporuk's method cannot prove better than n^2 .
 - Sub-function count bottleneck : Let ρ fix n-k bits of the n bits of a function. The number of different sub functions is min 2^{n-k} , 2^{2^k} .
 - Element Distinctness has an n^2 sized branching program
- A candidate function: Given two d × d matrices A, B, f(A, B) = 1 iff and only rowspace (A) ∩ rowspace (B) ≠ {0}
- Not believed to be in L, but is in P
- Projective dimension of this function is just d, which is sub-linear in input size
- One can prove super linear bitpdim lower bounds for this function using Nechiporuk's method. But we would like to prove a super linear lower bound using a purely algebraic method.

- Can we come up with a super-linear lower bound which doesn't use Nechiporuk's method
 - Nechiporuk's method cannot prove better than n^2 .
 - Sub-function count bottleneck : Let ρ fix n-k bits of the n bits of a function. The number of different sub functions is min 2^{n-k} , 2^{2^k} .
 - Element Distinctness has an n^2 sized branching program
- A candidate function : Given two $d \times d$ matrices A, B, f(A, B) = 1 iff and only rowspace $(A) \cap \text{rowspace}(B) \neq \{0\}$
- Not believed to be in L, but is in P
- Projective dimension of this function is just d, which is sub-linear in input size
- One can prove super linear bitpdim lower bounds for this function using Nechiporuk's method. But we would like to prove a super linear lower bound using a purely algebraic method.

- Can we come up with a super-linear lower bound which doesn't use Nechiporuk's method
 - Nechiporuk's method cannot prove better than n^2 .
 - Sub-function count bottleneck : Let ρ fix n-k bits of the n bits of a function. The number of different sub functions is $\min 2^{n-k}, 2^{2^k}$.
 - Element Distinctness has an n^2 sized branching program
- A candidate function : Given two $d \times d$ matrices A, B, f(A, B) = 1 iff and only rowspace $(A) \cap \text{rowspace}(B) \neq \{0\}$
- Not believed to be in L, but is in P
- Projective dimension of this function is just d, which is sub-linear in input size
- One can prove super linear bitpdim lower bounds for this function using Nechiporuk's method. But we would like to prove a super linear lower bound using a purely algebraic method.

- Can we come up with a super-linear lower bound which doesn't use Nechiporuk's method
 - Nechiporuk's method cannot prove better than n^2 .
 - Sub-function count bottleneck : Let ρ fix n-k bits of the n bits of a function. The number of different sub functions is $\min 2^{n-k}, 2^{2^k}$.
 - Element Distinctness has an n^2 sized branching program
- A candidate function : Given two $d \times d$ matrices A, B, f(A, B) = 1 iff and only rowspace $(A) \cap \text{rowspace}(B) \neq \{0\}$
- Not believed to be in L, but is in P
- Projective dimension of this function is just d, which is sub-linear in input size
- One can prove super linear bitpdim lower bounds for this function using Nechiporuk's method. But we would like to prove a super linear lower bound using a purely algebraic method.

Thank You

Q Questions?

