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Modal Propositional Logic 

1. I N T R O D U C T I O N 

In this book we undertook — among other things — to show how metaphysical talk of possible worlds 
and propositions can be used to make sense of the science of deductive logic. In chapter 1, we used that 
talk to explicate such fundamental logical concepts as those of contingency, noncontingency, 
implication, consistency, inconsistency, and the like. Next, in chapter 2, while resisting the attempt to 
identify propositions with sets of possible worlds, we suggested that identity-conditions for the 
constituents of propositions (i.e., for concepts), can be explicated by making reference to possible 
worlds and showed, further, how appeal to possible worlds can help us both to disambiguate 
proposition-expressing sentences and to refute certain false theories. In chapter 3 we argued the 
importance of distinguishing between, on the one hand, the modal concepts of the contingent and the 
noncontingent (explicable in terms of possible worlds) and, on the other hand, the epistemic concepts of 
the empirical and the a priori (not explicable in terms of possible worlds). In chapter 4 we showed how 
the fundamental methods of logic — analysis and valid inference — are explicable in terms of possible 
worlds and argued for the centrality within logic as a whole of modal logic in general and S5 in 
particular. Then, in chapter 5, we tried to make good our claim that modal concepts are needed in 
order to make sound philosophical sense even of that kind of propositional logic — truth-functional 
logic — from which they seem conspicuously absent. Now in this, our last chapter, we concentrate our 
attention on the kind of propositional logic — modal propositional logic — within which modal 
concepts feature overtly. Among other things, we try to show: (1) how various modal concepts are 
interdefinable with one another; (2) how the validity of any formula within modal propositional logic 
may be determined by the method of worlds-diagrams and by related reductio methods; and finally, 
(3), how talk of possible worlds, when suitably elaborated, enables us to make sense of some of the 
central concepts of inductive logic. 

2. M O D A L O P E R A T O R S 

Non-truth-functionality 

The rules for well-formedness in modal propositional logic may be obtained by supplementing the 
rules (see p. 262) for truth-functional logic by the following: 
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324 M O D A L PROPOSITIONAL LOGIC 

R4: Any wff prefixed by a monadic modal sentential operator [e.g., 
"0", "V", or "A"] is a wff. 

R5: Any two wffs written with a dyadic modal operator [e.g., "o", 
"—»", or "<—•"] between them and the whole surrounded by 

parentheses is a wff. 

In light of these rules, it is obvious that from a formal point of view, modal propositional logic may be 
regarded as an accretion upon truth-functional logic: every wff of truth-functional propositional logic is 
likewise a wff of modal propositional logic, although there are wffs of modal propositional logic — 
those containing one or more modal operators — which are not wffs of truth-functional logic. (That 
modal propositional logic is formally constructed by adding onto a truth-functional base ought not, 
however, to be taken as indicating a parallel order as regards their conceptual priority. We have 
argued earlier in this book (chapters 4 and 5) that although modal concepts are not symbolized within 
truth-functional logic, one cannot adequately understand that logic without presupposing these very 
concepts.) 

Modal operators are non-truth-functional. For example, the monadic operator "0", unlike the 
truth-functional operator is non-truth-functional. Given the truth-value of P, one cannot, in 
general, determine the truth-value of the proposition expressed by the compound sentence "OP", as 
one could in the case of "~P". Obviously if "P" expresses a true proposition, then "OP" must 
likewise express a true proposition. For "OP" says nothing more than that the proposition expressed 

P OP : D P • V P • A P 

T T ] I * i 
• 

\ I 

F I . F . i . I 

P Q P o Q : P 4> Q P Q * P - M - Q 

T T T • F ' I ' I 

T F I I F F 

F T I • I ' I ! F 

F F I I I I 

T A B L E (6.a)> 

Beware. Do not read the "I" which appears on these tables as if it were a 'third' 
truth-value. There are only two truth-values. Clearly, for every instantiation of 
constants for the variables in these sentence-forms, the resulting sentences will express 
propositions which bear one or other of the two truth-values, truth or falsity. 
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by " P " is true in some possible wor ld , and if P is true, then it is true i n some possible world. But the 
same can not be concluded for the case in which " P " expresses a falsehood. Suppose " P " expresses a 
false proposition. W h a t , then, can we conclude about the truth-value of the proposition expressed 
by " O P " ? T h i s latter formula asserts that the proposition expressed by " P " is true i n some possible 
wor ld . T h i s c laim is true just i n case the false proposition expressed by " P " is true i n some possible 
world , i.e., just in case the false proposition, P , is contingent. But the proposition expressed by " O P " 
is false just in case the false proposition expressed by " P " is false in every possible world, i.e., just in 
case the false proposition P is noncontingent. T h u s whether the proposition expressed by " O P " is 
false depends not simply on whether the proposition expressed by " P " is false, but in addition on 
whether that false proposition is contingent or noncontingent. It depends, that is, on the modality as 
well as the truth-value of P. T h i s means that " O P " has a partial truth-table. In the case where " P " 
has been assigned " T " , " O P " likewise is assigned " T " ; but in the case where " P " is assigned " F " , 
neither " T " nor " F " may be assigned to " O P " . W e fi l l i n the gap with " I " , ' where " I " stands for "the 
truth-value is indeterminate on the basis of the data (i.e., truth-value) specified." L i k e " 0 " , every 
other modal operator w i l l have only (at best) a partial truth-table. 

It suffices for an operator to be non-truth-functional that there be a single " I " in its truth-table. 
A n important consequence of the fact that modal operators are non-truth-functional is that we w i l l 

be unable — i n contrast to the case of wffs in truth-functional logic — to ascertain the validity of 
modalized formulae by the truth-tabular techniques discussed in the previous chapter. H o w we might, 
instead, evaluate formulae containing modal operators is shown in sections 8 and 9. 

Modal and nonmodal propositions; modalized and nonmodalized formulae 

A n y proposition at least one of whose constituent concepts is a modal concept is a modal proposition. 
A l l other propositions are nonmodal. 

A n y modal proposition can be represented in our conceptual notation by a wff containing one or 
more modal operators, e.g., " • " , " 0 " , etc. But of course a modal proposition need not be so 
represented. A modal proposition can also be represented in our symbolism by a wff containing no 
modal operators, e.g., by " A " , or in the case of a conditional modal proposition, by " A D B " . In such a 
case the symbolism would fail to reveal as much as it could, viz. , that a particular proposition is a 
modal one. But this is a characteristic of any system of symbolization. Every system of symbolization 
has the capacity to reveal different degrees of detail about that which it symbolizes. W e have already 
seen, for example, how it is possible to symbolize the proposition (5.75), viz. , that today is M o n d a y or 
today is other than the day after Sunday, as either " A V ^ A " or as " A V B " . T h e latter symbolization 
reveals less information than the former, but neither is more or less 'correct' than the other. 

A similar point can be made in the case of the symbolization of modal attributes. Consider the 
proposition 

(6.1) It is necessarily true that al l squares have four sides. 

Clearly (6.1) is a modal proposition. T h u s if we let " A " = " a l l squares have four sides", we can 
render this proposition i n symbolic notation as 

(6.2) " D A " . 

But we are not forced to do this. If for some reason we are not intent on conveying in symbols that 
(6.1) is a modal proposition, we can, i f we l ike, represent it simply as, for example, 

(6.3) " B " . 
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Thus if we happen across a wff which does not contain a modal operator, we are not entitled to infer 
that the proposition represented by that wff is a nonmodal one. Being represented by a wff containing 
a modal operator is a sufficient condition for the proposition expressed being a modal one, but it is not 
a necessary condition. 

A wff whose simple sentential components, i.e., capital letters, all occur as the arguments of or 
within the arguments of some modal operator or other will be said to be fully modalized. Thus, for 
example, the wffs 

"OP O DP", 

"<>• ~ P", and 

"0(P - DQ)", 

are all fully modalized. 
A wff of whose simple sentential components some, but not all, occur as the arguments of or within 

the arguments of some modal operator or other will be said to be partially modalized. For example, 

"OP 3 P", 
"P 3 • (PvQ)" , and 

" • P v (OQ n R)", 
are all partially modalized. 

A wff of whose simple sentential components none occurs as the argument of or within the argument 
of a modal operator will be said to be unmodalized. For example, 

"P o P", 

" P - ( P D Q)", and 

<cp>> 

are all unmodalized. 
Note that on these definitions, propositions, but not sentences, may be said to be modal; and 

sentences or sentence-forms, but not propositions, may be said to be moAzMzed. 

EXERCISES 

Write down all the forms of each of the following modalized formulae: 

1. OAD B 

2. a(AoOB) 

3. O (A D DA) 

4. oaA 3 aA 
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The interdefinability of the monadic and dyadic modal operators 

We have introduced four monadic modal operators, viz., "0", "V" and "A", and four dyadic 
modal operators, viz., "o", "<t>", "—»" and "<->". Each of these may be defined in terms of any one of 
the other seven. There are, then, a total of fifty-six such definitions. Some of these we have already 
seen; others are new. We list them all here for the sake of completeness. 

Necessary truth 

df -vO-^P" 

<v VP • P" 

AP • P" 

^(%Po% P)" 

-v,p <l> ^ P " 

^ p — P" 

( P V ^ P ) « P" 

Contingency 

"VP" = df 

Possibility 

OP" = 

Noncontingency 

" ^ • P . ^ P " " A P " = 

"OP - 0-^P" 
"-vAP" 

"(P o P) . ( ̂  P o ^ P)" 

"^ (P <t> P)- < ^ P o ^P)" 
"^(P — ^ P ) . ̂ ( - v P _ P)" 

"M (P - - P ) « P ] . ~[(P V - v P ) „ P ] " 

df 

" - v D ^ P " 

"VP V P" 

" - v A P v P" 

"P o P" 

"-v(P4>P)" 

"-v[(P. ^P) P]" 

' • P V • -vP" 

'-v OP V ^ 0 ~ P " 

' ^ V P " 

\ ( P o P ) V -v(^Po -vP)" 

'(P 4> P) V ( ̂  P <t> ^ P)" 

'(P — ^ P) V ( ̂  P — P)" 

'[(P . ^ P ) „ P ] V | ( P V ^ P ) ~ P ] ' ! 

Consistency 

"P°Q" = df ' ~ D ~ ( P . Q ) " 

'O (P -Q)" 

V ( P . Q ) V ( P . Q ) " 

« ~ A ( P . Q ) v ( P . Q ) " 

' - (P«> QJ" 

'M (P- - v P ) ^ ( P . Q ) ] " 

Inconsistency 

"P«>Q" = ' • - ( P - Q ) " 

' - O ( P - Q ) " 
' - vV(P .Q) . ~(P .Q)" 

'A(P-Q)- -v(P.Q)" 

' - ( P o Q ) " 

' P ^ - Q " 

<(P- - P ) ~ ( P - Q J " 
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Implication Equivalence 

P _ Q " = D F " D ( P D Q J " 

" - 0 ( P - - Q ) 

P ~ Q " = df ' • ( P - Q T 

0 ~ ( P = Q ) " 

^ v ( P - Q ) . ( P - Q ) " 

• A ( P - Q ) . ( P - Q ) " 

- [ - ( P - Q ) o - v - (P -Q ) ] " 

• M P - Q ) * M P - Q ) " 

(P - Q ) • (Q - P ) " 

V - ( P - - Q ) . ^ ( P . ^ Q ) 

; A ^ ( P . ^ Q ) • -x,(P. ^ Q ) » 

; - ( P ° - Q ) " 

(P 4> - Q J " 

( P . ^ P ) M ( P . - Q ) " 

Fo r every wff in which there occurs some particular modal operator, there exist other, formally 
equivalent wffs, 1 in which that modal operator does not occur. M o r e particularly, for every wff in 
which there occur one or more dyadic modal operators, there exist formally equivalent wffs in which 
only monadic modal operators occur. Thus , subsequently in this chapter, when we come to examine 
methods for determining the validity of modalized wffs, it w i l l suffice to give rules for handling only 
monadic modal operators. Every wff containing one or more dyadic modal operators can be replaced, 
for the purposes of testing validity, w i th a formally equivalent wff containing only monadic modal 
operators. The above list of equivalences gives us the meani of generating these formally equivalent 

E l iminat ion of " o " : every wff of the form " P o Q " may be 
replaced by a wff of the form " 0 ( P • Q ) " 

E l iminat ion of "<t>": every wff of the form " P <t> Q " may be 
replaced by a wff of the form " ~ 0 ( P • Q J " 

E l iminat ion of "—>": e v e r y wff of the form " P Q " may be 
replaced by a wff of the form " D ( P D Q ) " 

E l iminat ion of " w " : every wff of the form " P «—» Q " may be 
replaced by a wff of the form " • ( P = Q J " . 

Sometimes it w i l l be useful, too, to eliminate the two monadic modal operators " V " and " A " in favor of 
" 0 " and 

wffs. 

E l iminat ion of " V " : every wff of the form " V P " may be 
replaced by a wff of the form " O P • 0 — P " 

El iminat ion of " A " : every wff of the form " A P " may be 
replaced by a wff of the form " D P V • - P : 

1. T w o sentence-forms are formally equivalent i f and only if, for any uni form substitution of constants for the 
variables therein, there result two sentences which express logically equivalent propositions. (See section 10, this 
chapter.) 
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Examples: 

P - ( P o Q ) : may be replaced by •[P D 0(P-Q)] ; 

(P*Q)oR : may be replaced by 0 [ - 0(P-Q)-R] : 

A(PoQ) : may be replaced by • O(P-Q) v 0(P-Q) : 

EXERCISES 

For each of the following formulae, find formally equivalent tuffs in which the only modal operators are 
"a"and/or "<>". 

1. P->(Q-*P) 

2. Po(^Q*P) 

3. aP^(QoP) 

4. D P — A f P v Q j 

5. (UP- OQ) —> f OP«-> OQ) 

3. SOME PROBLEMATIC USES OF M O D A L EXPRESSIONS 

"It is possible that" 

"It is possible that" has many uses in ordinary prose that one should distinguish from the use of that 
expression which is captured by the logical operator "0". Two of these uses are especially worthy of 
note. 

Most of us have viewed television dramas in which a lawyer attempts to discredit a witness by 
asking, "Is it possible you might be mistaken?" Witnesses who are doing their utmost to be as fair as 
possible(!) are likely to take this question as if it were the question, "Is it logically possible that you 
might be mistaken?", to which they will answer, "Yes". But an overzealous lawyer might then pounce 
on this admission as if it were a confession of probable error. The point is that to say of a proposition 
that it is possibly false in the logical sense (i.e., is contingent or necessarily false) is not to say that it is 
probably false. A proposition which is possibly false, e.g., the contingent proposition that there is salt 
in the Atlantic Ocean, need not be probably false; quite the contrary, this particular proposition is true. 

Secondly, consider the use of "It is possible that" in the sentence 

(6.4) "It is possible that the Goldbach Conjecture (i.e., that every even number 
greater than two is the sum of two prime numbers) is true." 
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If we do not keep our wits about us, we might be inclined to think that this sentence is being used to 
express the proposition that the Goldbach Conjecture is possibly true. But a person who utters (6.4) 
and who accepts a possible-worlds analysis of the concept of possibility, ought to reject such a construal 
of his words. For clearly, he is trying to say something true; and yet, i f the Goldbach Conjecture — 
unknown to us — is false (which is to say that it is necessarily false), then to say that it is possibly true 
is (as we shall see subsequently i n this chapter) to say something which is itself necessarily false. The 
point can be put another way: the Goldbach Conjecture is either necessarily false or necessarily true. 
W e do not know which it is. If, however, it is necessarily false, then to say of it that it is possibly true 
is to assert a proposition which itself is necessarily false. 

What a person who asserts (6.4) is trying to say would seem to be something of the following sort: 

(6.5) " T o the best of our knowledge, the Goldbach Conjecture is not false." 

But this sentence, too, needs careful handling. W e must beware not to take this as if it were 
synonymous with 

(6.6) " I t is compatible with everything which we now know that the Goldbach 
Conjecture is true." 

Clearly this won't do. If the Goldbach Conjecture is false (and hence necessarily false) then it is not 
compatible (i.e., is not consistent) wi th anything — let alone everything — we know, and to assert that 
it is, would be, once again, to assert a necessary falsehood. 

T h e proper construal of sentences (6.4) and (6.5) would seem to lie in the abandonment of the 
attempt to capture in terms of the logical concept of possibility (or the logical concept of consistency) 
whatever sense of "possible" it is which (6.4) invokes. What (6.4) attempts to express can be stated 
nonparadoxically i n the less pretentious-sounding sentence 

(6.7) " W e do not know whether the Goldbach Conjecture is true and we do not know 
whether the Goldbach Conjecture is false." 

In this paraphrase a l l talk of 'possibility' has fallen away. T o try to re-introduce such talk in such 
contexts is to court logical disaster (i.e., the asserting of necessary falsehoods). 

Problems with the use of "it is necessary that"; the modal fallacy; absolute and relative necessity 

There is a widespread practice of marking the presence of an implication relation by the use of such 
expressions as: 

" I f . . . , then it is necessary t h a t . . . " 

" I f . . . , then it must be t h a t . . . " 

" I f . . . , then it has to be t h a t . . . " and 

" . . . Therefore, it is necessary t h a t . . . " 

Often enough, these locutions are harmless. But sometimes they beguile persons into the mistaken 
belief that what is being asserted is that the consequent of the implicative proposition (or the 
conclusion of an argument) is itself necessarily true. O f course, some conditional propositions 
expressed by sentences of these types do have necessarily true consequents, as for example, 
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(6.8) "If the successor of an integer is equal to one plus that number, then it is 
necessary that the successor of an integer is greater than that number." 

Here the expression "it is necessary that" in the consequent-clause of the sentence (6.8) is no cause for 
concern: the proposition expressed by the consequent-clause is indeed necessarily true. But often we 
use the very same grammatical construction in cases where the consequent-clause does not express a 
necessary truth: where the words "it is necessary that" are being used to signal the existence of an 
implication relation between the propositions expressed by the antecedent-clause and the 
consequent-clause and not being used to claim that the latter clause expresses a necessarily true 
proposition. 

Consider the sentence 

(6.9) "If Paul has three children and at most one daughter, then it is necessary that he 
has at least two sons." 

The expression "it is necessary that" in (6.9) properly should be understood as marking the fact that 
the relation between the proposition expressed by the antecedent-clause and the proposition expressed 
by the consequent-clause (i.e., the relation of conditionality) holds necessarily; it should not be 
understood as asserting the (false) proposition that Paul's having two sons is a necessary truth. 

Let "A" = "Paul has three children and at most one daughter", and "B" = "Paul has at least two 
sons". Using these sentential constants, the correct translation of (6.9) is 

(6.10) " O ( A D B ) " . 

That is, the relation (viz., material conditionality) obtaining between the antecedent, A, and the 
consequent, B, holds necessarily. It would be incorrect to translate (6.9) as 

(6.11) "A D DB". 

To mistakenly transfer the modality of necessary truth to the consequent (as illustrated in (6.11)) of 
a true implicative proposition or to the conclusion of a deductively valid argument from the conditional 
relation which holds between the antecedent and consequent or between the premises and conclusion, 
is to commit what has come to be known as 'the' Modal Fallacy. Of course this is not the only way 
that one's thinking about modal concepts can go awry. There are, strictly speaking, indefinitely many 
modal fallacies one can commit. Yet it is this particular one which has been singled out by many 
writers for the title, 'the' Modal Fallacy. 

We can hardly hope to reform ordinary prose so that it will accord with the niceties of our 
conceptual analysis. Even logicians are going to continue to say such things as 

(6.12) "If today is Tuesday, then tomorrow must be Wednesday." 

(6.13) "If a proposition is necessarily true, then it has to be noncontingent." 

(6.14) "If Paul has three children among whom there is only one daughter, then he 
has to have two sons." 

Let us adopt a special name for the kind of propositions expressed by the consequents of sentences 
utilizing this kind of construction. Let us call them "relative necessities". 

A proposition, Q, then, will be said to be relatively necessary, or more exactly, to be necessary 
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relative to the proposition P, if and only if Q is true in all possible worlds in which P is true; or, put 
another way, if and only if relative to all the possible worlds in which P is true, Q is true. Consider, 
for example, the nonmodal component of the consequent of the proposition expressed by (6.12), viz., 
the proposition that tomorrow is Wednesday. The proposition that tomorrow is Wednesday is 
contingent in the absolute sense of "contingent", i.e., if we look at the set of all possible worlds. But 
this same proposition may be said to be noncontingent (specifically, necessarily true) relative to the set 
of all those possible worlds in which today is Tuesday. 

There is a fallacy having no common name which is analogous to the Modal Fallacy and which 
sometimes arises in the use of epistemic concepts. In particular, some persons are wont to say that a 
proposition, P, can be known a priori if it can be validly inferred a priori from some proposition which 
is known to be true. This account, however, does not jibe with the explication of the concept of 
aprioricity which we gave in chapter 3. There we said that if a proposition is validly inferred from 
some proposition, the inferred proposition will be said to be known experientially if the proposition 
from which it is inferred is itself known experientially. Propositions which are known by the a priori 
process of inference may be said to instance the property of relative aprioricity; it is an open question 
of each of them whether it also instances the property of absolute aprioricity. 

EXERCISES 

Part A 

Translate each of the following sentences into the symbolism of Modal Propositional Logic, taking care 
to avoid the modal fallacy. 

1. "If today is Tuesday, then tomorrow must be Wednesday." 

Let "A" = "Today is Tuesday" 
"B" = "Tomorrow is Wednesday" 

2. "If today is Tuesday, then it is impossible that today is not Tuesday." 

Let "A" = "Today is Tuesday" 

PartB 

The modal fallacy can be very insidious. It occurs in both of the following arguments, yet some persons 
do not spot it. Try to see where it occurs. Then translate each of the arguments into the notation of 
Modal Propositional Logic in such a way that the fallacy is not committed. 

3. "If a proposition is true it can not be false. But if a proposition can not be false, then it is not only 
true but necessarily true. Thus if a proposition is true, it is necessarily true, and (consequently) the 
class of contingent truths is empty." 

4. [It is not necessary to translate the part of this argument which is enclosed within the 
parentheses.] 

"If an event is going to occur, then it cannot not occur. But if an event cannot not occur, then it 
must occur. Therefore if an event is going to occur, it must occur. (We are powerless to prevent 
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what must happen. The future is pre-ordained and our thinking that we can affect it is mere 
illusion.) " 

Part C 

Reread in chapter 1, p. 25, exercise 4, the words of Lazarus Long concerning time travel. If we let 
"A" = "a goes back in time" and let "B" = "a shoots his grandfather before the latter sires a's 

father", which, if any, of the following do you think most closely capture(s) the point of Long's claim? 
Which, if any, of the following, do you think he is arguing against? 

(a) ^OA-^OB 

(b) ^O(A-B) 

(c) A -> ^ OB 

(d) OA-OB- ^O(A-B) 

(e) ^ 0 ( A - B ) ^ ^ O A 

(f) OADD^B 

(g) ^OA 

4. T H E M O D A L S T A T U S O F M O D A L PROPOSITIONS 

Every proposition is either necessarily true, necessarily false, or contingent. Since modal propositions 
form a proper subset of the class of propositions, every modal proposition must itself be either 
necessarily true, necessarily false, or contingent. 

How shall we determine the modal status of modal propositions? So far as the methodology of 
Modal Propositional Logic is concerned, this question will be answered to the extent to which this 
logic can provide a means of ascertaining the validity of modalized formulae. A rigorous effective 
technique for that purpose will be presented in section 8 of this chapter. But as a step along the way 
toward developing that general technique, in this section we will lay the groundwork by examining 
only the very simplest cases, viz., those modalized formulae which consist of a single sentential variable 
which is the argument of (i.e., is modalized by) one of the operators " 0 " , " V " , or " A " . Since all 
of these operators are definable in terms of one another, it will suffice to examine just one of them (see 
section 2). The one we choose is Turning our attention to " D P " , we can see that there are three 
cases requiring our attention: 

1. The modal status of D P in the case where P is contingent; 

2. The modal status of D P in the case where P is necessarily true; and 

3. The modal status of ClP in the case where P is necessarily false. 
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Case 1: What is the modal status of OP in the case where P is contingent? 

Since, by hypothesis, P is contingent, there are some possible worlds in which P is true and others (all 
the others) in which it is false. Let us, then, divide the set of all possible worlds into two mutually 
exclusive and jointly exhaustive subsets, W t and W f , those possible worlds in which P is true and. those 
possible worlds in which P is false. 

Wt Wf 

P -VP 

FIGURE (6.b) 

Arbitrarily pick any possible world in W t. Let us call that world "W t l". 

W f 

V 

P -VP 

FIGURE (6.c) 

What is the truth-value of DP in W u ? Clearly DP is false in W t l , for OP asserts that P is true in W t l 

and in every other possible world as well. But P is false in every world in W r. And if DP is false in 
W t l , it is false throughout W t , for whatever holds for any arbitrarily chosen member of a set (or more 
exactly, whatever holds of a member of a set irrespective of which member it is), holds for every other 
member of that set. 

This leaves the possible worlds in W f to be examined. What is the truth-value of DP in W f? 
Arbitrarily pick any member of W f. Call it "W f l". 
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• 
w
f l 

P 
y 
'V, p 

FIGURE (6.d) 

Clearly D P is false in W n , for DP asserts that P is true in W f l and in every other possible world as 
well. But P is false in W f l . Therefore, since W f l is but an arbitrarily chosen member of W f, it follows 
that D P is false in every member of W f. Thus we have shown that d P is false in every member of W t 

and have now just shown that d P is false, as well, in every member of W f. But these are all the 
possible worlds there are. Hence in the case where P is contingent, d P is false in every possible world, 
i.e., VP —> d 'v. dP . As a consequence, if P is contingent, then d P is noncontingent, i.e., 

VP —> A d P. [i.e., if P is contingent, then the (modal) proposition that P is 
necessarily true is itself noncontingent.] 

Case 2: What is the modal status of OP in the case where P is necessarily true? 

Arbitrarily pick any possible world whatever. Let us call that world "Wj". 

P 

FIGURE (6.e) 

What is the truth-value of d P in W x? Clearly d P has the truth-value, truth, in W^ For, in W x , the 
proposition d P asserts that P is true in W x and in every other possible world as well, and clearly this 
is the case. Hence d P is true in Wj. But whatever is true of any arbitrarily selected possible world, is 
true of every possible world. Hence in the case where P is necessarily true, d P is also necessarily true, 
i.e., d P —> d d P . As a consequence, if P is necessarily true, then d P is (again) noncontingent, i.e., 

d P - » A d P . 
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Case 3: What is the modal status of DP in the case where P is necessarily false? 

Again arbitrarily pick any possible world whatever. Again let us call that world "Wj". 

FIGURE (6.f) 

What is the truth-value of DP in Wj? Clearly DP has the truth-value, falsity, in Wj. For in W 1 ; the 
proposition OP asserts that P is true in Wj and in every other possible world as well. But P is false in 
W x. Hence DP is false in Wj. But whatever is false in any arbitrarily selected possible world, is false 
in every possible world. Hence in the'case where P is necessarily false, DP is also necessarily false, i.e., 
• ^ P —> • ~ dP. As a consequence, if P is necessarily false, then OP is (once again) noncontingent, 
i.e., 

• 'v P —» A DP. 

Conclusion: Every modal proposition expressible by a sentence of the 
form "DP" is noncontingent. If "P" expresses a necessary truth, then 
" • P " likewise expresses a necessary truth; if "P" expresses either a 
contingency or a necessary falsity, then "DP" expresses a necessary 
falsity. In short, a sentence of the form "DP" never expresses a 
contingency. 

This last result holds as well for sentences of the form "OP", "VP", and "AP"; i.e., no such 
sentence ever expresses a contingency. 

We can sum up this section by saying that propositions ascribing the various members of the family 
of properties, necessary truth, necessary falsehood, possibility, impossibility, noncontingency, and 
contingency, to other propositions, are always themselves noncontingent. (Later, in section 6, we shall 
put the point by saying that these properties are essential properties of those propositions which 
instance them.) 

EXERCISES 

7. Under what conditions of modal status for P will " O P " express a necessary truth? Under what 
conditions, a necessary falsity ? 

2. Under what conditions of modal status for P will " V P " express a necessary truth? Under what 
conditions, a necessary falsity? 
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3. Under what conditions of modal status for P will "&P" express a necessary truth? Under what 
conditions, a necessary falsity? 

4. Under what conditions of modal status for P will "~ HP" express a necessary truth? Under what 
conditions, a necessary falsity? 

5. Under what conditions of modal status for P will ~ P" express a necessary truth? Under what 
conditions, a necessary falsity? 

5. T H E OPERATOR "IT IS CONTINGENTLY T R U E T H A T " 

In chapter 1 we introduced the concept of modal status and allowed various predicates to count as 
attributions of modal status, viz., "is possible", "is impossible", "is necessarily true", "is necessarily 
false", "is noncontingent", and "is contingent". However, we did not allow the predicates "is 
contingently true" and "is contingently false" to be so counted (p. 13, fn. 10). We now have the 
conceptual techniques in hand to show how these two concepts differ from all the others just referred 
to. What, exactly, is it about the concepts of contingent truth and contingent falsity (as opposed to 
contingency itself) which sets them apart from the concepts of possibility, necessary truth, necessary 
falsity, and the like? 

It is an easy matter to define operators representing the concepts of contingent truth and contingent 
falsity respectively in terms of the modal monadic operators already introduced. These definitions are, 
simply, 

"W P" = d f "VP • P" [i.e., P is contingently true if and only if P is 
contingent and true] 

"V P" = d f " v P - ^ P " [i.e., P is contingently false if and only if P is 
contingent and false] 

From a syntactical point of view there is nothing in these definitions to suggest that there is anything 
odd or peculiar about the concepts of contingent truth and contingent falsity. But when we come to 
examine the possible-worlds explication of these concepts the peculiarity emerges. 

Let us ask, "What is the modal status of a proposition expressed by a sentence of the form "V P" or 
"V P"? (We will here examine only the first of these two cases. The conclusions we reach in the one 
will apply equally to the other.) Concentrating our attention on "V P", there are three cases to 
consider: 

1. The modal status of V P in the case where P is contingent; 

2. The modal status of W P in the case where P is necessarily true; and 

3. The modal status of f P in the case where P is necessarily false. 

Case 1: What is the modal status of ' V P in the case where P is contingent? 

As before, we begin by dividing the set of all possible worlds into two mutually exclusive and jointly 
exhaustive subsets, W t and W f , those possible worlds in which P is true and those possible worlds in 
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which P is false. Arbitrarily pick any world in W t. Let us call that world "W t l", (see figure (6.c)). 
What is the truth-value of V P in W t l ? V P will be true in W t l , for V P in W t l asserts that P is true in 
W t l and is false in some other possible world. Since both these conjuncts are true in W t l , V P is true in 
W t l . But if V P is true in W t l , it is true throughout W t. This leaves the possible worlds in Wf- to be 
examined. What is the truth-value of V P in W t? Choose any arbitrary member of W f. Call it "W f l " 
(see figure (6.d)). What is the truth-value of W P in W f l ? f P will be false in W f l , for W P in W f l 

asserts that P is true in W n and is false in some other possible world. (We do not know whether this 
second conjunct is true or false, that is, whether there is any other possible world besides W n in which 
P is false — perhaps there is just one possible world, W n , in which P is false. But, luckily, we do not 
have to pursue this question or worry about it. For we can confidently assert that irrespective of the 
truth or falsity of the second conjunct just mentioned, the first is determinately false.) The first 
conjunct asserts that P is true in W f l , and this we know to be false since W f l is a member of the set 
W f, and P is false in every possible world in W f. Therefore we may conclude that V P is false in W f 1 

and in every other member (if there are any) of W f. At this point we have shown that W P is true 
throughout W t and is false throughout W f. It follows immediately, then, that in the case where P is 
contingent, V P is also contingent; or in symbols, 

VP _• V w P. 

Case 2: What is the modal status o/WP in the case where P is necessarily true? 

See figure (6.e). Arbitrarily pick any possible world whatever. Let us call that world "W". What is 
the truth-value of V P in W? Clearly V P has the truth-value, falsity, in W. For, in W, the proposition 
V P asserts that P is true in W and is false in some other world. But P is true in every possible world 
whatever and is false in none. 1'herefore any proposition which asserts that P is false in some possible 
world is false. Therefore W P is false in W. But if V P is false in W, it is false in every other possible 
world as well. Hence in the case where P is necessarily true, V P is necessarily false, and is, ipso facto, 
noncontingent. In symbols, we have 

• P — » A V P . 

Case 3: What is the modal status oj' V P in the case where P is necessarily false? 

See figure (6.f). Arbitrarily pick any possible world, W. V P is false in W. For, in W, W P asserts that 
P is true in W and is false in some other possible world. But P is false in every possible world 
including W. Therefore V P is false in W. But if V P is false in W, it is false in every possible world. 
Therefore in the case where P is necessarily false, W P is necessarily false, and is, ipso facto, 
noncontingent. In symbols, we have 

• ^ P —> A V P. 

Conclusion: Unlike ascriptions of necessary truth, necessary falsehood, 
possibility, impossibility, contingency, and noncontingency, which always 
yield propositions which are noncontingent, ascriptions of contingent 
truth (and contingent falsity) in some instances (viz., those in which the 
proposition being referred to is itself contingent) will yield propositions 
which are contingent. (See Case 1, this section.) 

This difference between ascriptions of contingent truth and contingent falsity, on the one hand, and 
ascriptions of necessary truth, necessary falsity, possibility, impossibility, contingency, and 
noncontingency, on the other, is of the utmost importance for the science of logic. 
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To the extent that logic is an a priori science, and to the extent that an a priori science is incapable 
of gaining for us the truth-values of contingent propositions,2 to that extent the truth-values of 
propositions attributing contingent truth (or contingent falsity) to contingent propositions will be 
unattainable within the science of logic. 

When, earlier in this book, we gave various examples of contingently true propositions, e.g., (3.10), 
the proposition that Krakatoa Island was annihilated by a volcanic eruption in 1883, we were not (nor 
did we claim to be) operating strictly within the methodology of the science of logic. For the property 
attributed to the proposition, viz., the property of being contingently true, is an accidental one (see the 
next section), and the determination that something has an accidental property lies outside the 
capabilities of the ratiocinative methodology of logic. 

Such is not the case, however, when we attribute necessary truth, necessary falsity, possibility, 
noncontingency, or contingency to a proposition. Ascriptions of these properties, as we showed in the 
previous section, are always noncontingent. Thus when we attribute any of these latter properties to a 
proposition we can hope to determine, through the application of the a priori methodology of logic, 
whether they truly hold or not. 

We took some pains to argue in chapter 1 that there are not two kinds of truth, contingent truth and 
noncontingent truth. There is but one kind of truth. And one should not be tempted to try to make the 
point of the present section by saying that logic is concerned with noncontingent truth and falsity but not 
with contingent truth and falsity. Rather we should prefer to put the point this way: Logic is concerned 
with contingency and noncontingency, and in the latter case, but not in the former, also with truth and 
falsity. Within Logic one can aspire to divide the class of propositions into three mutually exclusive and 
jointly exhaustive categories: the necessarily true; the necessarily false; and the contingent. Any attempt 
to divide further the latter category into true and false propositions, and then to determine which 
proposition resides in which subclass takes one outside the ratiocinative limits of Logic. 

6. ESSENTIAL PROPERTIES OF RELATIONS 

When we first introduced the distinction between items and attributes (chapter 1, p. 7) we said that an 
item was anything to which reference could be made, while an attribute is anything that can be 
ascribed to an item. Now it is clear that attributes can be referred to and that when we do refer to 
them we are regarding them as items to which still further attributes may be ascribed. For instance, 
we refer to the relation (two-place attribute) of implication when we say of it that it holds between 
propositions; we then treat the relation of implication as an item of which something can be said. And 
when we say of implication that it is a relation between propositions we are ascribing a property 
(one-place attribute) to it. 

Some of the properties of relations are of little general significance. It is of little general significance, 
for instance, that the relation of being older than has the property of holding between the Tower of 
London and the Eiffel Tower. This, we want to say, is a purely 'accidental' feature of that relation 
insofar as it is not necessary that the relation have this property.3 

Other properties of relations, however, are of general significance. For instance, it matters a great 
deal to our understanding the relation of being older than that this relation has the property of being 

2. Although we have argued in chapter 3, section 6, that there probably are no contingent propositions 
knowable a priori, we are here leaving the question open in order to accommodate the views of such philosophers 
as Kant and Kripke. 

3. F is said to be an accidental property of an item a if and only if in some possible world in which a exists (or 
has instances), a has the property F, and in some (other) possible world in which a exists, a does not have the 
property F. 



340 M O D A L PRC-POSITIONAL LOGIC 

asymmetrical, i.e., the property such that if any item (the Tower of London, the Sphinx, or anything 
else) stands in the relation of being older than to any other item (the Eiffel Tower, the Premier of 
British Columbia, or whatnot), then that other item does not stand in the same relation to it. Anyone 
who failed to understand that the relation of being older than has this property simply would not 
understand that relation. It is an 'essential' property of that relation insofar as it is a property which 
that relation cannot fail to have.4 

It will help us a great deal in our understanding of relations quite generally, and in our 
understanding of modal relations in particular, if we get clear about some of the essential, 
noncontingent, properties that relations have. We shall consider just three sets of such properties of 
relations. 

First, any relation whatever must be either symmetrical or asymmetrical or nonsymmetrical. 

A relation, R, has the property of symmetry if and only if when any item a bears that relation to 
any item b, it follows that item b bears that relation to item a. The relation of being true in the same 
possible world as is an example of a symmetrical relation. For given any a and b, it is necessarily true 
that if a is true in the same possible world as b then b is true in the same possible world as a. 

A relation, R, has the property of asymmetry if and only if when any item a bears that relation to 
any item b, it follows that b does not bear that relation to a. The relation of being older than is an 
example of an asymmetrical relation. For given any a and b, it is necessarily true that if a is older than 
b, then it is false that 6 is older than a. 

A relation, R, has the property of nonsymmetry if and only if it is neither symmetrical nor 
asymmetrical. The relation of being in love with is nonsymmetrical. From a proposition which asserts 
that some item a is in love with some item b, it neither follows (although it may be true) that b is in 
love with a, nor does it follow that 6 is not in love with a. 

Secondly, any relation whatever must be either transitive or intransitive or nontransitive. 

A relation, R, has the property of transitivity if and only if when any item a bears that relation to 
any item b and b bears that relation to any item c, it follows that a bears that relation to c. The 
relation of having the same weight as is an example of a transitive relation. For given any a, b, and c, 
it is necessarily true that if a has the same weight as b and b has the same weight as c, then a has the 
same weight as c. 

A relation, R, has the property of intransitivity, if and only if when any item a bears that relation to 
any item b and b bears that relation to any item c, it follows that a does not bear that relation to c. The 
relation of being twice as heavy as is an example of an intransitive relation. For given any a, b, and c, 
it is necessarily true that if a is twice as heavy as b and b is twice as heavy as c, then a is not twice as 
heavy as c. 

A relation, R, has the property of nontransitivity if and only if it is neither transitive nor 
intransitive. The relation of being a lover of is an example of a nontransitive relation. From the 
propositions which assert that some item a is a lover of some item b and that 6 is a lover of some item 
c, it neither follows (although it may be true) that a is a lover of c, nor does it follow that a is not a 
lover of c. 

4. F is said to be an essential property of an item a if and only if in every possible world in which a exists (or 
has instances), a has the property F. 
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Finally, any relation whatever must be either reflexive or irreflexive or nonreflexive. 

A relation R, has the property of reflexivity if and only if when any item a bears that relation to any 
other item whatever, it follows that a bears that relation to itself. The relation of being a graduate of 
the same university as is reflexive. For given any item a, it is necessarily true that if a is a graduate of 
the same university as some other item, then a is a graduate of the same university as a. 

A relation, R, has the property of irreflexivity if and only if it is impossible that anything should 
bear that relation to itself. The relation of being better qualified than is irreflexive. For given any item 
a, it is necessarily true that a is not better qualified than a. 

A relation, R, has the property of nonreflexivity if and only if it is neither reflexive nor irreflexive. 
The relation of being proud of is a nonreflexive relation. From the proposition that a is proud of 
something or someone it does not follow (although it may be true) that a has self-pride and it does not 
follow that a lacks self-pride.5 

In the light of this classificatory scheme for talking about the essential properties of relations, let us 
now consider the essential properties of each of the four modal relations we first singled out for 
attention. In each case we can determine what these properties are by attending once more to the way 
these relations have been defined. 

We can easily prove that consistency is symmetrical, nontransitive, and reflexive, if we recall that a 
proposition, P, is consistent with a proposition, Q, just when there exists at least one possible world in 
which both are true, i.e., a possible world in which P is true and Q is true. But any possible world in 
which P is true and Q is true is also a possible world in which Q is true and P is true. Hence if P is 
consistent with Q, Q must also be consistent with P. That is to say, consistency is symmetrical. 
Suppose, now, not only that P is consistent with Q but further that Q is consistent with a proposition 
R. Then not only are there some possible worlds in which both P and Q are true, but also there are 
some possible worlds in which both Q and R are true. But must the set of possible worlds in which P 
and Q are true intersect with the set of possible worlds in which Q and R are true? Clearly we have 
no warrant for concluding either that they do intersect or that they do not. Hence from the 
suppositions that P is consistent with Q and that Q is consistent with R it does not follow that P is 
consistent with R. Nor does it follow that P is not consistent with R. Consistency, then, is a 
nontransitive relation. Suppose, finally, that P is consistent with at least one other proposition. Then 
there will exist at least one possible world in which P is true. But any possible world in which P is 
true will be a possible world in which both P and P itself will be true. Hence, if P is consistent with 
any other proposition, P is consistent with itself. Consistency, then, is a reflexive relation.6 

Inconsistency is symmetrical, nontransitive and nonreflexive. If a proposition, P, is inconsistent with 
a proposition, Q, then not only is there no possible world in which both P and Q are true but also 
there is no possible world in which both Q and P are true. Hence if P is inconsistent with Q, Q is also 

5. A relation, R, is sometimes said to be totally reflexive if and only if it is a relation which every item must 
bear to itself. An example is the relation being identical with. Likewise a relation, R, may be said to be totally 
irreflexive if and only if it is a relation which nothing can bear to itself. An example is the relation of being 
non-identical with. Plainly a relation which is not either totally reflexive or totally irreflexive will be totally 
nonreflexive. Most of the relations which come readily to mind have this latter property. 

6. Note, however, that consistency is not a totally reflexive relation. As we have seen, if a proposition is 
necessarily false it is not consistent with itself but is self-inconsistent. Moreover, consistency, as we have defined 
it, is a relation which holds only between items which have a truth-value. Hence, unlike the relation of identity, 
it is not a relation which everything has to itself. 
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inconsistent with P. That is to say, inconsistency, like consistency, is a symmetrical relation. And, like 
the relation of consistency, the relation of inconsistency is nontransitive. Suppose not only that P is 
inconsistent with Q but also that Q is inconsistent with R. Then not only are there no possible worlds 
in which both P and Q are true but also there are no possible worlds in which both Q and R are true. 
Does this mean that there are no possible worlds in which both P and R are true? Does it mean that 
there are some possible worlds in which both P and R are true? Neither follows. Hence inconsistency 
is nontransitive. Where the relation of inconsistency differs from the relation of consistency is in 
respect of the property of reflexivity. Consistency, we saw, is reflexive. Inconsistency is not. Suppose a 
proposition, P, is inconsistent with some other proposition, Q. Then it does not follow (although it 
may be true) that P is inconsistent with itself (i.e., is self-inconsistent) nor does it follow (although it 
may be true) that P is not inconsistent with itself (i.e., is self-consistent). Inconsistency, then, is neither 
reflexive nor irrefiexive, but nonreflexive. 

Implication is nonsymmetrical, transitive, and reflexive. If a proposition, P, implies a proposition, 
Q, then there are no possible worlds in which P is true and Q is false. Does this mean that there are 
no possible worlds in which Q is true and P is false? Does it mean that there are some possible 
worlds in which Q_ is true and P is false? Neither follows. Hence implication is nonsymmetrical. 
Suppose, now, that P implies Q and that Q implies R. Then in any possible world in which P is true, 
Q is true; and likewise, in any possible world in which Q is true, R is true. But this means that in 
any possible world in which P is true, R is also true. Hence implication is transitive. (See Exercise on 
p. 218.) Further, implication is reflexive. If P implies Q then not only are there no possible worlds in 
which P is true and Q is false, but also there are no possible worlds in which P is true and P is false 
(any world in which P is true and P is false is an impossible world). That is, any proposition, P, 
implies itself. Hence implication, is reflexive. 

Finally, the relation of equivalence is symmetrical, transitive, and reflexive. If a proposition, P, is 
equivalent to a proposition, Q, then since P and Q are true in precisely the same possible worlds, Q is 
equivalent to P. Suppose, now, that P is equivalent to Q and Q is equivalent to R. Then not only are 
P and Q true in precisely the same possible worlds but also Q and R are true in precisely the same 
possible worlds. Hence P and R are true in precisely the same possible worlds. Equivalence, then, like 
implication, is transitive. Furthermore, it is reflexive. If P is true in precisely the same possible worlds 
as Q then P is also true in precisely the same possible worlds as itself. That is, any proposition, P, is 
equivalent to itself. Hence equivalence is reflexive. 

EXERCISES 
Part A 

1. Draw a worlds-diagram for three propositions, P, Q, and R, such that P is consistent with Q, Q is 
consistent with R, and P is inconsistent with R. 

Example: P R 

Q 
This example is just one among several possible answers. 
Find another correct answer to this question. 
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2. Draw a worlds-diagram for three propositions, P, Q and R, such that P is consistent with Q, Q is 
consistent with R, and P is consistent with R. 

3. Draw a worlds-diagram for three propositions, P, Q and R, such that P is inconsistent with Q, Q 
is inconsistent with R, and P is inconsistent with R. 

4. Draw a worlds-diagram for three propositions, P, Q and R, such that P is inconsistent with Q, Q. 
is inconsistent with R, and P is consistent with R. 

5. See figure (l.i) (p. 51). (a) Which worlds-diagrams represent cases in which P stands to Q in a 
symmetrical relation? (b) Which are cases of an asymmetrical relation? (c) Which are cases of a 
nonsymmetrical relation? (d) Which are cases of a reflexive relation? (e) Which are cases of an 
irreflexive relation? (f) Which are cases of a nonreflexive relation? 

6. For each of the relations below, tell whether it is (a) symmetrical, asymmetrical, or non­
symmetrical; (b) transitive, intransitive, or nontransitive; (c) reflexive, irreflexive, or nonreflexive. 

i. extols the virtues of 

ii. is not the same age as 

in. is the same age as 

iv. is heavier than 

v. is twice as heavy as 

7. Suppose that Adams employs Brown, that Brown employs Carter, and that Adams also employs 
Carter. May we say, then, that in this instance the relation of employs is a transitive one? Explain 
your answer. 

PartB 

(The following three questions are more difficult than those in Part A.) 

8. It is possible to define a vast number of different dyadic modal relations in terms of the fifteen 
worlds-diagrams of figure (l.i). Suppose we were to single out one among this vast number, let us 
say, the modal relation which we will arbitrarily name "R#": the relation, R#, holds between two 
propositions, P and Q, if and only if P and Q are related to one another as depicted in 
worlds-diagram 1, worlds-diagram 2, worlds-diagram 3, or worlds-diagram 4. What are the 
essential properties of the relation R#? 

9. What are the. essential properties of the relation R!, where "R!" is defined as that relation which 
holds between any two propositions, P and Q, when P and Q are related as depicted in 
worlds-diagram 9 or worlds-diagram 10? 

10. What are the essential properties of the relation R+, where "R+" is defined as that relation 
which holds between any two propositions, P and Q, when P and Q are related as depicted in 
worlds-diagram 5 or worlds-diagram 6? 
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Part C 

On the definitions given here of "transitivity" and "intransitivity", it turns out that some relations are 
both transitive and intransitive, i.e., the classificatory scheme, transitive/intransitive/nohtransitive, 
while exhaustive of the class of all dyadic relations, is not exclusive. 

For example, the relation depicted in worlds-diagram 2 (see figure (X.i)) is both transitive and 
intransitive. This is so because it is logically impossible that there should be three propositions such that 
the first stands in just this relation to the second and the second in this same relation to the third. But 
since this is so, the antecedent conditions of the definitions of both "transitivity" and "intransitivity" are 
unsatisfiable for any propositions whatever, and thus — in the case of this relation — the two 
definitions are themselves (vacuously) satisfied. (I.e., any conditional proposition with a necessarily 
false antecedent is itself necessarily true.) 

11. Find all the worlds-diagrams in figure (l.i) which depict relations which are both transitive and 
intransitive. 

12. Consider the relation R$, where "R$" is defined as that relation which obtains between any two 
integers, x and y, when x is twice y, and y is even. Is R$ transitive, intransitive, or nontransitive? 

13. Let R% be that relation which holds between any two integers, x and y, when x is twice y, and y is 
odd. Is R% transitive, intransitive, or nontransitive? 

14. Is the classificatory scheme, reflexive/irreflexive, exclusive? 

15. Is the classificatory scheme, symmetric/asymmetric, exclusive? 

Part D (discussion questions) 

In trying to ascertain the essential properties of relations we must take care not to be conceptually 
myopic. We must be sure to consider possible worlds other that the actual one, worlds in which natural 
laws and commonplace events are radically different from those in the actual world. In the actual 
world, so far as we can tell, travel into the past is physically impossible. But to answer the question 
whether the relation, for example, being the father of, is intransitive or not, it is insufficient to consider 
only the actual world. If in some possible worlds, time travel into the past occurs — as described by 
Heinlein — then in some of these worlds we will have instances in which a person goes back in time 
and fathers himself or his father. If we are to admit the existence of such possible worlds, then it follows 
that the relation of being the father of is not, as we might first think, intransitive, but is, we see after 
more thought about the matter, nontransitive. 

If we assume that Heinlein-type worlds in which travel into the past occurs are possible (See chapter 1, 
section 1), what, then, would we want to say are the essential properties of the following relations? 

i. is the mother of 
ii. is an ancestor of 

Hi. was born before 

If a person should father himself and then wait around while the child he has fathered grows up, what 
then becomes of the often heard claim that one person cannot be in two places at the same time? 
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7. TWO CASE STUDIES IN M O D A L RELATIONS: A Light-hearted Interlude 

Case study 1: The pragmatics of telling the truth 

There is a well known saying which goes, "It is easier to tell the truth than to lie." But in what sense 
of "easier" is it easier to tell the truth than to lie? Some persons find it psychologically or morally very 
difficult to lie, and when they try to do so are very unconvincing. Other persons can lie blithely and yet 
appear sincere. From the psychological viewpoint, it is simply false that all persons find it difficult to 
lie. But there is another sense in which lying can be said to be "difficult", and in this sense lying is 
difficult for everyone, saint and sinner alike. 

Lying is logically difficult. To tell the truth a person need only report the facts; the facts are always 
consistent. Of course a person may falter in his recollection of them or in his reporting of them, but if 
he tries to report them honestly he stands a greater chance of relating a consistent story than if he tries 
to lie. If a person succeeds in relating the facts as they occurred, then consistency is assured; in a 
metaphorical sense we can say that the facts themselves look after the matter of consistency. But when 
a person sets out to lie, then his task is very much more difficult. For not only must he bear in mind 
what actually happened, he must also bear in mind what he has said falsely about those matters, and 
must try to preserve consistency in everything he says. But to look after the matter of consistency he 
will need a fair amount of logical prowess, especially if his story is long. The difficulty does not 
increase linearly with increasing numbers of propositions: it grows, as the mathematician would say, 
exponentially. 

Suppose we wish to check an arbitrary set of propositions for inconsistency. How might we go about 
it? We would probably begin with the easiest case: checking each individual proposition in the set to 
see whether it is self-inconsistent or not. Failing to find any self-inconsistent propositions, we would 
then proceed to the next easiest case, that of searching for inconsistency among all possible pairs of 
propositions in the set. If we fail to find inconsistency among the pairs of propositions in the set, we 
would then proceed to all possible triples; and should we happen not to detect inconsistency among the 
triples, we would pass on to the foursomes, etc. In general, if there are n propositions in a set, then 
there are m distinct non-empty subsets constructible on that set, where m is given by the formula: 

m = 2" - 1 

Thus in the case where there is one proposition in a set (n = 1), the number of distinct non-empty 
subsets is 1; for a set of two propositions, 3; for a set of three propositions, 7; for a set of four 
propositions, 15; for a set of five propositions, 31; for a set of six propositions, 63, etc. For a set of only 
ten propositions, which is a fairly short story — far, far less than one would be called upon to relate 
in, for example, a typical courtroom encounter — there are no less than 1023 distinct non-empty 
subsets. And for a still small set of twenty propositions, the number of distinct non-empty subsets 
jumps to a staggering 1,048,575. 

It must be pointed out however, that the person who is telling the story has a somewhat easier task 
in looking after consistency than does the person hearing the story who is looking for inconsistency. 
After all, a person telling a story in which he deliberately lies, presumably knows which of his own 
propositions are true and which false. In order for the teller of the story to ensure that his story is 
consistent, he need only check for consistency among those subsets which include at least one false 
proposition. All those other subsets which consist entirely of true propositions he knows to be 
consistent and he can safely disregard them. 

What is the measure of this difference between the difficulty of the tasks of the speaker and of the 
listener? The speaker is in a slightly more favorable position, but by how much? Let's try an example. 
Suppose a person were to assert twenty propositions. We already know that there are 1,048,575 
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non-empty subsets constructible on this set. Also suppose that just one of the twenty propositions 
asserted is false, and of course, that that one is known to be false by the speaker. H o w many subsets 
w i l l the speaker have to check? O u r naive intuitions tell us that this false proposition w i l l occur in only 
one-twentieth of a l l the subsets. But our naive intuitions are wi ld ly wrong in this regard. F o r the case 
where there is only one false proposition i n a set, the number of subsets which contain that false 
proposition is always at least half the total number of subsets. T h i s quite unexpected result can be 
made plausible by examining a short example. Suppose we have four propositions, A , B , C , and D , 
one of which , namely C , is false. In how many subsets does C occur? W e list al l the non-empty 
subsets. By the formula above we know that there are exactly 15 distinct subsets: 

15. A B C D 1. A 5. A B 11. A B C 
2. B 6. A C 12. A B D 
3. C 7. A D 13. A C D 
4. D 8. B C 14. B C D 

9. B D 
10. C D 

Proposition C , the single false proposition, occurs in no fewer than eight of these subsets, viz. , nos. 3, 6, 
8, 10, 11, 13, 14, and 15. 

T h e generalized formula is given as follows, where "q" is the number of subsets which contain one 
or more false propositions, " / " is the number of false propositions in the set, and ' V , as above, is the 
number of propositions in the set: 

q = 2" 

T h u s i n the case where a l iar asserts twenty propositions only one of which is false, he is presented 
wi th the task of checking 524,288 subsets for consistency. A n d if two of the twenty propositions are 
false the number of subsets containing at least one false proposition, and hence possible sources of 
inconsistency which would reveal that his story was not entirely true, would jump to 786,432, a 
number not remarkably smaller than the number of subsets (1,048,575) which his listener would 
theoretically have to check. 

Smal l wonder, then, that we say that it is difficult to lie. A n d this fact explains, in part, the wisdom 
of judicial procedures i n which witnesses can be cross-examined. W h i l e it is possible for a witness to 
prepare beforehand a false but consistent story, it is difficult to add to that story or to elaborate it in a 
short time without fal l ing into inconsistency. Truth-tel lers do not have this worry: they merely have to 
relate the facts and their stories w i l l be consistent. T h u s to a certain extent, logical principles, not only 
moral ones, underpin our judic ia l system. Indeed, if ly ing were logically as simple as telling the truth, 
our legal practice of cross-examination probably would not work at a l l . 

EXERCISES 

1. Consider a set ofpropositions consisting only of true contingent propositions. Is the set consisting of 
all and only the negations of those propositions also consistent? Give reasons, and, if possible, 
illustrations for your answer. 

2. What difference, if any, is there between lying and not telling the truth? 
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Note: The following questions are for mathematically sophisticated students only. 

3. Derive the formula for m. 

4. Derive the formula for q. 

5. If a set of propositions is known to contain s necessarily true propositions, how shall we modify the 
formulae for m and q? 

* * * » « 

Case study 2: An invalid inference and an unwitting impossible description 

In a recent book of so-called "mental exercises" the following puzzle is posed: 

It took 20 days for a l l of the leaves to fall from a tree. If the number of 
leaves that fell each day was twice that of the previous day, on which day 
was the tree half bare? 7 

M o s t persons, including the author of the book in which this puzzle appears, say that the answer is 
"on the nineteenth day". T h e author replies this way: 

If the number of leaves that fell doubled each day, the tree must have 
been half bare on the 19th day. 8 

T h i s answer, in spite of its ini t ia l plausibil ity, has been reached by a faulty inference. T h e fact that 
each number i n a series is the double of its immediate predecessor, does not imply that it is double the 
sum of al l its immediate predecessors. F o r a tree to be half bare implies that the number of leaves 
remaining on it is equal to the sum of the numbers of the leaves which fell on each of the preceding 
days. F o r any series of numbers in which each number after the first is double its predecessor, the sum 
of a l l of them up to but not including the last is always less than the last. 9 T h e tree cannot be half bare 
on the nineteenth day: more leaves remain than the sum of a l l the numbers of leaves which have fallen 
on each day up to that point. T h e tree w i l l become half bare only sometime during the last day, the 
twentieth. (Moreover, the tree w i l l be exactly half bare at some time only i f there was an even number 
of leaves on the tree to begin with.) 

It would be easy to leave the puzzle at this point, thinking that with this repair a l l now is in order. 
A l l is not in order, however. T h e puzzle harbors a still more subtle and crippl ing flaw provided we 
take the description given of the tree absolutely literally. Ask yourself this question: if a l l the leaves fell 
from the tree wi th in a twenty-day period, and if on each day the number of leaves which fell was twice 

7. Alfred G. Latcha, How Do You Figure It?: Modern Mental Exercises in Logic and Reasoning, Cranbury, 
N . J . , A.S. Barnes and Co., Inc., 1970, p. 19. 

8. Ibid., p. 53. 

9. The series at issue is of this sort: n, 2n, 4n, 8n, 16n,. . . One can terminate this series at any point one 
likes, and one will find that the last term of the terminated series will always be greater than the sum of all the 
previous terms. Thus if one sums through all members of the series up to, but not including, the last term, one 
wil l not reach one-half of the total sum. 
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that of the previous day, how many, then, fell on the first day? The answer we are forced to give is: 
"zero". For if all the leaves fell within a twenty-day period, it follows logically that none fell during 
any time before that period. But if none fell any time before that twenty-day period began, then it also 
follows logically that none could have fallen on the day before that twenty-day period began. Let's call 
that day, "Day Zero"; let's call the first day of the twenty-day period, "Day One"; the second, "Day 
Two"; etc. Since no leaves whatever fell on Day Zero, none fell on Day One; for Day One, like every 
other day in the twenty-day period, is a day in which twice as many leaves fell as on the previous day. 
But zero leaves fell on Day Zero, and since twice zero is zero, no leaves fell on Day One. But if no 
leaves fell on Day One, then no leaves fell on Day Two, for we are told (that is, the description of the 
tree implies) that on Day Two twice as many leaves fell as on Day One, but again, twice zero is zero. 
Continuing this line of reasoning (that is, tracing out this line of implications), we can easily show that 
no leaves fell on Day Three, none on Day Four, and so on, right through and including Day Twenty. 
In sum, at no time during the twenty-day period did any leaves fall from the tree. 

Something (to say the least) is seriously amiss. By two impeccable lines of reasoning we have shown 
in the first place that the tree was half bare sometime during the twentieth day and in the second place 
that at no time during that twenty-day period was it half bare. What precisely is wrong? 

There is no flaw whatever in any of the implications we have just asserted. The description of the 
tree does imply that the tree will be (at least) half bare sometime during the twentieth day and does 
also imply that the tree will never be half bare anytime during that period. Yet, these conclusions, 
taken together, are impossible. It is logically impossible both that a tree should be half bare during the 
course of a certain day and that it should not be half bare at any time during the course of that day. 

The trouble with this case lies in the original description of the tree: the description is itself logically 
impossible, or as we might say, logically self-inconsistent. Just because this description implies an 
impossibility, we know that it itself is impossible. It is logically impossible that there should be a tree 
which is both half bare and not half bare at a certain time. Yet this is the kind of tree which has been 
described in the statement of the puzzle. Obviously the author of the puzzle book didn't see this 
implication; he didn't see that the description implied two logically inconsistent propositions. 

Many inconsistent descriptions are of this sort. To the untrained eye, and oftentimes to the trained 
one as well, the inconsistency does not stand out. And indeed it may take a very long time for the 
inconsistency to be revealed—if it ever is. Cases are known where inconsistency has escaped detection 
for many, many years. Classical probability theory invented by Pierre Simon LaPlace was 
inconsistent. But this inconsistency went unnoticed for seventy-five years until pointed out by Bertrand 
in 1889.10 Even now, many teachers of probability theory do not know that this theory is inconsistent 
and still persist in teaching it in much the form that LaPlace himself stated it. 

Every inconsistent set of propositions shares with the case being examined here the feature of 
implying a contradiction. Indeed, that a set of propositions implies a contradiction is both a necessary 
and sufficient condition for that set's being inconsistent. 

It is easy to underestimate the grievousness of an inconsistent description. We can imagine a person 
following the two lines of reasoning we have gone through which lead to two different, incompatible 
answers to the puzzle, and then asking naively, "Well, which one is the correct answer?" 

What are we to make of such a question? How are we to answer it? 
Our reply is to reject a presupposition of the question, viz., that there is a correct answer to this 

question. Not all apparent questions have 'correct' answers. 'The' answer to the puzzle posed is no 
more the first (repaired) one given (viz., "on the twentieth day") than it is the latter (viz., "the tree is 

10. A detailed treatment of the so-called "Bertrand Paradox" occurs in Wesley Salmon, The Foundations of 
Scientific Inference, University of Pittsburgh Press, 1967, pp. 65-68. 
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never half bare"). Both answers follow logically from the description of the tree; but neither is true, 
simply because there can be no such tree answering to the description given.11 

Finally, before we turn our attention away from these case studies, let us glean one further point 
from our discussion. We have said that the original description as quoted is self-inconsistent: it is 
logically impossible that there should be a tree which is both half bare and not half bare at a certain 
time. But note carefully: the original description of the tree did not say precisely this. Indeed, most 
persons, unless they are prompted, would not see that this latter description also fits the tree as 
originally described. The latter, the obviously impossible description, is implied by what was written, 
but was not stated explicitly. Yet, for all that, any person who subscribes to the original description is 
committed to the explicitly contradictory one. We are, in a quite straightforward sense, committed to 
everything that is logically implied by what we say. This is not to say that we know everything that is 
implied by what we say, or even that we are dimly aware of these things. The point is, rather, that if 
we are shown that something does logically follow from what we say or believe, then we are logically 
committed to it also. If an explicit contradiction logically follows from something we've asserted, then 
we can be accused of having asserted a contradiction just as though we had asserted that contradiction 
explicitly in the first instance. 

EXERCISES 

7. Finding that a set of propositions implies a contradiction suffices to show that that set is 
inconsistent. But failure to show that a set of propositions implies a contradiction does not suffice to 
show that that set is consistent. Why? 

2. Repair the description of the tree in the quotation from the puzzle book so that it is consistent and 
so that the correct answer to the question will be, "Sometime during the twentieth day." 

3. (This question is somewhat more difficult than question 2.) Repair the description of the tree in 
the quotation from the puzzle book so that it is consistent and the correct answer will be, as the 
author suggested, "At the end of the nineteenth day." 

4. The following paragraph is inconsistent. Proceeding in a stepwise fashion (as we have done in the 
preceding discussion), validly infer from it two obviously inconsistent propositions. 

John is Mary's father. John has only two children, one 
of whom is unmarried and has never been married. Mary 
has no brothers. Mary is married to Simon who is an only 
child. Mary's son has an uncle who has borrowed money 
from John. 

11. Upon analysis, it turns out that these two answers are contraries of one another, and although they are 
inconsistent with one another, it is not the case that one is true and the other false; they are both false. The 
pertinent logical principle involved is the following: any proposition which ascribes a property to an impossible 
item is necessarily false. Clearly we can see this principle illustrated in the present case. Since there is no 
possible world in which a tree such as the one described exists, it follows that there is no possible world in which 
such a tree exists and has the property F, and it follows that there is no possible world in which such a tree 
exists and has the property G. 



350 M O D A L P R O P O S I T I O N A L L O G I C 

5. Is the following description consistent or inconsistent? 

It took twenty days for all of the leaves to fall from a tree. 
The number of leaves which fell each day was 100 more 
than fell the previous day. 

8. U S I N G W O R L D S - D I A G R A M S T O A S C E R T A I N T H E V A L I D I T Y O F M O D A L I Z E D 
F O R M U L A E 

The results of section 4 — in which we proved that every propositional-variable modalized by any one 
of the operators, " 0 " , " V " , or " A " can be instantiated to express only a noncontingent 
proposition — provide the opportunity to state some additional rules for the interpretation of 
worlds-diagrams so as to allow these diagrams to be used in intuitively appealing ways to demonstrate 
whether a modalized formula, either fully modalized or partial ly modalized, is valid, contravalid, or 
indeterminate. 

These additional rules for the width ( "W") of brackets are: 

Rule WA: 
Whenever a bracket for a proposition, P, spans all (hence the " A " in " W A " ) of the rectangle 

representing the set of a l l possible worlds, i.e., whenever P is necessarily true, we may add additional 
brackets for n P , OP , and A P each also spanning the entire rectangle. If we wish to add V P to the 
diagram, it w i l l have to be relegated to the external point representing the impossible worlds. 

F r o m 

one may derive 

P 
• 

• P 

V , 

OP 

VP 

AP 
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Rule WS: 

Whenever a bracket for P spans only part (i.e., some but not all) of the rectangle, i.e., whenever P is 
contingent, we may add additional brackets for O P and V P each also spanning the entire rectangle. D P 
and A P w i l l each have to be relegated to the external point. 

F r o m 

P 

one may derive 

Rule WN: 

y— 
O P 

' *— 
V P 

• n P , AP 

Whenever P spans none of the rectangle representing a l l possible worlds, i.e., whenever P is 
necessarily false, we may add a bracket for A P spanning the entire rectangle. D P , OP, and V P w i l l 
each have to be relegated to the external point. 

F rom 

one may derive P , DP, O P , V P 

- v — 
A P 

Let us see, now, how the addition of these rules facilitates our use of worlds-diagrams in the 
ascertaining of the validity of modalized formulae. 

Applications 

Case 1: Determine the validity of "OP D OP". 

Since there is but one sentence-variable type instanced in the formula " d P D O P " , we need 
examine only three worlds-diagrams. They are: 
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Rule W A allows us to place a bracket for D P spanning the entire rectangle in diagram 2. Rule WS 
allows us to place D P on an external point in diagram 1, and Rule W N allows us to place DP on an 
external point in diagram 3. 

By Rules W A and WS we may place a bracket for O P spanning the entire rectangle in diagrams 1 
and 2, and by Rule W N we place O P on the external point in diagram 3. 

Now we are in a position to place D P D O P on our worlds-diagrams. To do this all we need do is 
remember the rule (from chapter 5) for the placement of material conditionals: represent a material 
conditional by a bracket spanning all possible worlds except those in which the antecedent of the 
conditional is true and the consequent false. Immediately we may write 

O P 

D P D O P 

• P 

• P => O P 

F I G U R E (6.i) 

V 
p 

-* 

D P 

OP 
-* 

p 

• P , O P 

D P 3 O P 

By inspection we can see that D P 3 O P spans all possible worlds in every possible case. Therefore 
" • P D O P " is valid: every possible substitution-instance of this formula expresses a necessary truth. 
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Case 2: Determine the validity of " OP 3 DP". 

In the previous example we have already placed D P and O P on the relevant three worlds-diagrams 
(see figure (6.h)). It remains only to add O P 3 D P . 

P 

DP 
OP=>aP V. 

""•v— 
OP 

-v-
P 

DP 
- V — ' 

OP 

p 

DP, O P 

O P => D P 

0 P 3 D P 

F I G U R E (6.j) 

By inspection we can see that " O P 3 D P " is not a valid formula: some of its substitution-instances 
will express necessary falsehoods (see diagram 1 in figure (6.j)) while others will express necessary 
truths (see diagrams 2 and 3). It is, then, an indeterminate form. (However, as one would expect in 
the case of a fully modalized formula, none of its substitution-instances can express a contingency.) 

Case 3: Determine whether "(a (P z> QJ • OP) D OQ" is valid. 

Since there are two sentence-variable types instanced in this formula, we shall have to begin by 
constructing the fifteen worlds-diagrams required for the examination of the modal relations obtaining 
between two arbitrarily selected propositions. On each of these we shall have to add a bracket 
depicting the possible worlds in which P 3 Q is true. This we have already done in the previous 
chapter in figure (5.i) (p. 265). In seven of these cases, viz., 1, 3, 4, 6, 8, 9, and 11, the bracket for 
P 3 Q spans the entire rectangle and hence, by Rule W A above, we may add a bracket for D(P r> Q) 
which also spans the entire rectangle. In all other cases, viz., 2, 5, 7, 10, 12, 13, 14, and 15, by either 
Rule WS or Rule W N we place D(P 3 Q) on the external point. 

Next we add a bracket for OP. Rules W A and WS allow us to add brackets for OP spanning the 
entire rectangle in diagrams 1, 2, 5, 6, 7, 9, 10, 11, 13, 14, and 15. Only in diagrams 3, 4, and 8 (in 
accordance with Rule W N ) will we place OP on the external point. 

The placement of these first five formulae on the set of fifteen wtorlds-diagrams is shown in figure 
(6.k) on p. 354. 

Next we are in a position to add D(P z> Q) • OP to our diagrams. We recall from chapter 5 that the 
rule for placing a conjunctive proposition on a worlds-diagram is to have its bracket span just those 
worlds common to the brackets representing its conjuncts. Thus the bracket for d(P o Q) • OP will 
span the entire rectangle in cases 1, 6, 9, and 11, and will be relegated to the external point in all other 
cases, viz., 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, and 15. 

Now we add the bracket for OQ. By W A and WS, this bracket will span the entire rectangle in 
cases 1, 3, 5, 6, 8, 9, 10, 11, 12, 13, 14, and 15. In accordance with W N , it will be assigned to the 
external point in cases 2, 4, and 7. 

Finally we are in a position to add a bracket for (D(P D Q) • OP) ^ O Q to each of our diagrams 
by invoking the rule for placing material conditionals on a worlds-diagram. The completed figure 
appears on p. 355. 
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On examining each of the 15 worlds-diagrams we find that in every case the bracket for 
( • (P 3 Q ) • OP) r>OQ spans the entire rectangle.This shows that (d(P 3 Q ) • OP) 3 0 Q is valid,i.e., 
every possible instantiation of it is necessarily true. 

The validity of the axioms of S5. 

We have spoken in chapter 4 of the modal system S5. Let us now use the methods just established to 
test the validity of its axioms. One axiomatization of S5 (that provided by Godel) consists of any set of 
axioms of Truth-functional Propositional Logic 1 2 subjoined to the following three: 

(Al) D P D P 

(A2) d (P 3 Q) 3 (DP 3 QQ) 

(A3) - v d P 3 d ^ d P 

It is a trivial matter (using truth-tables, for example) to demonstrate the validity (tautologousness) 
of any axiom-set for Truth-functional Propositional Logic. It remains only to determine the validity of 
(A1)-(A3). 

Axiom 1: UP 3 P 

Since there is only one sentence-variable' type instanced in this formula, we need examine only three 
worlds-diagrams. It is a simple matter, invoking only the rules W A , WS, and W N , and the rule for 
placing material conditionals on worlds-diagrams to add brackets first for d P and then for d P 3 P. 

QP 
3 

» 

p v • • 
DP 3 P 

DP 

DP 3 P 

F I G U R E (6.m) 

p 

DP 

By inspection one can see that every possible instantiation of DP 3 P is necessarily true. Hence 
d P 3 P is valid. 

12. For example, the following axioms, due to Whitehead and Russell, are sufficient (along with their rules of 
inference) to generate every valid wff of Truth-functional Propositional Logic. 

(PCI) (PVP) D P 

(PC2) Q D (PvQ) 

(PC3) (PVQ) D (QvP) 

(PC4) ( Q D R ) D ([PVQ] D [PVR]) 
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Axiom 2: D(P b Q) 3 (DP D OQJ 
P 
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Figure (6.n) reveals, as expected, that A x i o m 2 is valid. 

Axiom 3: ^ UP O • ~ UP 

A s wi th A x i o m 1, only three worlds-diagrams need be considered. 

p 

D ^ Q P 

• P - v p P 

D P 

^ • P O D'X' D P 

F I G U R E (6.o,J 

<\»DP 

D ' V Q P 

P 
* 

• P 

^ Q P D D ^ D P 

Just as was the case in testing Axioms 1 and 2, we find that A x i o m 3 is also valid. 

The nonvalidity of the axiom set for S6 

T h e modal system S6 can be obtained by subjoining a certain subset of the theses of S5 to the single 
axiom, O O P . Let us examine the validity of this axiom. Immediately we may write down: 

Here we can see that the axiom O O P is not valid on that interpretation of " • " and " 0 " which 
interprets " • " as " i t is true i n a l l possible worlds that" and " 0 " as " i t is true in some possible worlds 
that". T h i s is not to deny that on some alternative interpretation (e.g., reading " 0 " as " i t is possibly 
known by God whether", or " i t is possibly believed that") , this formula may be valid. (And similar 
conclusions hold for the distinctive axioms of S7 and S8.) 
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EXERCISES 

Use worlds-diagrams to determine of each of the formulae 7 through 5 whether it is valid, contravalid, 
or indeterminate. 

If a formula contains a dyadic modal operator, first find a formally equivalent formula (using the 
methods of section 2) containing no modal operators other than "0" and/or "O". 

1. P D OP 

2. D(P D Q) D (P 3 UQ) [the so-called 'modal fallacy'] 

3. (OP-OQ) D (PoQ) 

4. O(P-Q) D (OP-OQ) 

5. (PDQ)D(P-*Q) 

6. Consider the S6 axiom, OOP. A substitution-instance of this axiom is 00 (P • ^ P), which is the 
negation of ~ 00 (P • ~ P). Use worlds-diagrams to show that this latter wfjis S5-valid. 

(Note that if OOP were, contrary to fact, S5-valid, then it would be possible to derive in S5 both 
00(P- ^P) and its negation ^00(P- ~ P), and thus S5, contrary to fact, would be inconsistent.) 

9. A S H O R T C U T F O R M A L M E T H O D F O R D E T E R M I N I N G T H E V A L I D I T Y O F 
M O D A L I Z E D F O R M U L A E : Modal reductiosi3 

The method of utilizing worlds-diagrams, as outlined in the previous section, is effective: by the 
mechanical application of its rules, one can determine the validity of any well-formed modalized 
formula. In this regard it is the analog of truth-table techniques in Truth-functional Propositional 
Logic. And like truth-table techniques, it suffers from the fault of being excessively burdensome. 
Indeed it is a more aggravated case. In truth-functional logic, in cases where there is only one 
sentence-type instanced in a formula, we require a 2-row truth-table; two sentence-types, a 4-row 
table; 3 sentence-types, an 8-row table; and 4 sentence-types, a 16-row table. But when we come to 
examine modalized formulae, the complexity explodes. For if we wish to ascertain the validity of a 
modalized formula instancing one sentence-type, we require 3 worlds-diagrams; 2 sentence-types, 15 
worlds-diagrams; 3 sentence-types, 255 worlds-diagrams; and 4 sentence-types, 65,535. Small wonder, 
then, that logicians have sought other methods to ascertain the validity of modalized formulae. 

One of these methods may be regarded as the modal version of the Reductio Ad Absurdum method 
we have already examined. Like the earlier Reductio method, it works well for some cases, allowing us 

13. The general method described in this section is the product of many years' work by many persons, some 
heralded and some not. Among its pioneers must be numbered Beth, Hintikka, and Kripke. Our own method 
owes much to some unpublished notes of M.K. Rennie. Stylistic variants, closely resembling ours, are to be 
found in M.K. Rennie, "On Postulates for Temporal Order", in The Monist (July 1969) pp. 457-468, and in 
G.E. Hughes and M.J . Cresswell, Introduction to Modal Logic, London, Methuen & Co. Ltd., 1968. 
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to ascertain the validity of some formulae very easily and rapidly; but for some other cases it works 
poorly and cumbersomely, at best. Nonetheless, it is so much easier to use in certain instances than is 
the effective method of worlds-diagrams, that it is useful to pursue it, in spite of its shortcomings. 

T h e strategy of Reductio methods has already been described. One makes an ini t ia l assignment to a 
formula and then looks to see what its consequences are: whether in any possible world that 
assignment leads to assigning both truth and falsity to one proposition. If it does, then the ini t ia l 
assignment was an impossible one. 

T o construct the method we need to call upon all those earlier rules we used for making assignments 
to the components of truth-functional sentences on the basis of assignments having been made to the 
compound sentences themselves, e.g., i f " T " is assigned to " P • Q " , then " T " should be assigned to " P " 
and " T " should be assigned to " Q " ; i f " F " is assigned to " P o Q " , then " T " should be assigned to 
" P " and " F " to " Q " ; etc. 

Since a l l dyadic modal operators can be 'defined away' in terms of the monadic modal operators, 
"<>" and " • " (see section 2, this chapter), it w i l l suffice to stipulate rules for handling formulae 
modalized by just these two operators. 

W e require rules which tell us how to make assignments to the components of modalized formulae 
on the basis of assignments having been made to the modalized formulae themselves. Fo r example, 
suppose the formula " D P " has been assigned " T " ; what, then, shall we assign to " P " ? There are in 
al l , four cases. Let us examine the appropriate rule in each case. W e shall call the rules, " R A - r u l e s " , 
where the " R A " stands for "Reduction to Absurdi ty" . 

RuleRAI 

If OP is true in Wn, then P is true in Wn and in all other possible worlds as well. T h u s we assign 
" T " to " P " in W n , and record the fact that this latter assignment is to persist throughout al l other 
possible worlds we examine as wel l , both those previously examined and those yet to be. T o show this, 
we write immediately below this assignment, the symbol, 

" T 

T h e double-stroke arrow indicates that this assignment is to persist throughout all possible worlds. 
Thus R A 1 may be stated this way: 

RA1: If in W„ we have, "DP", then we may write, "DP". 
T T £ | . 

Rule RA2 

If UP is false in Wn, then P is false in some possible world (it need not be Wn> however.) G iven 
just the information that D P is false in W n , the truth-value of P is indeterminate in W n . (This is not to 
say, however, that some other, additional information might not determine P's truth-value in W n . ) In 
sum, R u l e R A 2 may be stated this way: 

RA2: If in Wn we have, "OP", then we may write, :'aP". 
F F 

JF 

The 'weak' arrow under " P " indicates that the assignment " F " is to be made in at least one possible 
world to be examined subsequently. Note that no assignment has been made in W n itself to " P " and 
we do not assign " F " to P in a world previously examined. Noth ing sanctions that, since we know only 
that P is false in some world. 
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Rule RA3 

If OP is true in Wn, then P is true in some possible world (it need not be W„. itself.) 

RA3: If in Wn- we have, " OP", then we may write, " OP" 
T T 

If 
Rule RA4 

If OP is false in W,n, then P is false in W„ and in all other possible worlds as well. 

RA4: If in Wn we have, "0\P", then we may write, "OP". 

Example 7: Is the formula "D (P o OP) " valid? 

We begin by assigning " F " to this formula in possible world W,. 

• (P 3 OP) 

F 
I F 

(i) (2) 

The assignment at step (2) was made in accordance with RA2. Step (2) is as far as we can go in Wj : 
no further assignments are determined in Wj . But one assignment is determined for some other 
possible world; for we have written down " TF " at step (2). So let us now examine such a world. We 
will call it " W 2 " . 

W , 

• ( P O 0 P) 

F F 
IF 

w2 . 
© F F 

(2) (D(2) (3) 

The assignments at step (2) were made in accordance with the truth-functional rule for material 
conditionals. The assignments at step (3) [in Wj and in W 2 ] were made in accord with Rule RA4. At 
this point we discover an inconsistent assignment in W 2 : "P" has been assigned both " T " (at step (2)) 
and " F " (at step (3)). Thus the initial assignment of " F " to "D(P D OP)" is an impossible one, and 
we may validly conclude that this formula is valid. 
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Example 2: Is the formula "[ (P —> QJ • aPJ —• • (?" valid? 
The first step must here consist of replacing the two occurrences of dyadic modal operators with 
monadic modal operators. This is easily done and we may rewrite the formula this way: 

" • ( [ • (P D Q ) • dP ] D D Q ) " 

Just as in Example 1, not a great deal is revealed about this formula in Wj: 
O ( [ • ( P D Q ) • D P ] 3 D Q ) 

We turn, then, to W 2 . 

W, 

(1) 

IF 

(2) 

• ( [ • (P D Q ) - D P 

F T T 

3 • Q ) 

IF 

W, 
T T F F 

IF 
(3) (5) (4)f (6) (2) (3) (4)+ (1) (2) (3)* 

* in accord with Rule RA2 f in accord with Rule RA1 

No inconsistent assignment occurs in W 2 , nor was one necessitated in W, by the upward pointing 
arrows at step (4); but there are conditions in W 2 laid down for some subsequent world. In particular, 
we have not yet examined the consequences of having written " IF " under the last occurrence of "Q" 
in the formula. Let us now turn to a possible world in which Q is false: 

• ( [ • ( P D Q ) • • P J O • Q ) P 

T 
IF 

W, 
T T I 

IF 

T T © 

(3) (2) (4)* (2) (1) 

* "T" has been assigned to "(P 3 Q)" and to "P", hence "T" must be assigned 
to "Q". But "Q" has already been assigned "F" in step (1). 
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In W 3 an inconsistent assignment is necessitated for "Q". Hence we may validly infer that the initial 
assignment of "F" to the formula represents an impossible assignment, and thus may infer that the 
formula is valid. 

Example 3: Is the formula "0-P —•» P" valid? 

Again we begin by replacing the dyadic operator with a monadic one: "D(OP D P)". The 
assignments in W x are straightforward. 

We turn, next, to W 2-

W, 

Wo 

• 

F 

• 

F 

(0 P D P) 

IF 

( 0 P ) 

IF 

T F* F F 

Tr+ 
(2) (3) (1) (2) 

* required by our having assigned "F" to "P" in step (2) 
f required by our having assigned "T" to "OP" in step (2) [Rule RA3.] 

At this point all assignments have been made in W 2 and no inconsistent assignments have been made. 
But a condition has been laid down in W 2 for some other possible world: the " IT " which 
occurs under the first occurrence of "P" requires that we examine a possible world in which "P" is 
assigned "T". We call that world "W3". 

• ( O P 3 P ) 

F 
IF 

W, 
T F F F 

Tr 

T T T T 

(3) (1) (4) (2) 
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In W 3 no inconsistent assignment has been necessitated. Moreover, in W 3 , all earlier downward 
pointing arrows have been satisfied or 'discharged'. Our test is at its end and no inconsistent 
assignment has emerged. We may validly infer, then, that the initial assignment of " F " to the formula 
does not represent an impossible assignment. The formula, thus, is not valid. However, it remains an 
open question whether it is contravalid or indeterminate. To choose between these two alternatives we 
would have to examine the consequences of assigning "T" to the formula. If that assignment leads to a 
subsequent inconsistent assignment, then the formula is contravalid; if it does not lead to a subsequent 
inconsistent assignment, the formula is indeterminate. 

Example 4: Is the formula "(UP V DQ) D • (T V QJ " valid? 

(•P V DQ) D D(P V Q) 

W, 

(2) 

F F 

0) (2) 
IF 
(3) 

In Wj we have three choice points: having assigned "T" to " o P V d Q " we can assign "T" to "DP" 
and "T" to "DQ"; "T" to "DP" and " F " to "nQ"; or "F" to "DP" and "T" to "DQ". Only if each 
of these assignments leads to an inconsistent assignment in some world or other can we validly infer 
that the formula is valid. At this point, other methods, e.g., worlds-diagrams, seem more attractive as a 
means to test this particular formula.14 

EXERCISES 

Part A 

Using the method of Modal Reductio, determine which of the following formulae are valid. 

1. D(PV^P) 9. (P-^Q)-+ (PDQJ 

2. a(PvQ) 10. (P->Q) -+(P-*Q) 

3. 0(P- ^P) 11. o-OP 

4. (PoQ) D (P-Q) 12. aP-+P 

5. (P^Q) 13. [(P-Q) • - O Q / -» - OP 

6. (P?Q)-> (P-^QJ 14. f(P->Q). - O P / _ 

7. (P-*Q) = (P^QJ 15. ^ O P - (P-^QJ 

8. (P-QJ ^ (P-^QJ 16. • P - » (Q^P) 

14. Natural deduction techniques for S5 (as well as for the systems T and S4) are to be found in Hughes and 
Cresswell, An Introduction to Modal Logic, pp. 331 - 334. 
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77. OOP—.OP 22. (UP- UQ) -> U(P- Q) 

18. OOP->nP 23. n(PvQ) —> (DPvaQ) 

19. •/>-»••/> 24. (P^Q)-*(PoQ) 

20. (P*Q) 25. AOP 

21. (OP-OQJ -*0(P-Q) 

Part B 

26. Determine whether the formula in Example 3 is contravalid or indeterminate. 

27. Construct a Modal Reductio which proves that the Augmentation Principle (viz. 
(P —> Q) —* I (P • R) —> Q]) cited in chapter 4, section 5, is valid. 

28. Construct a Modal Reductio which proves that the Collapse Principle (viz., 
(P—>Qj—>/ (P • Q)*-+P]) cited in chapter 4, section 5, is valid. Note that there is a two-
pronged branch-point in this reductio. It will be necessary to examine both branches. 

10. T H E NUMBER OF F O R M A L L Y NON-EQUIVALENT SENTENCE-FORMS 
CONSTRUCTIBLE ON N SENTENCE-VARIABLES 1 5 

Two sentence-forms will be said to be formally equivalent if and only if, for any uniform substitution 
of constants for the variables therein, there result two sentences which express logically equivalent 
propositions. Sentence-forms which are not formally equivalent are said to be formally 
non-equivalent.16 For example, according to these definitions, the two sentence-forms, "P V ~ P" and 
"P 3 P", are formally equivalent, while the two sentence forms, "P" and "P V ~ P", are formally 
non-equivalent. 

The formation rules of propositional logics allow us to concatenate symbols into strings of indefinite 
length. We may have a wff containing as few as one symbol (e.g., "P" standing alone) or as many as a 
trillion or more. Clearly some of these strings will be formally equivalent to others and will be 
formally non-equivalent to all the remaining ones. The question arises whether the number of distinct 
formal equivalence-sets of sentence-forms is finite or infinite. As we shall now see, the answer to this 
question depends on the number of sentence-variables one has in one's symbolic language. 

Let us begin with the simplest case, that in which we construct sentence-forms, a, in which there 
appear sentence-variable tokens of one and only one sentence-variable type. These would include such 
wffs as 

15. Instructors may find that the material in this section is best reserved for their mathematically more 
proficient students. 

16. Note that equivalence tout court (or logical equivalence or 'strict' equivalence) is a property of 
propositions. Formal equivalence is a property of sentence-forms. 
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"P D (PV-vP)" 

" V P • P " 

" • P 3. P" 

Into how many distinct formal equivalence-classes may this (in principle) infinite list be subdivided? 
Interestingly, the answer is: a mere 16. Let us see how we arrive at this figure. 

When we wish to put a formula, a, on a set of worlds-diagrams, that formula must be placed on 
each rectangle so that it spans none of its segments, some but not all of them, or all of them. This fact 
immediately sets an upper limit to the number of formally non-equivalent formulae which may be 
depicted on a set of worlds-diagrams: this maximum number is simply the number of ways one can 
distribute brackets over the total number of segments in the set of worlds-diagrams. 

In the case of one sentence-variable type (as we saw in chapter 1) there are three worlds-diagrams 
comprising a total of four segments. The number of ways that brackets may be distributed over four 
segments is 2\ i.e., 16. Each of these ways is shown below and some members from the 
equivalence-class defined by that particular distribution of brackets are written alongside. 

a = P v M>; o(P 3 P ) ; DP = P ; e t c . 

a = 'voP; VP V avP; e t c . 

a = oP v a p ; i-(7P • P ) ; e t c . 

a ™ M? ; (VP • -v-p) v (o^P); e t c . 

5 o • P » o * P ; i . ( V P - ^ P ) ; e t c . 

am ( VP • P) v crvP; e t c . 

7 a •= AP; (AP • P) v (AP • ->.P); e t c . 

a = a ^ P ; -v.p • M7P; e t c . 

a » O P ; P v (VP • t p ) ; e t c . 

10 a •> VP; Op • O V P ; e t c . 

11 a = oP v (VP • %P); e t c . 

12 a - VP • p ; ^(OP 3 P ) ; e t c . 

13 a = P ; D P v P ; e t c . 

14 a • VP • P; e t c . 

15 a = aP; AP • P; e t c . 

16 a - P • I P ; • v o ( P D P ) ; (P •'v p) • 0 P; e t c . 

F I G U R E (6.q) 
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The rules which have been given in the course of the preceding and present chapters for depicting 
formulae on worlds-diagrams allow us to generate a set of brackets for any arbitrarily chosen wff in 
truth-functional and modal propositional logic. But we have not given any rules for passing the other 
way. How can one generate an appropriate formula, as has obviously been done in figure (6.q), to 
match any arbitrarily drawn set of brackets on a set of worlds-diagrams? Here we are faced with a 
problem, for the number of distinct ways of distributing brackets is finite (in this particular case, 
sixteen), while the number of distinct formally non-equivalent formulae corresponding to each of these 
sets of brackets is infinite. While various rules can be given for the generation of at least some formula 
for each set of brackets, no set of rules can generate all the formulae, nor is any simple set of rules 
known to us which in each case generates the shortest formula appropriate for a given set of brackets. 
In the case of figure (6.q) the formulae appearing in the right-hand column were not generated by the 
application of an effective method, but were instead found by insight, understanding, and trial and 
error — in short, by a 'feel' for the material. 1 7 

Each of the rows of figure (6.q) defines a class of formally equivalent sentence-forms; these classes 
are mutually exclusive of one another and are jointly exhaustive of the entire class of sentence-forms 
which contain only one sentence-variable type. Each formula occurring in the right-hand column of 
figure (6.q) is formally equivalent to every other formula occurring in the same row, and is formally 
non-equivalent to each formula occurring in each of the other rows. Any wfT, a, which contains 
variables of only one type, and which does not occur explicitly on figure (6.q), can be placed in one 
and only one row of that figure. Consider, for example, the formula "P D DP". Depicting this 
formula on a set of worlds-diagrams gives us: 

P 

•P •P 

•P 

P 3 DP 

P ^ D p 

F I G U R E (6.r) 

— v 
P => DP 

By inspection, we can see that the brackets for "P D DP" in figure (6.r) are distributed exactly as are 
the brackets in row 3 of figure (6.q). This tells us immediately that the formula "P D DP" and the 
formulae occurring on row 3 of figure (6.q), viz., "DP V ^P" and "^(VP-P)", are formally 
equivalent. Similarly, any other wff, a, containing propositional variables of only one type, must prove 
to be a member of exactly one of the sixteen equivalence-classes defined on figure (6.q). 

Glancing down the right-hand column of figure (6.q), we notice that four rows, viz., 1, 4, 13, and 
16, contain wffs which are unmodalized (i.e., are formulae of truth-functional logic). The question 
arises: Are these all the rows which contain at least one unmodalized formula? Do any of the other 

17, A great deal, if not indeed the bulk, of advanced work in both logic and mathematics is precisely of this 
sort in that it demands insight and creativity and is not attainable by the rote following of recipes. The 
generation of proofs, the finding of axiom sets, the solving of partial differential equations, etc. etc., lie, like most 
of logic and mathematics, in the realm of creativity, not in the realm of assembly-line procedures. Textbooks — 
since they are usually geared to displaying solved problems and effective procedures — tend to obscure this point. 
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classes, defined by the remaining 12 rows, contain any unmodalized formulae? The answer is: No. 
That there are exactly four classes of formally non-equivalent truth-functional formulae containing 
one propositional variable follows immediately from the fact that the truth-table for any unmodalized 
formula, ju, containing one propositional variable-type, contains exactly two rows. 

p H 

T 

F 

' V ' is any unmodalized wff containing one proposi­
tional variable type, " P " . 

F I G U R E (6.s) 

There are exactly four distinct ways that truth-values can be assigned to "/t". These are 

T F T F 
T T F F 

These assignments represent rows 1, 4, 13, and 16 respectively in figure (6.q). In general, the 
number, u, of classes of formally distinct non-equivalent truth-functional formulae containing n 
propositional variable types will be equal to the number of ways that "T"s and "F"s may be 
distributed in the last column of a truth-table for n variable-types. Thus if there are 2 rows in the 
truth-table (i.e., one variable-type), there will be four ways to assign " T " and " F " to a compound wff, 
a; if 4 rows (i.e., two variable-types), then 16 ways; etc. In short, the number of classes, u, is equal to 
2m, where m equals the number of rows in a truth-table for n propositional-variable types. In chapter 
5, m was defined equal to 2"; thus u = 22". 

Eight rows (viz., 1, 2, 7, 8, 9, 10, 15, and 16) of figure (6.q) contain wffs which are fully 
modalized. Looking at the configurations of brackets on each of these rows, it is easy to see what 
property it is on the worlds-diagrams by virtue of which a formula is itself (or is formally equivalent 
to) a formula which is wholly modalized: the brackets for such a formula will, on each rectangle in a 
set of worlds-diagrams, span all or none of that rectangle. (This fact follows from the rules W A , WS, 
and W N . [See section 8.]) That fully modalized formulae map onto worlds-diagrams in this fashion 
allows us immediately to calculate the maximum number of distinct classes of fully modalized 
formulae: this number is simply the maximum number of ways brackets may be distributed so that on 
each rectangle in a set of worlds-diagrams the bracket spans all or none of that rectangle. Letting "A" 
equal the number of rectangles in a set of worlds-diagrams, the maximum number of ways of 
distributing brackets in this fashion is, simply, 2k. Of this number, two configurations are found to be 
appropriate for two truth-functional formulae as well: the case where the brackets span every rectangle 
in the set (corresponding to "P V <v P"); and the case where the brackets span no rectangle in the set 
(corresponding to "P • ~ P"). Thus the number of distinct classes,/, of formally equivalent wffs which 
contain at least one wholly modalized formula and no unmodalized formulae is 2* - 2. 



§ 1 0 The Number of Formally Non-Equivalent Sentence-Forms 369 

The total number of distinct classes, t, of formally equivalent formulae — that is, the number of 
distinct classes without regard being paid to whether those classes contain any unmodalized or any 
fully modalized, formulae — is equal to the maximum number of ways that brackets may be 
distributed over the total number of segments occurring in a set of worlds-diagrams. In a set of 3 
diagrams, there are 4 segments; in a set of 15 worlds-diagrams, there are 32 segments; in a set of 255 
worlds-diagrams, there are 1024 segments. Thus the total number of distinct classes, t, of formally 
equivalent sentence-forms constructible on one sentence-variable type is 2 4 (i.e., 16, as we have already 
seen); on two sentence-variable types, 2 3 2 (i.e., 4,294,967,296); and on three sentence-variable types, 
21024 

We may generalize on these results. If we let n = number of sentence-variable types, we have 

Total number of 
worlds-diagrams k = 2 2"•- 1 [See chapter 1, p. 57] 

Total number of segments in 
a set of k worlds-diagrams18 s = 2 2" X 2"' 

Total number of ways 
which brackets may be 
distributed over s segments t = 21 

Total number of distinct 
classes of formally equiva­
lent sentence-forms such 
that the class contains at 
least one unmodalized 
formula (truth-functional 
formulae) u = 2 2" [See chapter 5, p. 272; u — 2" 

Total number of distinct 
classes of formally equiva­
lent sentence-forms such 
that no member of the class 
is unmodalized and at least 
one member is fully 
modalized / = 2* - 2 

The total number of formally distinct classes of sentence-forms constructible on n sentence-variables 
is t. Of this number t, a certain number, viz., u, of these classes contain at least one unmodalized 
formula, and a different number,/, of these classes contain at least one wholly modalized formula. For 
every value of n, the sum of u arid/is smaller than t. This means that for every value of n, there must 
exist a number of distinct classes, p (= t - u - f), which contain neither an unmodalized formula nor 
a wholly modalized formula, i.e., which contain only partially modalized formulae. As n increases, this 
number, p, approaches closer and closer to t. What this means is that by far the greater number of 
classes of formally equivalent wffs are classes whose members are all partially modalized, and hence are 
classes whose members are formally indeterminate, i.e., neither valid nor contravalid formulae. 

We may see some of these results more clearly by actually calculating these various parameters for 
the first few values of n: 

18. The derivation for the formula for s is not given here. Mathematically adept students are invited to try to 
derive it themselves. 
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n k s u f P t 

Sentence- Worlds- Total Truth- Fully Partially Formally 
variable diagrams segments Functional modalized modalized distinct 

types formulae formulae formulae formulae 

1 3 4 4 6 6 16 

2 15 32 16 32,766 4,294,934,514 4,294,967,296* 

3 255 1,024 256 2
255_

2 s2
1024 

2
1024 

4 65,535 524,288 65,536 2
65,535_

2 
.2524,288 

2
524,288 

5 etc. 

F I G U R E (61) 

By the time we have reached sentence-forms containing as few as four sentence-variable types we 
can construct (in principle, i f not in fact,) 2 5 2 4 2 8 8 formally non-equivalent sentence-forms. W h e n we 
pass on to five, six, and seven variables, the numbers become so large as to beggar the imagination. 

EXERCISE 

How many of the rows offigure (6.q) represent classes of formally equivalent valid formulae? 

11. L O O K I N G B E Y O N D M O D A L L O G I C T O I N D U C T I V E L O G I C 

M o d a l logic, as presently conceived, concerns itself wi th those modal attributes which can be explicated 
in terms of the concepts: (1) being true (false) in a l l possible worlds; (2) being true (false) in no 
possible worlds; and (3) being true (false) in some possible worlds. 

Inductive logic tries to refine the latter of these three concepts. F o r intuitively we have the idea that 
the notion of "some possible worlds" admits of further elaboration: that there is some sense of "s ize" 
which allows us to say, of some pairs of contingent propositions — each of which is true in some but 
not a l l possible worlds — that one is true in a set of possible worlds which is larger in 'size' than the 
set of possible worlds i n which the other is true. For example, we have a natural disposition to say that 
the set of possible worlds i n which it is true that today is Tuesday is greater in 'size' than the set of 
possible worlds in which it is true that today is the second Tuesday in November. 

* Gerald Massey, in his book, Understanding Symbolic Logic (New York, Harper & Row, 1970, pp. 188 -
190), derives through matrix methods this same number as the total number of formally non-equivalent formulae 
containing propositional variables of two types. He, like the present authors, remarks in effect that 16 of these 
formulae are formally equivalent to truth-functional formulae. But he, unlike the present authors, does not 
further subdivide the remaining class into those subclasses in which every member is a partially modalized 
formula, and those in which at least one member is not partially modalized, i.e., in which at least one member is 
a fully modalized formula. 
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The cardinality of a class and other concepts of class size 

Our first inclination probably would be to identify this notion of 'size' with the number of members 
(i.e., possible worlds) in each class, with what mathematicians call the "cardinality" of the class. But 
this simple notion won't do. It comes to grief on the fact that contingent propositions may be true, not 
in finite classes of possible worlds, but in infinite classes. Consider, for example, the two propositions, 
(a) that today is Tuesday, and (b) that today is Tuesday or Wednesday. Intuitively we might feel 
inclined to say that the former is true in a fewer number of possible worlds than the latter. But we are 
barred from saying this. Each of these propositions is true in an infinite number of possible worlds and 
moreover, even though the former is true in a proper subset of the latter, the two sets have the same 
cardinality.19 

If the requisite sense of the 'size' of a class cannot, then, for present purposes, be identified with the 
cardinality of the class, with what property can it be identified? This is no easy question, and one 
which has no obvious answer. Many solutions have suggested themselves to researchers in inductive 
logic. 

In certain ways the problem is reminiscent of a problem in geometry. In geometry, we want to be 
able to say of two lines, for example, that they differ in 'size' even though (of necessity) each of the two 
lines contains exactly the same number of points. Happily, geometers have sought and found ways 
which allow us to do just this; to invoke a notion of the 'length' of a line which does not depend on the 
number of points in that line. 2 0 

The goal in inductive logic is to define a measure which stands to an infinite set of possible worlds 
much as the notion of length stands to the set of points which comprise a line: two lines containing the 
same number of points may yet differ in length (size). Similarly we should like to find a way to say 
that two sets of possible worlds each containing an infinite number of worlds may yet differ in "size". 
As just one example of how this measure might be constructed consider the following. The cardinality 
of the class of all integers is f̂ , (read "Aleph-nought"). Similarly the cardinality of the class of all even 
integers is i^. In one sense of "size"; viz., that in which cardinalities are compared, the class of all 
integers is equal in size to the class of even integers. But we can define a different notion of "size" 
which makes the latter class half the size of the former. Consider the two classes {even integers less than 
n) and {integers less than n) and let "N{a}" stand for "the cardinality of the class {a}". For any even 
integer n, the ratio 

N {even integers less than n} 
N{integers less than n} 

is less than Vi. As n increases, the value of this ratio approaches ever closer to xh. The value, Vi, is the 
limit of this ratio as n approaches infinity: 

Lim N{even integers less than n] 
= 1/2 

n —> GO N{integers less than n] 

We can use this latter formula to define a second notion of 'size' such that — using this latter notion 
— i^ is correct to say that the 'size' of the class of even integers is half the 'size' of the class of all 
integers. 

19. Recall that in chapter 3, pp. 146-47, it was shown that an infinite set and a proper subset of that infinite 
set may each have the same number of members, i.e., the same cardinality. 

20. To be more specific: The length " L " of a line which lies in a two-dimensional orthogonal coordinate 
system and which has end points at (xj, yi) and at (x2, y2) is given by the formula: 

L = | [ ( X ] - x 2 ) 2 + (y, - v , ) 2 l » | 

4 
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Difficult as it may be to give a rigorous explication of the precise sense of 'the size of a class' which 
we presuppose when we say, e.g., that the 'size' of the class of possible worlds in which it is true that 
today is Tuesday is greater than the 'size' of possible worlds in which it is true that today is the second 
Tuesday in November, the concept of 'size' nonetheless figures as the intuitive foundation of much 
thinking in inductive logic. 

The concept of contingent content 

Every proposition satisfies both the Law of the Excluded Middle and the Law of Noncontradiction. 
The first says that every proposition is either true or false, that there is no 'middle' or third 
truth-value. The second law says that no proposition is both true and false. Together these two laws 
say that the properties of truth and falsehood are mutually exclusive and jointly exhaustive of the 
entire class of propositions. 

Corresponding to each of these two laws just cited we can state two analogues for modal status. In 
the first place we can say that every proposition is either contingent or noncontingent. And in the 
second, we can say that no proposition is both contingent and noncontingent. The two properties, 
contingency and noncontingency, are mutually exclusive and jointly exhaustive of the class of 
propositions. 

Between contingency and noncontingency there is no 'middle' or third category. Contingency and 
noncontingency, like truth and falsehood, do not come in degrees. No proposition is 'half contingent' or 
'three-quarters noncontingent5 or any other fractional measure, just as no proposition is half or 
three-quarters true (or false). No contingent proposition is more contingent or less contingent than any 
other contingent proposition; and no noncontingent proposition is more noncontingent or less 
noncontingent than any other noncontingent proposition. 

None of this means, however, that we cannot talk cogently of one proposition being closer to being 
necessarily true than another. To explicate this latter concept we shall introduce the concept of the 
contingent content of a proposition. And to do this we begin by noticing a curious fact about necessary 
truths. 

In a memorable passage in Through the Looking Glass, Alice and the White Knight have the 
following conversation: 

"You are sad," the Knight said in an anxious tone: "let me sing a song to comfort you." 
"Is it very long?" Alice asked, for she had heard a good deal of poetry that day. 
"It's long," said the Knight, "but it's very very beautiful. Everybody that hears me sing it — 
either it brings tears into their eyes, or else — " 
"Or else what?" said Alice, for the Knight had made a sudden pause. 
"Or else it doesn't, you know. . . . " 2 1 

Although Lewis Carroll doesn't tell us Alice's reaction to this piece of 'information', we can well 
imagine that Alice would have been somewhat annoyed in being told it. There is a certain sense in 
which being told that a particular song brings tears to everyone's eyes or it doesn't, is vacuous. Like all 
necessary truths, in being true of all possible worlds, this proposition of the Knight's tells us nothing 
specific about his world, about how his song is usually met in his world, which makes that song 
different from any other song. In its bringing or not bringing tears to the eyes of everyone who hears 
it, it shares a property in common with every song everywhere, ih the past as well as the future and in 
this, the actual world, in the imaginary world of Through the Looking Glass, and in every other 
possible world as well. 

21. Lewis Carroll, Alice's Adventures in Wonderland ir Through the Looking Glass, New York, Signet 
Classics, 1960, pp. 211 - 212. 

t 
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Although what the Knight said to Alice is true, it lacks what has come to be called, "contingent 
content". The contingent information, or the contingent content, of the Knight's declaration is nil or 
zero. 

Philosophers have gone a long way in inductive logic toward constructing measures for the amount 
of contingent content in a proposition. The basic idea is this: the smaller the 'size' of the set of possible 
worlds in which a proposition is true, the greater its amount of contingent content. A more specific 
version of this would be: the contingent content of a proposition is inversely proportional to the 'size' of 
the set of possible worlds in which that proposition is true. 

Suppose someone were to ask us how many stars there are. If we were to reply, 

(6.15) "There are a million or fewer, or between one million and a billion, or a 
billion or more", 

what we would express would be true. Indeed it would be necessarily true, and we would have 
succeeded not at all in telling our questioner specifically how many stars there are. Our answer would 
be true in all possible worlds and we would run no risk of being wrong in giving it. If, however, we 
were to omit one of the disjuncts, asserting only the remaining two, our answer would no longer be 
necessarily true. It could be false. For example, if we were to say, 

(6.76) "There are a million or fewer, or between one million and a billion", 

then if in fact there were 10 billion stars, we would speak falsely. But whether we in fact end, in this 
latter case, speaking truly or falsely, our listener would be in receipt of contingent information. He 
would be entitled to infer that we are asserting (the contingent fact) that there are no more than a 
billion stars. As we reduce the number of alternatives in our answer, the contingent content (as well as 
our risk of being wrong) correspondingly increases. The proposition that there are a million or fewer 
stars, or between one million and a billion, or a billion or more, is true in all possible worlds and 
contains the least amount of contingent content. The proposition that there are a million or fewer stars 
or between a million and a billion, is not true in all possible worlds and contains a considerable 
amount of contingent content. And the proposition that there are a million or fewer stars is true in a 
set of possible worlds of yet smaller 'size' and contains still more contingent content. The more a 
proposition excludes (rather than includes), the greater its amount of contingent content. (Our naive 
intuitions might have suggested that the relation would be 'the other way round', but it is not.) The 
more a proposition excludes, the greater is the 'size' of the set of possible worlds in which it is false, 
and the greater is our risk, in the absence of other information, in holding to it. 

From an epistemic point of view the most useful contingent truths are those that are most risky (in 
the sense just mentioned), for they carry the greatest amount of contingent content. Just notice how we 
prefer answers with as few disjuncts, with as much contingent content, as possible. When we ask 
someone, "Where are the scissors?", we would prefer to be told something of the sort, "They are in the 
cutlery drawer", than to be told something of the sort, "They are in the cutlery drawer, or beside the 
telephone, or in the desk, or in the sewing basket, or in the woodshed among the gardening tools." And 
when we ask someone what time it is, we would prefer to be told something of the sort, "It is three 
minutes past nine" than to be told something of the sort, "It is either three minutes past nine, or six 
minutes past eleven, or twenty minutes before eight." 

Our intuitions in these matters can be captured by appeal to worlds-diagrams. Consider once more 
figure (5.f) (p. 258) which illustrated the relation of disjunction. It can there be seen that the bracket 
representing the disjunction of two propositions is never smaller than the bracket representing either 
one of those propositions. What that shows is that a disjunctive proposition (which as we have just seen 
generally has less contingent content than either of its disjuncts) is true in a set of possible worlds 
which is equal to, or greater in size, than either of the sets of possible worlds in which its disjuncts are 
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true. Choosing one diagram (no. 15) as illustration from among all of those of figure (5.J) gives us: 

P 

15 

P V Q 

F I G U R E (6.u) 

Note that in this and all the other worlds-diagrams in figure 
(5.f), the bracket representing P v Q must be at least as long as 
the bracket representing P and must be at least as long as the 
bracket representing Q. 

As we disjoin more alternatives onto the proposition that there are a million or fewer stars, the 
content of the proposition systematically decreases. It reaches its lowest point when we say that there 
are a million or fewer stars, between a million and a billion, or a billion or more. At this point the 
proposition ceases to have any contingent content whatever. This latter proposition is necessarily true, 
and we can view the process by which we passed from the highly contentful proposition that there are 
a million or fewer stars, to this latter one in which the contingent content is nil, as passing through an 
ordered list of propositions each one of which is systematically closer to being a necessary truth. Of 
course only the last in this list is a necessary truth, but the others can be thought to be close or far from 
that proposition in the list. 

The two concepts, closeness to necessary truth and contingent content, can be defined in terms of the 
size of the set of possible worlds in which a proposition holds. 

1. The greater the size of the set of possible worlds in which a 
proposition is true, the closer it is to being necessarily true. 

2. The greater the size of the set of possible worlds in which a 
proposition is true, the smaller its amount of contingent content. 

Closeness to being necessarily true can be seen to vary inversely with the contingent content of a 
proposition.22 

22. Let us mention one point which is a source of potential confusion. In recent years there has been a 
remarkable growth in the science of cybernetics or information theory. In cybernetics, a certain parameter has 
been defined which bears the name, "information content". But it should be pointed out explicitly that this latter 
concept is distinct from the concept of contingent content which has here been defined. For one thing, 
information content is a measure of a property of sentences, while contingent content is a measure of a property 
of propositions. This being so allows the information content of a sentence-token expressing a noncontingent 
truth, on occasion, to be quite high, while the contingent content of the corresponding proposition would, as we 
shall see, in all cases remain precisely zero. 
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Monadic modal functors 

The contingent content of a proposition is a property of a proposition which comes in various degrees. 
It cannot, therefore, be symbolized by a single fixed symbol, after the fashion of "<C>", " V " , and 
" A " . Instead, in order to symbolize the concept of contingent content and allow for the fact that 
propositions may have varying degrees of contingent content we use a functor rather than a sentential 
operator. 

A functor, like an operator, takes as its argument a wff; but unlike an operator, the result of 
applying a functor to a wff is not the generation of a sentential wff, but rather the generation of a 
numerical wff, i.e., a wff which stands for a number. 

The functor we shall introduce to signify the concept of contingent content will be " S " (German 
" C " ) . Its argument is to be written in parentheses immediately to the right of it, e.g., 

"€(P)", 
" 6 ( P D ( Q . R » " . 

The expression "£(P)" is to be read as: "The contingent content of P". Both the expressions, "(S(P)" 
and "(S(P 3 (Q • R))", represent numbers. Such numerical wffs may be used in arithmetical sentential 
wffs in the standard way that any symbol designating a number may be used, for example: 

"<S(P 3 Q) = <£(~PvR)" 
"S (A D B ) > 0.67" 

The first of these is the sentential wff which says that the contingent content of P D Q is the same as 
the contingent content of ^ PvR. The second says that the contingent content of A D B is greater than' 
0.67. 

The amount of contingent content which a proposition has is measured on a scale of 0 to 1, with 0 
being the contingent content of the least contentful proposition, and 1, the greatest. On this scale it is 
obvious that noncontingent truths rate a value of 0. For example, 

<S (It is raining or it is not raining) = 0, and 

& (AH aunts are females) = 0 

Contingent propositions will assume a value between 0 and 1. 

0 < g (It is raining) < 1 

But what value do we assign to noncontingent falsities? In accordance with the above so-called 'basic 
idea' (p. 373), the amount of contingent content in necessarily false propositions would seem to be 1. 
Does this make sense? Or should the amount of contingent content of all noncontingent propositions 
(both those that are true as well as those that are false) be the same, i.e., zero? 

While philosophers assert that necessarily true propositions are contingently empty, they assert in 
contrast that necessarily false propositions are full. 

Consider these two propositions: 

(6.77) It is raining or it is not raining, [necessarily true] 

(6.18) It is raining and it is not raining, [necessarily false] 



376 M O D A L P R O P O S I T I O N A L L O G I C 

From (6.17) nothing logically follows about the distinctive state of the weather in this or any other 
possible world — it does not follow that it is raining nor does it follow that it is not raining. (6.17) is 
a useless piece of information if we want to know how today's weather conditions differ from those of 
any other day or any other place or any other possible world for that matter. (6.18), on the other 
hand, does contain the information we desire. For from (6.18) it follows that it is raining. 
Unfortunately, where (6.17) had a dearth of contingent content, (6.18) is afflicted with a surfeit of it. 
For not only does (6.18) imply that it is raining; it also implies that it is not. Be that as it may, (6.18) 
certainly does have contingent content. How much exactly is dictated by a fairly standard condition 
that is imposed on the numerical values for measures of contingent content. This condition is 
specifically: 

(6.19) <S(P) = 1 -<E(~P) 

or alternatively, 

(6.20) <S(P) + <S(~P) = 1 

Roughly, what this condition says is that whatever contingent content one proposition lacks, any of its 
contradictories has. Since we have already assigned the value of zero to necessarily true propositions, 
we must assign the value of one to their contradictories, which are, of course, all those propositions 
which are necessarily false. In symbols we have: 

(6.21) D P - . [<E(P) = 0] 

(6.22) CWP-*[<E(P) = 1] 

(6.23) V P - , [ 0 « S ( P ) < 1] 

If we allow the 'sizes' of sets of possible worlds to range from zero (for the case of necessarily false 
propositions) to one (for the case of necessarily true propositions), then it seems perfectly natural to 
identify the contingent content of a proposition with the 'size' of the set of possible worlds in which 
that proposition is false. 

It is sometimes useful to have available a second functor which measures the size of the set of 
possible worlds in which a proposition is true. Its definition, in terms of the functor " S " , is trivial. We 
shall call this second functor "SDT': 

"SDi(P)" = df "1 - S(P)", or alternatively, 

"2K(P)" = d f « C ( ~ P ) " 

We may read "9)?(P)" as "P's closeness to necessary truth", or alternatively, "the size of the set of 
possible worlds in which P is true". 

The problem of finding an appropriate sense for the concept of "size" being invoked in this context 
comes down to devising a suitable formula for assigning numerical-values to the SJJ-functor. Intuitively 
we can represent the 9ft-value of a proposition (the size of the class of possible worlds in which that 
proposition is true) by a segment on a worlds-diagram whose width is proportional to that SR-value. 
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•2R (P ) . 

•6 ( ~P ) -

P 
— v -
~ p 

F I G U R E (6.v) 

In this instance, Sft(P) = u and ^ P) 
u + v = 1. 

v. O f course, 

M u c h of what we have been saying about contingent content, closeness to necessary truth, S-values 
and 2W-values, may be organized on one illustrative figure. 

Proposition is 
necessarily false 

Propositions are 
contingent 

Proposition is 
necessarily true 

There are ten stars 
and i t is not the case 
that there are ten stars 

There are ten stars 

There are ten stars 
or there are nine stars 

There are ten stars 
or there are nine stars 
or there are eight stars 

There are no stars 
or there is one star 
or there are two stars 
or .... or .... (etc.) 

Maximum 
Contingent Content 

<5(P) = 1 
3JKP) = 0 

3 H 
n> n> 
CO H * 
01 13 
oi ere 
ri ^ o 
rt O 
1-1 (0 
c m 
r> S 
3* (0 

CO 

r> a 
O CD 0 n 
rt i-l 
CD (0 0 01 
rt CO 

H -
3 

0Q 
O 
O 
3 

Minimum 
Contingent Content 

<£(P) = 0 
2JKP) = 1 

F I G U R E (6.w) 
Note that the measure of the contingent content of a contingent proposition 
is independent of that proposition's truth-value. A false proposition may have 
a greater contingent content than a true one. 
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Propositions having S-values close to 0 (9ft-values close to 1) are true in 'large' sets of possible 
worlds and are closer to being necessary truths (even i f they are false) than are other propositions 
having higher (S-values. Propositions having S-values close to 1 ($DJ-values close to 0) are true in 
'smal l ' sets of possible worlds and are closer to being necessary falsehoods (even if they are true) than 
are other propositions having lower ©-values. 

Note that while contingent propositions may vary among themselves as to their respective 'distances' 
from being necessarily true (or false); i.e., in their 3)?-values, there is no corresponding feature for 
noncontingent propositions. Necessarily true propositions do not vary among themselves as to their 
respective 'distances' from being contingent. They are al l 'equi-distant' from contingency. N o 
necessarily true proposition is any closer to being contingent than is any other. (And mutatis mutandis 
for necessarily false propositions.) 

A few rather important theses about contingent content might profitably be noted. The first of these 
we have already explained, viz., 

(6.24) <5(PvQ) < <S(P) and G(PvQ) < g (Q ) 

That is, the contingent content of a disjunction is always equal to or less than the contingent content of 
either of its disjuncts. T o this theorem we may add the following ones: 

(6.25) <£(P • Q ) >: <£(P) and <S(P • Q ) > S ( Q ) [A conjunction tells us the same 
as or more than either of its 

(6.26) M(P • Q ) < 2R(P) and SK(P.. Q ) < 3R(Q) conjuncts] 
and 

(6.27) (P — Q) - > [ S ( P ) > 6 ( Q ) ] [If P implies Q , then Q has the 
same or less contingent content 
than P] 

Each of these theses may easily be proved by inspecting the fifteen worlds-diagrams (figure in 
chapter 1. 

The last of these theses is particularly important: it tells us that in cases where one proposition 
implies another, the former has the same or more contingent content than the latter, i.e., that the 
relation of implication can at most preserve contingent content, but that there can never be more 
contingent content in the consequent than in the antecedent. 

These latter facts present a seeming puzzle. W h y should we be interested in examining the 
consequences of propositions once we realize that these consequences can, at best, have the same 
contingent content, but w i l l , i n a great many cases, have less contingent content than the propositions 
which imply them? W h y should we be interested in passing from propositions with high contingent 
content to propositions with lesser contingent content? 

The answer lies wholly in the character of human knowledge. Although a person may know a 
proposition P, which implies another proposition Q , it does not follow that that person knows Q. 
Remember (from chapter 3) that four conditions must be satisfied in order for a person to know a 
proposition. In the case where P implies Q , one's having knowledge that P satisfies one and only one 
of the four conditions necessary for knowing that Q : one's knowing that P guarantees the truth of Q , 
for as we have earlier seen (1) one cannot know a false proposition, and (2) the relation of implication 
preserves truth. But one's knowing that P does not guarantee any of the other three conditions, viz., 
that one believe Q , that one have good evidence that Q , and that this justified belief be indefeasible. If, 
however, one does know both that P and that P implies Q , then one is in a position to have an 
indefeasibly justified true belief that Q , i.e., is in a position to know that Q. When a person learns that 
Q, on the basis of having inferred Q from the known proposition P, even though Q may have less 
contingent content than P, he adds a further item of knowledge to his store of knowledge. 
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What are the prospects for a fully developed inductive logic? 

Inductive propositional logic is a going concern and has been for many years. Vast numbers of 
important theses i n this logic are easily provable. Although rigorous proofs can be given for a l l of its 
theses, many of them, virtually by inspection, can be 'read off worlds-diagrams. It is, for example, a 
trivial matter to establish any of the following theses simply by examining the set of fifteen 
worlds-diagrams for two propositions. 

(6.28) 2 » ( P v ~ P ) = 1 

(6.29) 2 K ( P - -x-P) = 0 

(6.30) ( P * Q ) - [SR(PvQ) = g»(P)+2R(Q)] 

(6.31) ( P * Q ) - [ 2 R ( P - Q ) = 0] 

(6.32) (P - Q) - [3»(P • Q) = 3R(P)] 

(6.33) ( p _ Q ) _ » [2K(PVQ) = 2R(Q)] 

(6.34) (P«-Q) _ [2»(P) = g»(Q)] 

(6.35) [VP • (P - Q) • ~ (Q - P)) - [S(P) > G(QJ] 

(6.36) (P o Q) _ [SK(PvQ) = 3»(P )+3R(Q) - 9Jc(P • Q)] 

So far as it goes, inductive propositional logic is a very attractive logic. But the trouble is that it does 
not go very far. T o be more specific, it never assigns 9ft- or S-values to propositions expressed by 
simple sentences, but only to propositions — and then only to some, not al l — which are expressed by 
compound sentences. 2 3 In the above examples we can see that inductive propositional logic sometimes 
assigns SR-values to propositions expressed by compound sentences solely on the basis of the forms of 
those sentences (see, for example, theses (6.28) and (6.29)). In other cases, such assignments can be 
made only upon the specification of the SDf- or (5-values of the propositions expressed by their simple 
sentential components together with a specification of certain information about the modal attributes of 
the latter propositions (see, for example, theses (6.30) - (6.35)). A n d in stil l other cases, inductive 
propositional logic is unable to do even the latter as can be seen in thesis (6.36) which expresses the 
•Jft-value of P v Q i n terms of the 2ft-value of a proposition (viz., P • Q ) which is itself expressed by a 
compound sentence and whose own 99?-value is not calculable within this logic from the 99?-values of P 
and of Q . 

It would seem, then, that the next development one would want to see in an inductive logic would be 
a means of assigning 5ft- and S-values to propositions expressed by simple sentences, and to those 
compound sentences the calculation of whose 2ft- and S-values apparently lies beyond the capabilities 
of a propositional logic. 

H o w can these assignments be made? 
O n the interpretation which has here been suggested for 9ft- and S-values, it would appear that the 

only way to make such assignments would be a prior i . Empir i ca l techniques confined to the actual 

23. Note that in its inability to assign 9ft- and ©-values to propositions expressed by simple sentences, 
inductive propositional logic is analogous to truth-functional propositional logic which give us no logical grounds 
for assigning truth-values to propositions expressed by simple sentences. 
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world are not going to be able to tell us, for example, the size of the set of all the other possible worlds 
in which some particular contingent proposition is true. But how, exactly, is this a priori program to 
be carried out? 

In the early 1950s Rudolf Carnap made a valiant attempt at constructing a logic to do just this.24 

His, of course, was a logic of analyzed propositions; for without analyzing propositions, there can be 
no basis for assigning one proposition one value, and another proposition some other value. To make 
these assignments, Carnap constructed what he called "state-descriptions". Although he did not use the 
possible-worlds idiom, we may regard a state-description as a description of a unique possible world 
(or as a set of possible worlds which share in common all of a stipulated set of attributes). 

The trouble with Carnap's pioneering work, however, was that he was never able to extend his 
analysis to the entire set of possible worlds. He found it necessary, in each case, to examine only those 
possible worlds which were describable by very impoverished languages. Within small, highly 
artifically restricted sets of possible worlds, he was able to assign SD?- and S-values to individual 
propositions relative to those restricted sets of possible worlds. He was not able to extend his analysis 
to the unrestricted, full set of all possible worlds. 

To date, no completely satisfactory solution has been found to the general problem. The 
construction of a fully-developed inductive logic remains a challenging, tantalizing goal. 

In their search for an inductive logic of analyzed propositions, logicians are guided by a number of 
paradigm cases, i.e., examples about whose appropriate 90?- and S-values many logicians have shared 
and strong convictions. For example, we would want our logic to assign much higher (S-values to 
so-called 'positive' propositions, than to 'negative'. Virtually all of us intuitively feel that the set of 
possible worlds in which it is false that there are 31 persons in room 2b, is greater in size than the set 
of possible worlds in which it is true: there are vast numbers of ways for it not to be the case that there 
are 31 persons in room 2b (e.g., there are none; there are 2; there are 17; there are 78; there are 
455,921; etc., etc.); but there is only one way for there to be 31 persons in that room. 

There are, of course, countless numbers of other propositions about whose SfJc- and (S-values our 
intuitions fail us. Consider, for example, the two propositions, A, that oranges contain citric acid, and 
B, that the Greek poet Homer wrote two epics. Is the set of possible-worlds in which A is true, larger, 
equal to, or smaller in size than the set in which B is true? This question has no obvious answer. But 
this is not a cause for despairing of the possibility of an inductive logic. If an inductive logic can be 
satisfactorily achieved which yields the 'right' 3D?- and S-values for the paradigm cases, then we can 
simply let it dictate the ffll- and (S-values for those propositions about which we have no firm 
intuitions. Indeed this is one of the motivating factors in searching for any logic, whether it be an 
inductive logic or any other kind: the constructing of a new powerful logic holds out the promise of 
providing new knowledge, knowledge beyond knowledge of the paradigm cases which are used to test 
its mettle. 

EXERCISES 

1. a. Which, if either, has more contingent content: the proposition that today is Sunday or the 
proposition that today is not Sunday? 

b. Which, if either, has more contingent content: the proposition that Mary Maguire is over 
twenty-one years of age, or the proposition that Mary Maguire is forty-two years of age? 

24. Rudolf Carnap, The Logical Foundations of Probability, 2nd ed., Chicago, The University of Chicago 
Press, 1962. 
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2. Find a contingent proposition which has more contingent content than the proposition that 
today is Sunday. 

3. Suppose that A implies B, that WH(A) = 0.3 and ffll(B) = 0.5. What is the value of 
W(A 3 B) ? the value of%l(A • B) ? the value offfl(AvB) ? and the value ofjffi(A = B) ? 
[Hint: Study figure (6.u) and reread pp. 313-315.] 

4. Suppose that A*B, that %ft(A) =0.12 andWt(B) = 0.43. What is the value ofSJlfAo B)? 

5. Philosophers often talk about the 'absolute probability' of a proposition, and by this they mean 
the probability of a proposition in and of itself without regard to any other contingent 
information whatever. Which do you think is the more appropriate concept with which to 
identify this notion of absolute probability: the contingent content of the proposition or its 
complement, closeness to necessary truth? Explain your answer. In seeking answers to 
questions do we want answers with high or low absolute probability? Again, explain your 
answer. 

6. A question to ponder: We have said that necessary truths have no contingent content. Does this 
mean that, they all lack informative palue? Can some different sense of "content" be devised 
such that necessary truths will have some sort of informational (epistemic) value? 

The concept of probabilification 

Whether a proposition P implies a proposition Q, is an 'all-or-nothing-affair'; that is, either P implies 
Q or it is not the case that P implies Q. Implication — like consistency, like truth, like falsity, etc. — 
does not come in degrees. No proposition partially implies another; no implicative proposition is 
partially true or, for that matter, partially false. 

Nonetheless it would be a boon to logical analysis if we could define a somewhat weaker notion than 
implication, a notion which shares various features in common with that concept, but which does 'come 
in degrees'. Intuitively we can distinguish among various cases of non-implication: some of them do 
seem to 'come closer' to being cases of implication than others. For example, neither of the following 
cases is a case of implication: 

(6.37) If repeated, diligent searches have failed to find a Himalayan Snowman, then 
Himalayan Snowmen do not exist; 

(6.38) If Admiral Frank's July 1923 expedition did not find a Himalayan Snowman, 
then Himalayan Snowmen do not exist. 

Many of us would intuitively feel that (6.37) is somehow 'closer' to being an instance of implication 
than is (6.38). 

In the case where the relation of implication obtains between two propositions, the truth of the 
former guarantees the truth of the latter. But might there not be a somewhat weaker logical relation 
such that if it were to obtain between two propositions the truth of the former would — if not 
guarantee — at least support the latter? 

Philosophers have christened this latter relation "probabilification" (alternatively, "confirmation"). 
It is allegedly illustrated in the example (6.37) above: the proposition that repeated, diligent searches 
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have failed to find a H i m a l a y a n Snowmen, is thought to 'probabil i fy ' (to support, warrant, or 
conf i rm)— even though it does not imply — the proposition that H i m a l a y a n Snowmen do not exist . 2 5 

A dyadic modal functor for the concept of probabilification 

Let us introduce a functor, ' " $ " (German " P " ) , to symbolize the concept of probabilification. T h e 
functor, "^8", is dyadic: it takes two arguments, written in parentheses and separated by a comma. 

' " i P ( P , Q ) " = d f "the degree to which P probabilities Q " 

T o construct a wff using such an expression, one may use it in any way in which one would use any 
other symbol in arithmetic which expresses a numerical value, for example, 

(6.39) ' T K A V B , A D B) = $ ( A , A = C ) - 0.45" 

T h e probabilification-functor is to assume numerical values between 0 and 1 (inclusive). If P 
provides utterly no support for Q , as would be the case, for example, if P and Q were both contingent 
and inconsistent w i t h one another, then the corresponding $-value would be zero. If, on the other 
hand, P implies Q , then the ^-functor is to have the m a x i m u m value possible, viz . , one. A l l other cases 
w i l l be assigned numerical values between these two limits. 

In terms of worlds-diagrams, how is the ^J-functor to be interpreted? 
Let us begin wi th an example. W e w i l l choose two logically independent propostions: A , the 

proposition that there are fewer than 30 persons in room 2 A , and B , the proposition that there are at 
least 25 but fewer than 40 persons in room 2 A . T h e relevant worlds-diagram is the fifteenth. 

A 

A«B 
*• 

B 

F I G U R E (6.x) 

Arbi t rar i ly pick a w o r l d , W , i n the set of possible worlds i n which A is true. W h a t are the 'chances' 
that this w i l l be a wor ld in which B is also true? T h e 'chances' w i l l depend on what proportion of the 
segment representing A overlaps the segment representing B . M o r e specifically, the 'chances' of W ' s 
ly ing in the segment representing A • B is simply the 'width ' of that segment compared to the total 
width of the segment representing A itself. But the 'widths' of segments are nothing other than the 
associated 9)l-values. Hence i n this case we may immediately write down the fol lowing formula: 

25. Rudolf Carnap argued at length that there are at least two different concepts standardly designated by the 
term "probability": what he called "confirmation" and "relative frequency" respectively. It is the first alone of 
the two different concepts which we are examining. For more on Carnap's views see esp. pp. 19 - 36, op. cit. 
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(6.40) <P(P,Q) = 
gft(P • Q) 

HR(P) 

This formula is not fully general, however. It cannot be applied to all cases. Recall that division by 
zero is a disallowed operation in arithmetic. Thus we must not allow SDJ(P) in the above formula to 
assume the value zero. While (6.40) can be used in cases in which P is possible, it cannot be used in 
cases where P is impossible, for when P is impossible, 2)?(P) = 0. Thus we need a formula different 
from (6.40) to cover the cases where P is necessarily false. What that formula should be is obvious. In 
cases where P is necessarily false, P implies Q, and we have already said that in cases of implication, 
the ^-functor is to bear the numerical value, one. Thus we replace formula (6.40) with the following 
two formulae: 

It is interesting to calculate the value of ^ ( P ^ ) in the case where P is necessarily true. The formula 
we use is (6.41). In cases where P is necessarily true, 9W(P • Q) =9W(Q), and 2Jc(P) = l . Substituting 
these values in formula (6.41) we find: 

The 9JJ-value of a proposition may be considered its 'absolute' or 'degenerate' probability, i.e., the 
degree to which it is probabilified by a proposition having no contingent content. Or putting this 
another way, the absolute probability of a proposition is its probability in the absence of any 
contingent information about that proposition.26 

Given the above explications of probabilification, we can see that there are no further problems in 
incorporating such a notion into inductive logic than those already mentioned in regard to the 
calculation of 9K- and S-values. For the problem of actually assigning numerical values to the 
^-functor comes down to the problem of assigning SJZ-values. If we are able to solve that problem, we 
will automatically be able to assign probabilification-measures. 

EXERCISE 

Let "C"— "There are at least 25, but jewer than 100, persons in room 2 A ". Add C to figure (6.x). Does 
A probabilify C less than, equal to, or more than the degree to which it probabilifi.es BP 

26. What we are here calling the "absolute" probability, is sometimes called the "a priori" probability. We 
eschew this particular use of the latter term. Although the absolute probability of a proposition can be known 
only a priori, it seems to us misleading to favor this particular probability-measure with that name. For on our 
account, all measures of degree of probabilification, whether absolute or relative (i.e., whether on the basis of 
propositions having no, or some, contingent content) are — if knowable at all — knowable a priori. 

(6.41) OP —NKP,Q) = 
a » ( p - Q ) 

and 

(6.42) ~ O P - r a $ ( P , Q ) = 1] 

(6.43) DP - [<P(P, Q) = g»(Q)] 

http://probabilifi.es
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