

CONTRIBUTIONS

▷ New method for spatially pooling response maps for object detectors to create a discriminative and compact image signature

▷ Combine our representation with BoW-like representations

NEW SPATIAL POOLING STRATEGY

$$\triangleright$$
 2 object detectors :

- Latent SVM object detectors [3] for most of the blobby objects
- Texture classifier by Hoiem [4] for more texture- and material-based objects/regions

 \triangleright Final image representation Z concatenates the aggregation operator, denoted as aggr(r, c) for each detector c and regions r:

$$Z = [aggr(r, c)]_{(r,c) \in \{1; N_r\} \times \{1; N_c\}}$$

 N_c : number of detectors

 N_r : number of spatial regions

 $aggr(r,c) = \begin{cases} sum(r,c) & \text{if } c \text{ is a texture} \\ n-max(r,c) & \text{otherwise} \end{cases}$

Dimension : $N_r \times (n \times N_{obj} + N_{text})$ N_{obj} : number of object detectors N_{text} : number of texture detectors

\triangleright Spatial pooling with *n* maximums

Extract a vector of size n by taking the n bounding boxes with the n largest detection scores

 \rightarrow keeping information about the number of objects of class c present in region r

Different pooling for objects and textures

Original image (left) and response map (one for sky classifier (right - high values in red)

 \rightarrow use sum-pooling for texture classifiers

IMAGE CLASSIFICATION USING OBJECT DETECTORS Thibaut Durand⁽¹⁾, Nicolas Thome⁽¹⁾, Matthieu Cord⁽¹⁾, Sandra Avila^(1,2)

(1) Université Pierre et Marie Curie, UPMC-Sorbonne Universities, LIP6, 4 place Jussieu, 75005, Paris, France (2) Federal University of Minas Gerais, NPDI Lab – DCC/UFMG, Belo Horizonte, MG, Brazil

PROPOSED PIPELINE

RESULTS

Dataset : PASCAL VOC 2007 (20 classes)	♦ "One
Spatial Pyramid Matching : $1 \times 1, 2 \times 2, 3 \times 1$	♦ Objee
Classification performance : Mean Average Preci-	• 2
on (MAP)	
BN : 4,096 visual words, 2 bins, $\lambda_{min} = 0.4$ and	
$min = 2.0, \ s = 10^{-3}$	• 6
Fisher Vector : 256 Gaussians	S
Late Fusion : $\alpha = 0.5$	e
	1

	MAP	plane	bicycle	bird	boat	bottle	bus	car	cat	chair	COW
OURS	59.0	64.7	75.6	32.1	62.7	48.2	70.3	83.8	49.3	57.2	48.4
BNFV	60.3	79.5	65.6	53.6	72.1	32.7	66.0	79.0	59.7	54.5	43.0
LF	67.6	80.8	78.8	55.4	73.8	52.2	76.6	86.4	64.1	62.1	55.2
		table	dog	horse	moto	person	plant	sheep	sofa	train	tv
OURS		52.4	34.2	76.9	68.1	87.7	36.6	44.4	51.8	71.3	63.8
BNFV		60.0	46.8	78.6	64.8	84.5	31.2	45.3	54.6	78.5	55.1
LF		66.6	49.7	83.4	74.7	89.8	37.9	50.7	64.1	80.9	68.9

Image classification MAP (%) on VOC 2007 dataset (LF: Late Fusion, OURS: our signature)

	Method	BNFV	[5]	[6]	[7]	OURS	LF	
	MAP $(\%)$	60.3	61.7	66.3	66.6	59.0	67.6	
Sta	te-of-the-art	results (I	MAP %	ó) on P	ASCAI	J VOC 20	07 data	ise

e-versus-all" SVM classifier with RBF kernel ect detectors :

20 latent SVM object detectors [3] which correspond to 20 object categories of the VOC 2007

texture classifiers of Object Bank [1]: rockstone, sand, water, sky, grass and buildingedifice

 f_{ours} : classification score for ours signature f_{BNFV} : classification score for BossaNovaFisher

-
lEEE Sign

[1]	LJ. Li,
	high_leve

- Vision, 2012.

COMBINATION

▷ Explore the combination between our signature and low-level representations : BossaNova (BN) and Fisher Vectors (FV) [2]

 \triangleright Combination by late fusion – learn individually each classifiers and compute a linear combination :

 $f(x) = \alpha f_{ours}(x) + (1 - \alpha) f_{BNFV}(x) \qquad (1)$

CONCLUSION

 \triangleright For texture classifier, sum-pooling is more appropriate than max-pooling

▷ Good results with a compact image representation \triangleright The combination with low-level representations outperforms state-of-the-art performances

ACKNOWLEDGMENTS

REFERENCES

H. Su, E. Xing, and L. Fei-Fei, "Object bank: A high-level image representation for scene classification & semantic feature sparsification," in NIPS, 2010.

Avila, N. Thome, M. Cord, E. Valle, and A. de A. Araújo, "Pooling in image representation: The visual codeword point of view," Computer Vision and Image Understanding, 2013.

P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan, "Object detection with discriminatively trained part-based models," in IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010.

D. Hoiem, A. Efros, and M. Hebert, "Automatic photo pop-up," ACM Transactions on Graphics, 2005.

K. Chatfield, V. Lempitsky, A. Vedaldi, and A. Zisserman, "The devil is in the details: an evaluation of recent feature encoding methods," in BMVC, 2011.

J. Sánchez, F. Perronnin, and T. E. de Campos, "Modeling the spatial layout of images beyond spatial pyramids," Pattern Recognition Letters, 2012.

Y. Su and F. Jurie, "Improving image classification using semantic attributes," International Journal of Computer