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ABSTRACT

Visual learning with weak supervision is a promising re-

search area, since it offers the possibility to build large image

datasets at reasonable cost. In this paper, we address the prob-

lem of weakly supervised object detection, where the goal is

to predict the label of the image using object position as latent

variable. We propose a new method that builds upon the La-

tent Structural SVM (LSSVM) formalism. Specifically, we

introduce an original coarse-to-fine approach that limits the

evolution of the latent parameter subspace. This incremental

strategy drives the learning towards better solutions, provid-

ing a model with increased predictive accuracy. In addition,

this leads to a significant speed up during learning and infer-

ence compared to standard sliding window methods. Experi-

ments carried out on Mammal dataset validate the good per-

formances and fast training of the method compared to state-

of-the-art works.

Index Terms— Image Categorization, Weak Supervision,

Object/Region Detectors, Latent SVM

1. CONTEXT

In image classification, the goal is to predict the semantic con-

cept of an image according to its visual content. A major chal-

lenge is to fill the gap between low-level image descriptors

and their semantic interpretation. One of the most successful

image representation approaches is the Bag-of-Word (BoW)

model [1], using SIFT features, and its extensions [2, 3, 4, 5].

Another promising strategy is deep learning: recently, deep

(convolutional) network [6] show their ability to learn useful

image representations for the classification task. Rather than

using local descriptors, other methods use trained object and

region detectors to represent the visual content of each image

[7, 8], leading to compact and semantic signatures.

In this paper, we address the problem of visual learning

with weak supervision. In this context, training data only pro-

vide image-level annotation (presence/absence of each cat-

egory), and we model the (unknown) object location using

latent variables. Learning weakly supervised object detec-

tors is a very promising research area: if several millions of

image-level annotated images are nowadays available, only

thousands of accurate bounding box annotations exist [9].

In our context, handling weak supervision consists in

learning a joint model for both localization and classifica-

tion. A widely-used approach is the Latent SVM (LSVM)

[10] and is extension to structured output: Latent Structural

SVM LSSVM [11]. Despite the excellent performances for

detection tasks, LSSVM performances for categorization

[12, 13, 14, 15, 16, 17] are less impressive. We can point out

two LSSVM limitations: the computation is very demanding

and the optimization problem is hard (non-convex).

For modeling object positions, methods generally use a

sliding window scheme. Regarding complexity, the evalua-

tion of the classification function for each latent value (e.g.,

object position) is the bottleneck for both learning and test-

ing. A general algorithmic option to speed up training con-

sists in using improved learning formulations, e.g., cutting

plane [18]. Another option is to limit the latent space ex-

ploration. In [15, 16], an incremental approach is proposed

to gradually incorporate smaller and smaller regions during

learning advance.

The second issue is the quality of the learned model

caused by the non-convex optimization problem, potentially

leading to (bad) local minima. To alleviate this problem, bet-

ter learning algorithms have been proposed. In [12, 15, 16],

different iterative methods based on curriculum learning [19]

are introduced to find a better optimum. The basic idea is to

start with easy samples, gradually adding more complex ones.

The definition of easy vs hard examples is crucial: in [12],

easy samples are defined as the ones that can be correctly

predicted. In [15, 16] the size of the latent parameter space is

used as an indication of the difficulty of the learning problem.

In this paper, we propose a novel method for weakly su-

pervised image classification, where the evolution of the la-

tent parameter space is done in a coarse-to-fine manner. The

resulting algorithm, called Incremental LSSVM (ILSSVM),

has two advantages compared to sliding window approaches:

faster training and better predictive accuracy. Although our

method shares some similarities with [15, 16], our incremen-

tal update is different, leading to further improvements. Our

experiments validate the capacity of our method to outper-

form state-of-the-art works with a lower computation time.



2. INCREMENTAL LSSVM

We consider a multi-class problem, where input training data

are composed of n labeled images {(x1, y1), . . . , (xn, yn)},
where xi is an image, and yi ∈ Y = {1, 2, . . . ,K} its la-

bel. The latent variable hi = (hi1, hi2, hi3, hi4) represents

the bounding box of the predictive object location (see Fig.1).
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Fig. 1: Illustrative figure for latent variable model. xi repre-

sents the i-th image with its bounding box hi.

2.1. Incremental latent variable model

We propose an original evolution of the latent parameter sub-

space based on cropping, to explore only few boxes at each

iteration. The idea is to start with the whole the image as

bounding box, because we are sure that the object is inside,

and gradually cropping it. The goal is to gradually center the

box on the object. Hence, the latent optimization starts from

a coarse model of the object and refines it at each iteration.

At each iteration, the latent variable can take 6 values, which

corresponds to : do not crop, crop to the left, right, top, bot-

tom and 4 sides (illustration Fig. 2). The latent parameter

subspace depends on the previous latent value, so each im-

age can have a different subspace. For iteration t, the latent

parameter subspaceHi for the image i is:
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(ĥt−1
i1 , ht−1

i2 +k, ht−1
i3 , ht−1

i4 ), (ht−1
i1 , ht−1

i2 , ht−1
i3 −k, h

t−1
i4 ),

(ht−1
i1 ,ht−1

i2 ,ht−1
i3 ,ht−1

i4 −k), (h
t−1
i1 +k,ht−1

i2 +k,ht−1
i3 −k,h

t−1
i4 −k)}

where k is the crop step, and ht−1
i = (ht−1

i1 , ht−1
i2 , ht−1

i3 , ht−1
i4 ) is

the predicted latent value at iteration t−1.

This model is interesting for two reasons: it is faster and

have a better generalization than sliding window approaches.

Using a small subspace allows to be faster in inference, be-

cause for multi-class classification, the inference time is pro-

portional to the number of class and the dimension of the la-

tent parameter space. At each iteration, ILSSVM explores

only 6 windows per image, whereas a sliding window ap-

proach explores more than ten thousands of windows per im-

age. To limit the dimension of the latent parameter space,

[15] used a generic object detector to generate about 1500

boxes per image. Note that this requires the use of an external

knowledge, and the computation time remains important.

(a) do not crop (b) crop left (c) crop right

(d) crop top (e) crop bottom (f) crop 4 sides

Fig. 2: Example of possible cropping (blue boxes) for a cur-

rent bounding box (red)

Although an incremental learning is performed in [15,

16], a sliding window scheme is still used. As learning pur-

sue, the latent variable space increases in [15, 16], whereas

it remains constant with our approach. In addition, contrar-

ily to all sliding window strategies in [12, 15, 16], ILSSVM

does not require knowledge on the size and the ratio of ob-

jects. The boxes of each image can have a different size and a

different ratio, and consequently adapt themselves to objects.

2.2. ILSSVM learning scheme formulation

We want to learn a LSSVM discriminant function of the form:

(y, h) = argmax
y∈Y,h∈H

〈w,Ψ(xi, y, h)〉 (2)

where Ψ(x, y, h) is the joint feature. Ψ(x, y, h) is the image

representation of the box defined by h for the image x and

for the class y. In multi-class classification, the joint feature

Ψ(x, y, h) ∈ R
K×d is:

Ψ(x, y, h) = ([y = 1]Φ(x, h), . . . , [y = K]Φ(x, h))

with Φ(x, h) ∈ R
d is the image representation of the box h

for the image x and [y = ȳ] =

{
1 if y = ȳ

0 otherwise

For training the discriminant function, we use a Latent

Structural SVM formulation [11]. The objective function at

the iteration t is:

Pt(w)=
1

2
‖w‖2+

C

n

n∑

i=1

(

max
(y,h)∈Y×Ht

i

[∆(yi,y)+〈w,Ψ(xi,y,h)〉]

)

︸ ︷︷ ︸

p(w)

−
C

n

n∑

i=1

max
h∈Ht

i

〈w,Ψ(xi, yi, h)〉

︸ ︷︷ ︸

q(w)

(3)

where C is the penalty parameter and ∆(y, ȳ) = [y 6= ȳ] is

the loss function that penalizes misclassification. This objec-

tive function enforces the score of the ground truth class for



each image to be above the highest score of an incorrect score

plus one. We do not require any ground truth localization in-

formation in this optimization.

Image representation. For image representation, we use

the foreground-background feature representation introduced

in [15]. We pool low-level features separately in the fore-

ground and background to form the image-level representa-

tion. As reported in [15], it provides better classification per-

formances than using foreground only, because background

provides strong context for classification. To capture the spa-

tial structure of the object, we use a spatial pyramid 1×1, 3×3
for the foreground region. Each region is represented with a

BoW models [1] using SIFT descriptors.

2.3. Optimization and classification

To solve the global optimization problem, we propose an iter-

ative algorithm (Algorithm 1) that alternates between solving

an LSSVM optimization problem with the current latent pa-

rameter subspace (line 4-8) and updating the latent variable

subspace (Ht
i) of each example (line 11).

Algorithm 1 ILSSVM Learning

Require: training set {(xi, yi)}
n
i=1, {h0

i }
n
i=1

1: Set t = 1 and initialize {Ht
i}

n
i=1 with Eq. 1

2: repeat

3: Set j = 0 and vj =
C
n

∑n

i=1 Ψ(xi, yi, h
t
i)

4: repeat

5: Solve wj = argminw [p(w)− 〈w, vj〉]
6: j ← j + 1
7: Compute vj = ∇wq(wj) =

C
n

∑n

i=1 Ψ(xi, yi, h
j
i )

where h
j
i = argmaxh∈Ht

i

〈wj ,Ψ(xi, yi, h)〉

8: until [p(wj)− q(wj)]− [p(wj−1)− q(wj−1)] < ε

9: wt+1 = wj−1 and {ht+1
i }ni=1 = {hj−1

i }ni=1

10: t← t+ 1
11: update {Ht

i}
n
i=1 with Eq. 1

12: until objective function Pt(w) do not decrease

Ensure: wt and {ht
i}i=1,...,n

The main difficulty of this algorithm is to solve the

LSSVM optimization problem. Unlike [15], we introduce

a well formulated optimization based on concave-convex

procedure (CCCP [20]) to solve our optimization problem

(Eq. 3). At iteration t, the objective function Pt(w) is non-

convex but can be written as the difference of convex func-

tions: p(w) − q(w). The CCCP algorithm is guaranteed to

decrease the objective function at every iteration and to con-

verge to a local minimum or saddle point. We first initialize

latent variable and compute initial hyperplane v0 (line 3).

Then we alternate between solving the resulting convex prob-

lem (line 5) and linearizing the concave part (−q) at the

current solution wj (line 7).

To solve the optimization problem (line 5), we use the

(a) bison (b) deer (c) elephant

(d) giraffe (e) llama (f) rhino

Fig. 3: Images of the different categories of Mammal dataset

cutting-plane algorithm with “1-slack” LSSVM formulation

[18]. Note that this much faster optimization scheme (time

complexity linear in the number of training examples, and lin-

ear in the desired precision) is not used in [15, 16].

Image classification. For classification, we use the same

coarse-to-fine approach. We start with a box initialized on the

whole image, and gradually crop it until convergence.

3. EXPERIMENTS

In this section, we describe our experimental setup and we

show our results on the Mammal dataset [21].

3.1. Dataset and setup

The Mammal dataset [21] consists of 6 mammal categories :

bison, deer, elephant, giraffe, llama and rhino. This dataset

is challenging since there are few images per class, and the

image resolutions are diverse. We split the images of each

category into approximately 90% for training and 10% for

testing, and use ten different splits to compare our method

with the sliding window. The parameters are set to C = 103

and ε = 10−3. For each experiment, we report the mean and

the standard deviation of the test lost for the 10 splits. We use

the same splits for all experiments. The local descriptors are

SIFT, extract with vl dsift of VLFeat [22] (step 2, size 4

pixels). To avoid having empty boxes with our method, we

imposed a minimal area of 2000 pixels.

3.2. Results

To compare our method, we reimplemented an iterative multi-

scale sliding window LSSVM learning scheme similar to

[16]. This is a strong baseline since it is reported in [16] that

this incremental learning favorably impacts both accuracy

and computation time compared to standard sliding window

LSSVM [12].



split SW (6 scales) ILSSVM

1 22,58 12,90

2 29,03 25,81

3 22,58 22,58

4 16,13 25,81

5 45,16 38,71

6 25,81 22,58

7 35,48 16,13

8 25,81 12,90

9 35,48 22,58

10 35,48 32,26

mean 29, 35± 8, 53 23, 23± 8, 16

Table 1: Classification error for the 10 splits for multi-scale

sliding window (SW) and our method (ILSSVM)

Table 1 reports the results for ILSSVM and the multi-

scale sliding window approach. ILSSVM brings a substantial

gain of 6 pt. We performed a Student t-test and verify that

this difference is statistically significant. This validates the

fact that our incremental learning improves predictive accu-

racy. In addition, we want to stress that we also experiment

a mono-scale sliding window scheme. We noticed extreme

variations depending on the chosen window size: for “good”

window (100 × 150 pixels, which is approximately the size

of animals), classification error drops below 20%, whereas

for “bad” windows (50 × 75 pixels), classification error can

strongly increase (∼ 45%). In [12], a mono-scale sliding win-

dow scheme is evaluated. However, the window size is setup

to approximately match the object size. Therefore, the re-

sults reported in [12] are not comparable with ours because

of the use of this strong prior knowledge. Also note that the

results are slightly different from [12] because we do not use

the same image representation.

Another important criterion of comparison is the compu-

tation time. We compare ILSSVM with sliding window ap-

proaches. Table 2 details the computation time for different

methods. To learn the detectors for the 10 splits, 1 hour is

needed for ILSSVM, whereas 30 hours are required for multi-

scale sliding window with 6 scales and 1 ratio. It shows that

our method is at least 30 time faster than multi-scale sliding

window.

method time

ILSSVM 1 h

one-scale sliding window 3 h

multi-scale sliding window (6 scales, 1 ratio) 30 h

multi-scale sliding window (6 scales, 6 ratios) 250 h

Table 2: Time Comparisons for the ten splits on 1 CPU

As a conclusion, ILLSVM performs better and faster than

multi-scale sliding window methods.

3.3. Parameter of evolution of the latent variables

We study the influence of the crop step, which is the principal

parameter of our method. To have a crop step adapted to every

image, we use a step proportional to the maximum between

width and height.

crop step (%) 13 17 20 25 30

error (%) 25,81 23,87 23,23 23,55 25,16

Table 3: Evolution of classification error with respect to the

crop step

Table 3 details the results for different crop step values.

The experiments show a small variation (less than 3%) of the

classification error according to the crop step. Therefore, we

can conclude that our method is robust to this parameter. In

particular, it is less critical than the scale in sliding window

methods. Using a small step is less efficient because the dif-

ference between boxes is not significant, and using a large

step leads to model overfitting.

Fig. 4 show qualitative results of predicted boxes. The

detection is coarse, but the boxes are centered on the objects.

Moreover, it is worth mentioning that we use detection as in-

termediate step, while our ultimate goal is classification.

Fig. 4: Examples of predicted boxes for a step of 20% at dif-

ferent iterations. The green box is the initial box, and the red

one, the final one.

4. CONCLUSION

We have presented an original coarse-to-fine approach for

weakly supervised image classification based on Latent Struc-

tural SVM formulation. The key to our model is the small

and incremental latent parameter space, which allows to find

better optimum with small computation time. The evaluation

on Mammal dataset shows that our method performs better

and at least 30 time faster than multi-scale sliding window,

and is robust to crop parameter. In the future, we plan to

extend our approach for weakly supervised object detection,

i.e. when the ultimate goal is an accurate object localization.
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