INCREMENTAL LEARNING OF LATENT STRUCTURAL SVM FOR WEAKLY SUPERVISED IMAGE CLASSIFICATION

<u>Thibaut Durand</u> ⁽¹⁾, Nicolas Thome ⁽¹⁾, Matthieu Cord ⁽¹⁾, David Picard ⁽²⁾

- (1) Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6
- (2) ETIS/ENSEA, University of Cergy-Pontoise, CNRS, UMR 8051

ICIP 2014

Outline

- Context
- 2 Model
- 3 Experiments

Outline

- Context
- 2 Model
- 3 Experiments

- Address the problem of weakly supervised object classification
- The goal is to predict the label of the image using object position as latent variable
- Training data only provides image-level annotation (presence/absence of each category)

- Model the (unknown) object location using latent variables
- Desired output during test time: predicted image label

00000

- Learning a joint model for both localization and classification
- Widely-used approach:
 - Latent SVM (LSVM) [PAMI10]
 - Latent Structural SVM (LSSVM extension to structured output) [ICML09]
- Excellent performances for detection tasks
- Performances for categorization are less impressive
- 2 limitations:
 - Computation is very demanding
 - Optimization problem is hard (non-convex)

[PAMI10: Felzenszwalb, Girshick, McAllester, Ramanan. *Object detection with discriminatively trained part based models*]

[ICML09: Yu, Joachims. Learning structural svms with latent variables]

Popular approach for modeling object positions: sliding window

Popular approach for modeling object positions: sliding window

• Popular approach for modeling object positions: sliding window

Popular approach for modeling object positions: sliding window

• Popular approach for modeling object positions: sliding window

Popular approach for modeling object positions: sliding window

• Popular approach for modeling object positions: sliding window

• Popular approach for modeling object positions: sliding window

Popular approach for modeling object positions: sliding window

• Popular approach for modeling object positions: sliding window

Popular approach for modeling object positions: sliding window

- Propose an original evolution of the latent parameter space based on cropping
- Explore only some boxes at each iteration
- Speed-up training and inference
- Incremental Latent Structural SVM (ILSSVM)

t

t+1

t+2

Outline

- Context
- 2 Model
- 3 Experiments

- Multi-class problem
- LSSVM formalism
- Training data: n labeled images $\{(x_1, y_1), \dots, (x_n, y_n)\}$
- x_i is an image
- $y_i \in \mathcal{Y} = \{1, 2, ..., K\}$ is a label
- Latent variable $h_i = (h_{i1}, h_{i2}, h_{i3}, h_{i4})$ represents the bounding box of the predictive object location

- Evolution of the latent parameter space based on cropping
- Explore only some boxes at each iteration
- Coarse to fine approach
- Gradually remove the background
- Evolution w.r.t. the previous latent value

t+4

Initialization

Figure: Examples of possible cropping (blue boxes) for a current bounding box (red)

• Learn a LSSVM discriminant function of the form:

$$(y,h) = \underset{y \in \mathcal{Y}, h \in \mathcal{H}}{\operatorname{arg max}} \langle w, \Psi(x_i, y, h) \rangle$$
 (1)

where $\Psi(x_i, y, h)$ is the joint feature.

• Objective function at the iteration t

$$\mathcal{P}_{t}(w) = \frac{1}{2} \|w\|^{2} + \frac{C}{n} \sum_{i=1}^{n} \left(\max_{(y,h) \in \mathcal{Y} \times \mathcal{H}_{i}^{t}} \left[\Delta(y_{i}, y) + \langle w, \Psi(x_{i}, y, h) \rangle \right] \right)$$
$$- \frac{C}{n} \sum_{i=1}^{n} \max_{h \in \mathcal{H}_{i}^{t}} \langle w, \Psi(x_{i}, y_{i}, h) \rangle \tag{2}$$

- Fast in inference:
 - 6 windows/image (sliding window > 1000)

- ② Better generalization (curriculum learning)
 - Easy examples = large regions
 - Start with large regions, and gradually cropped these regions

 $oldsymbol{3}$ No require knowledge on the size and the ratio of objects ightarrow adapt itself to objects.

Image representation

- Foreground-background feature representation
- Foreground region: spatial pyramid $1\times 1, 3\times 3 \to \text{spatial}$ structure of the object
- ullet Background region o strong context for classification
- BoW models using SIFT descriptors

[ECCV12: Russakovsky, Lin, Yu, Fei- Fei. Object-centric spatial pooling for image classification]

- Use the same coarse-to-fine approach
- Start with a box initialized on the whole image
- Crop it until convergence

- Use the same coarse-to-fine approach
- Start with a box initialized on the whole image
- Crop it until convergence

- Use the same coarse-to-fine approach
- Start with a box initialized on the whole image
- Crop it until convergence

- Use the same coarse-to-fine approach
- Start with a box initialized on the whole image
- Crop it until convergence

- Use the same coarse-to-fine approach
- Start with a box initialized on the whole image
- Crop it until convergence

- Use the same coarse-to-fine approach
- Start with a box initialized on the whole image
- Crop it until convergence

- Use the same coarse-to-fine approach
- Start with a box initialized on the whole image
- Crop it until convergence

- Use the same coarse-to-fine approach
- Start with a box initialized on the whole image
- Crop it until convergence

- Use the same coarse-to-fine approach
- Start with a box initialized on the whole image
- Crop it until convergence

- Use the same coarse-to-fine approach
- Start with a box initialized on the whole image
- Crop it until convergence

- Use the same coarse-to-fine approach
- Start with a box initialized on the whole image
- Crop it until convergence

- Use the same coarse-to-fine approach
- Start with a box initialized on the whole image
- Crop it until convergence

Outline

- Context
- 2 Model
- 3 Experiments

Mammal dataset

Figure: Images of the different categories of Mammal dataset

19

Results

split	SW (6 scales)	ILSSVM		
1	22,58	12,90		
2	29,03	25,81		
3	22,58	22,58		
4	16,13	25,81		
5	45,16	38,71		
6	25,81	22,58		
7	35,48	16,13		
8	25,81	12,90		
9	35,48	22,58		
10	35,48	32,26		
mean	$29,35 \pm 8,53$	$23,23 \pm 8,16$		

Table: Classification error for the 10 splits for multi-scale sliding window (SW) and our method (ILSSVM)

Computation time

method	time
ILSSVM	1 h 3 h
one-scale sliding window	
multi-scale sliding window (6 scales, 1 ratio)	
multi-scale sliding window (6 scales, 6 ratios)	250 h

Table: Time Comparisons for the ten splits on 1 CPU

Parameter of evolution of the latent variables

- Influence of the crop step
- Step proportional to the maximum of the width or height

crop step (%)	13	17	20	25	30
classification error (%)	25,81	23,87	23,23	23,55	25,16

Table: Evolution of classification error with respect to the crop step

- Robust to this parameter (small variation <3%)
- More robust than the scale in sliding window (variation > 20%)

Qualitative results of predicted boxes

Figure: Examples of predicted boxes for a step of 5% (left) and 20% (right) at different iterations. The green box is the final box

Qualitative results of predicted boxes

Figure: Examples of predicted boxes

Conclusion

- Original coarse-to-fine approach for weakly supervised image classification based on Latent Structural SVM formulation
- Small and incremental latent parameter space
- Find better optimum with small computation time

Thank you for your attention!

Questions?

Thibaut Durand⁽¹⁾
Nicolas Thome⁽¹⁾
Matthieu Cord⁽¹⁾
David Picard⁽²⁾

thibaut.durand@lip6.fr nicolas.thome@lip6.fr matthieu.cord@lip6.fr picard@ensea.fr

- (1) Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6
- (2) ETIS/ENSEA, University of Cergy-Pontoise, CNRS, UMR 8051

Java code available on demand

