Weakly Supervised Learning for Visual Recognition

Thibaut Durand September 20, 2017

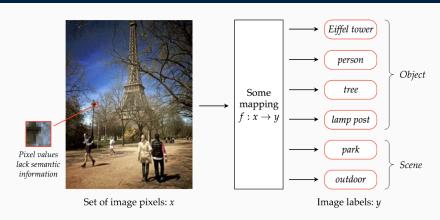
Thesis committee

Francis BACH Patrick PÉREZ Cordelia SCHMID Nicolas THOME

Matthieu CORD Alain RAKOTOMAMONIY Véronique Serfaty

Introduction

Image classification

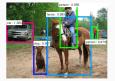


- Central problem to computer vision
- Learning parameters of f with supervised learning methods
 - Labeled training data
 - Computational resources

[Credit Hanlin Goh]

Why is image classification important?

- Immense and increasing collection of visual data
 - 2.4 billion images are uploaded every day
 - **10**¹² photos taken in 2016
 - Methods to exploit that collection of visual data



• Complementary with other visual recognition tasks

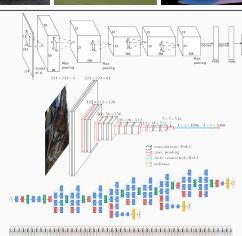
Deep ConvNets for image classification

ImageNet

AlexNet [Krizhevsky, NIPS12]

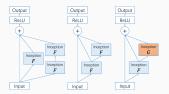
• VGG16 / Very Deep [Simonyan, ICLR15]

- Inception [Szegedy, CVPR15]
- ResNet [He, CVPR16]

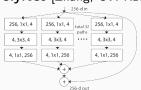


Deep ConvNets for image classification

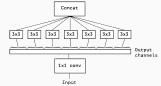
ImageNet



PolyNet [Zhang, CVPR17]



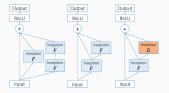
DenseNet [Huang, CVPR17]



ResNeXt [Xie, CVPR17]

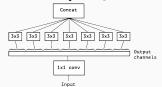
Xception [Chollet, CVPR17]

Deep ConvNets for image classification



PolyNet [Zhang, CVPR17]

DenseNet [Huang, CVPR17]



ResNeXt [Xie, CVPR17]

Xception [Chollet, CVPR17]

Contributions

- How to use deep architecture on complex scenes?
 - Learn localized representation
- Weakly supervised learning
 - Reduce the cost of annotation: use only image-level labels
 - Make learning and recognition more challenging
 - Efficient model for structured output prediction
 - Adapt deep architecture
 - Transfer, pooling

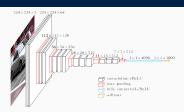
Outline

- 1 Model: Transfer & Pooling in Deep Architecture
- 2 Learning & Optimization
- 3 Experiments
- 4 Conclusion

Model: Transfer & Pooling in Deep

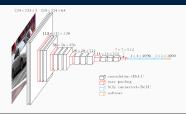
Architecture

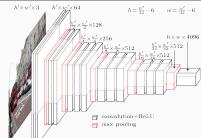
From ImageNet to complex images



?

From ImageNet to complex images: FCN

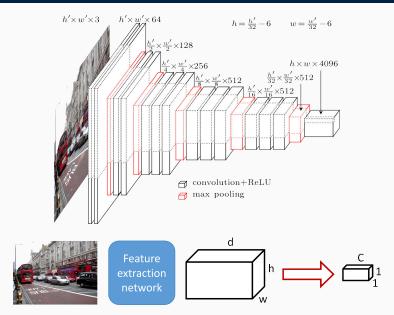




fully convolutional network

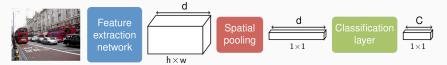
feature sharing, efficient computation, arbitrary-sized input images

Fully convolutional network (FCN)

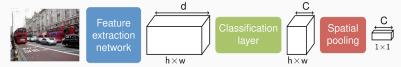


Feature vs class score pooling

- Classical strategy: **feature pooling**
 - GAP, ResNet, Inception, VGG16, ...
 - No spatial class information

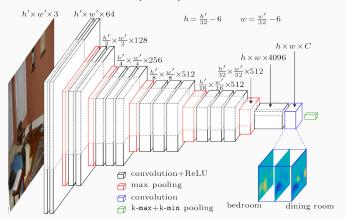


- Our strategy: class score pooling
 - Spatial class information
 - Better performances



Why class score pooling?

• Class Activation Maps (CAM) for WELDON



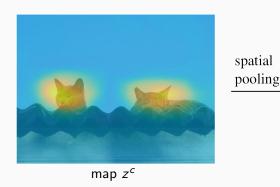
- Invariant to object location
- Exploit CAM: localization, segmentation

Class activation maps

Outline

- 1 Model: Transfer & Pooling in Deep Architecture
 - Transfer
 - Pooling
- 2 Learning & Optimization
- 3 Experiments
- 4 Conclusion

How to pool?



$$y^c = \max_{i,j} z_{ij}^c$$

Use 1 region

Average (GAP) [Zhou, CVPR16]

score y^c

$$y^c = \frac{1}{N} \sum_{i,j} z_{ij}^c$$

Use all regions

Average pooling limitation

- Classifying with all regions
- Not efficient for small objects: lots of "noisy" regions

Max pooling limitation

Max pooling

$$y^c = \max_{i,j} z_{ij}^c \tag{1}$$

• Classifying only with the max scoring region

• Loss of contextual information

Max pooling limitation

Max pooling

$$y^c = \max_{i,j} z_{ij}^c \tag{1}$$

• Classifying only with the max scoring region

• Loss of contextual information

max+min pooling

(2)

- Pooling function $y^c = \max_{i,j} z_{ij}^c + \min_{i,j} z_{ij}^c$
- h^+ : presence of the class \rightarrow high h^+
- h⁻: localized evidence of the absence of class: negative evidence

true class

painted bunting

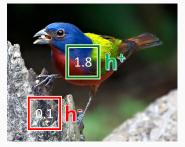
wrong class

indigo bunting

max+min pooling

- Pooling function $y^c = \max_{i,j} z_{ij}^c + \min_{i,j} z_{ij}^c$ (2)
- h^+ : presence of the class \rightarrow high h^+
- h⁻: localized evidence of the absence of class: negative evidence

true class



painted bunting

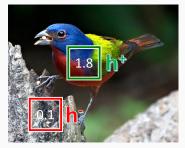
wrong class

indigo bunting

max+min pooling

- Pooling function $y^c = \max_{i,j} z_{ij}^c + \min_{i,j} z_{ij}^c$ (2)
- h^+ : presence of the class \rightarrow high h^+
- h⁻: localized evidence of the absence of class: negative evidence

true class



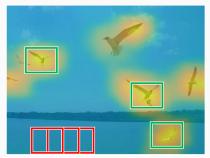
painted bunting

wrong class

indigo bunting

WELDON pooling

- Extension of max+min pooling
- Using several regions, more robust region selection



k=1 k=3

WELDON pooling

- Extension of max+min pooling
- Using several regions, more robust region selection

$$y^{c} = s_{k^{+}}^{top}(z^{c}) + s_{k^{-}}^{low}(z^{c})$$
 (3)

$$s_{k^{+}}^{top}(z^{c}) = \frac{1}{k^{+}} \sum_{i=1}^{k^{+}} i\text{-th-max}(z^{c})$$
 (4)

$$s_{k^{-}}^{low}(z^c) = \frac{1}{k^{-}} \sum_{i=1}^{k^{-}} i\text{-th-min}(z^c)$$
 (5)

WILDCAT pooling

- max+min pooling:
 - Both types of region are important
 - Complementary information
 - Not the same importance
- Pooling function

$$y^{c} = s_{k+}^{top}(z^{c}) + \alpha \cdot s_{k-}^{low}(z^{c})$$
 (6)

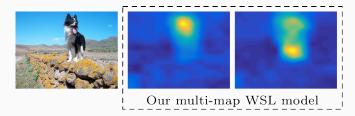
• $\alpha \in [0,1]$: trade off parameter

Pooling	k+	k ⁻	α
max	1	0	0
GAP	n	0	0
max+min	1	1	1
WELDON	k	k	1

WILDCAT architecture

- WELDON: 1 model per class
 - Generalization to M models per class
 - Catch multiple class-related modalities

$$z_{ij}^{c} = \sum_{m=1}^{M} z_{ij}^{cm} \tag{7}$$



Learning & Optimization

Notations

VARIABLE	NOTATION	TRAIN	Test
Input	x	observed	observed
Output	У	observed	unobserved
Latent	h	unobserved	unobserved

- \mathbf{y}^* : ground-truth label
- w: model parameters
- $\Psi(\mathbf{x}, \mathbf{y}, \mathbf{h}) = \psi(\mathbf{y}, \Phi(\mathbf{x}, \mathbf{h}))$ joint feature map
 - $\Phi(\mathbf{x}, \mathbf{h})$: feature map (deep)
- $\mathbf{h}_{\mathbf{y}}^{+} = \operatorname{arg\,max}_{\mathbf{h} \in \mathcal{H}} \ \langle \mathbf{w}, \Psi(\mathbf{x}, \mathbf{y}, \mathbf{h}) \rangle$
- $\bullet \ \ \boldsymbol{h}_{\boldsymbol{y}}^{-} = \text{arg min}_{\boldsymbol{h} \in \mathcal{H}} \ \left\langle \boldsymbol{w}, \boldsymbol{\Psi}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{h}) \right\rangle$
- Optimization problem:

$$_{\mathcal{H}} \langle \mathbf{w}, \Psi(\mathbf{x}, \mathbf{y}, \mathbf{h})
angle$$
 problem: min $\Omega(\mathbf{w}) + \mathcal{CL}(\mathbf{w}, \mathcal{D})$

y=cat

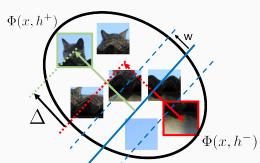
 \mathcal{D} : dataset

max+min pooling for binary classification

Feature map:
$$\Psi(\mathbf{x}, \mathbf{y}, \mathbf{h}) = \frac{\mathbf{y}}{2} \Phi(\mathbf{x}, \mathbf{h})$$
 $\mathbf{y} \in \{-1, 1\}$

Prediction
$$s_{\mathbf{w}}(\mathbf{x}) = \langle \mathbf{w}, \Phi(\mathbf{x}, h^+) \rangle + \langle \mathbf{w}, \Phi(\mathbf{x}, h^-) \rangle$$
 (8)

- $s_{\mathbf{w}}(\mathbf{x}) > 0$: positive class
- $s_{\mathbf{w}}(\mathbf{x}) < 0$: negative class



Constraint:
$$\forall i \in \mathcal{D} \quad y_i^{\star} \left[\langle \mathbf{w}, \Phi(\mathbf{x}_i, h_i^+) + \Phi(\mathbf{x}_i, h_i^-) \rangle \right] \ge 1$$
 (9)

Objective function

$$\mathcal{P}(\mathbf{w}) = \frac{1}{2} \|\mathbf{w}\|^{2} + C\mathcal{L}(\mathbf{w}, \mathcal{D})$$

$$\mathcal{L}(\mathbf{w}, \mathcal{D}) = \frac{1}{N} \sum_{i \in \mathcal{D}} \left[1 - y_{i}^{\star} \left(\max_{h \in \mathcal{H}} \langle \mathbf{w}, \Phi(\mathbf{x}_{i}, h) \rangle + \min_{h \in \mathcal{H}} \langle \mathbf{w}, \Phi(\mathbf{x}_{i}, h) \rangle \right) \right]_{+}$$

$$[z]_{+} = \max(0, z)$$

$$(10)$$

Objective function

$$\mathcal{P}(\mathbf{w}) = \frac{1}{2} \|\mathbf{w}\|^{2} + C\mathcal{L}(\mathbf{w}, \mathcal{D})$$

$$\mathcal{L}(\mathbf{w}, \mathcal{D}) = \frac{1}{N} \sum_{i \in \mathcal{D}} \left[1 - y_{i}^{*} \left(\max_{h \in \mathcal{H}} \langle \mathbf{w}, \Phi(\mathbf{x}_{i}, h) \rangle + \min_{h \in \mathcal{H}} \langle \mathbf{w}, \Phi(\mathbf{x}_{i}, h) \rangle \right) \right]_{+}$$

$$[z]_{+} = \max(0, z)$$

$$(10)$$

- $\min_{\mathbf{w}} \mathcal{P}(\mathbf{w})$: non-convex optimization problem
- Re-write the objective as a difference of convex functions

$$\mathcal{P}(\mathbf{w}) = u(\mathbf{w}) - v(\mathbf{w}) \tag{11}$$

u and v are convex on w

max+min: optimization

Algorithm 1 for training with CCCP

Input: training set $\{(\mathbf{x}_i, y_i)\}_{i=1,...,N}$

- 1: Initialize model
- 2: Linearize the concave part -v
- 3: repeat
- 4: Solve convexified problem
- 5: Linearize the concave part -v at the current solution
- 6: until stopping criterion reached

Solver

- Primal: stochastic gradient descent
- Dual: cutting plane algorithm

Outline

- 1 Model: Transfer & Pooling in Deep Architecture
- 2 Learning & Optimization
 - Binary classification
 - Structured output prediction
- 3 Experiments
- 4 Conclusion

Pair of latent variables

$$\mathbf{h}_{i,\mathbf{y}}^{+} = \underset{\mathbf{h} \in \mathcal{H}}{\text{arg max}} \langle \mathbf{w}, \Psi(\mathbf{x}_{i}, \mathbf{y}, \mathbf{h}) \rangle$$
 (12)

$$\mathbf{h}_{i,\mathbf{y}}^{-} = \underset{\mathbf{h} \in \mathcal{H}}{\min} \ \langle \mathbf{w}, \Psi(\mathbf{x}_i, \mathbf{y}, \mathbf{h}) \rangle$$
 (13)

Scoring function

$$s_{\mathbf{w}}(\mathbf{x}_{i}, \mathbf{y}) = \langle \mathbf{w}, \Psi(\mathbf{x}_{i}, \mathbf{y}, \mathbf{h}_{i,\mathbf{y}}^{+}) \rangle + \langle \mathbf{w}, \Psi(\mathbf{x}_{i}, \mathbf{y}, \mathbf{h}_{i,\mathbf{y}}^{-}) \rangle$$
 (14)

Prediction function

$$\hat{\mathbf{y}}_i = f_{\mathbf{w}}(\mathbf{x}_i) = \arg\max_{\mathbf{x} \in \mathcal{Y}} s_{\mathbf{w}}(\mathbf{x}_i, \mathbf{y})$$
 (15)

Learning formulation

Enforce the constraint

$$\forall \mathbf{y} \neq \mathbf{y}_{i}^{\star}, \quad s_{\mathbf{w}}(\mathbf{x}_{i}, \mathbf{y}_{i}^{\star}) \geq \Delta(\mathbf{y}_{i}^{\star}, \mathbf{y}) + s_{\mathbf{w}}(\mathbf{x}_{i}, \mathbf{y})$$
 (16)

• $\Delta(\mathbf{y}_i^{\star}, \mathbf{y}) \geq 0$: user-specified loss (domain knowledge)

Objective function

$$\mathcal{P}(\mathbf{w}) = \frac{1}{2} \|\mathbf{w}\|^2 + \frac{C}{N} \sum_{i=1}^{N} \mathcal{L}_{\mathbf{w}}(\mathbf{x}_i, \mathbf{y}_i^*)$$
 (17)

$$\mathcal{L}_{\mathbf{w}}(\mathbf{x}_{i}, \mathbf{y}_{i}^{*}) = \max_{\mathbf{y} \in \mathcal{V}} [\Delta(\mathbf{y}_{i}^{*}, \mathbf{y}) + s_{\mathbf{w}}(\mathbf{x}_{i}, \mathbf{y}) - s_{\mathbf{w}}(\mathbf{x}_{i}, \mathbf{y}_{i}^{*})]$$
(18)

Optimization $\min_{\mathbf{w}} \mathcal{P}(\mathbf{w})$

• Non-convex cutting plane algorithm [Do, JMLR12]

Instantiation

Definition

- ullet Joint feature map Ψ
- Loss function Δ

Solver

• Inference problem

$$\hat{\mathbf{y}} = \underset{\mathbf{y} \in \mathcal{Y}}{\text{arg max }} s_{\mathbf{w}}(\mathbf{x}_{i}, \mathbf{y}) \tag{19}$$

• Loss-augmented inference (LAI) problem

$$\bar{\mathbf{y}} = \underset{\mathbf{y} \in \mathcal{Y}}{\text{arg max }} \Delta(\mathbf{y}_{i}^{\star}, \mathbf{y}) + s_{\mathbf{w}}(\mathbf{x}_{i}, \mathbf{y})$$
(20)

Multi-class instantiation

• Input x: image

• Output y: multi-class label $\mathbf{y} \in \mathcal{Y} = \{1, \dots, K\}$

• Latent h: region

• Loss function Δ : 0/1 loss

Joint feature map Ψ

y=cat

$$\Psi(\mathbf{x}, \mathbf{y}, \mathbf{h}) = [I(\mathbf{y} = 1)\Phi(\mathbf{x}, \mathbf{h}), \dots, I(\mathbf{y} = K)\Phi(\mathbf{x}, \mathbf{h})] \in \mathbb{R}^{Kd} \quad (21)$$

- ullet $\Phi(\mathbf{x},\mathbf{h})\in\mathbb{R}^d$ vectorial representation of image \mathbf{x} at location \mathbf{h}
- Inference and LAI: exhaustive search

- 2 classes: positive (P) vs negative (N)
- Input: all the examples $\mathbf{x} = \{\mathbf{x}_i, i = 1, \dots, N\}$.
- Output: ranking matrix y of size N × N providing an ordering of the training examples
 - $y_{ij} = 1$ if $\mathbf{x}_i \prec_{\mathbf{y}} \mathbf{x}_j$ i.e. \mathbf{x}_i is ranked ahead of \mathbf{x}_j ;
 - $y_{ij} = -1$ if $\mathbf{x}_j \prec_{\mathbf{y}} \mathbf{x}_i$ i.e. \mathbf{x}_j is ranked ahead of \mathbf{x}_i ;
 - $y_{ij} = 0$ if \mathbf{x}_i and \mathbf{x}_j are assigned the same rank.
- Loss function $\Delta(\mathbf{y}^*, \mathbf{y}) = 1 AP(\mathbf{y}^*, \mathbf{y})$
- Optimizing AP with latent variable: very complex problem
- No efficient solution for max pooling model: LSSVM [Yu, ICML09]
- Approximate solution: LAPSVM [Behl, TPAMI15]

Aseem Behl and Pritish Mohapatra and C. V. Jawahar and M. Pawan Kumar Optimizing Average Precision Using Weakly Supervised Data.

In IEEE Trans. on Pattern Analysis and Machine Intelligence (TPAMI), 2015.

- 2 classes: positive (P) vs negative (N)
- **Input**: all the examples $\mathbf{x} = {\mathbf{x}_i, i = 1, ..., N}$.
- Output: ranking matrix y of size N × N providing an ordering of the training examples
 - $y_{ij} = 1$ if $\mathbf{x}_i \prec_{\mathbf{y}} \mathbf{x}_j$ i.e. \mathbf{x}_i is ranked ahead of \mathbf{x}_j ;
 - $y_{ij} = -1$ if $\mathbf{x}_j \prec_{\mathbf{y}} \mathbf{x}_i$ i.e. \mathbf{x}_j is ranked ahead of \mathbf{x}_i ;
 - $y_{ij} = 0$ if \mathbf{x}_i and \mathbf{x}_j are assigned the same rank.
- Loss function $\Delta(\mathbf{y}^*, \mathbf{y}) = 1 AP(\mathbf{y}^*, \mathbf{y})$
- Joint feature map

$$\Psi(\mathbf{x}, \mathbf{y}, \mathbf{h}) = \frac{1}{|\mathcal{P}||\mathcal{N}|} \sum_{p \in \mathcal{P}} \sum_{n \in \mathcal{N}} y_{pn} (\Phi(\mathbf{x}_p, \mathbf{h}_{p,n}) - \Phi(\mathbf{x}_n, \mathbf{h}_{n,p}))$$
(22)

• $\Phi(\mathbf{x},\mathbf{h}) \in \mathbb{R}^d$ vectorial representation of image \mathbf{x} at location \mathbf{h}

Proposition 1.

 $\forall (x,y), s_w(x,y)$ for the ranking instantiation rewrites as $\Theta(x,y)$:

$$\Theta(\mathbf{x}, \mathbf{y}) = \frac{1}{|\mathcal{P}||\mathcal{N}|} \sum_{\rho \in \mathcal{P}} \sum_{n \in \mathcal{N}} y_{\rho n} \left(\langle \mathbf{w}, \Phi_{-}^{+}(\mathbf{x}_{\rho}) \rangle - \langle \mathbf{w}, \Phi_{-}^{+}(\mathbf{x}_{n}) \rangle \right)$$
(23)

where
$$\langle \mathbf{w}, \Phi_{-}^{+}(\mathbf{x}_{i}) \rangle = \max_{\mathbf{h} \in \mathcal{H}_{i}} \langle \mathbf{w}, \Phi(\mathbf{x}_{i}, \mathbf{h}) \rangle + \min_{\mathbf{h} \in \mathcal{H}_{i}} \langle \mathbf{w}, \Phi(\mathbf{x}_{i}, \mathbf{h}) \rangle$$

Proposition 1.

 $\forall (x,y), s_w(x,y)$ for the ranking instantiation rewrites as $\Theta(x,y)$:

$$\Theta(\mathbf{x}, \mathbf{y}) = \frac{1}{|\mathcal{P}||\mathcal{N}|} \sum_{p \in \mathcal{P}} \sum_{n \in \mathcal{N}} y_{pn} \left(\langle \mathbf{w}, \Phi_{-}^{+}(\mathbf{x}_{p}) \rangle - \langle \mathbf{w}, \Phi_{-}^{+}(\mathbf{x}_{n}) \rangle \right)$$
(23)

where
$$\langle \mathbf{w}, \Phi_{-}^{+}(\mathbf{x}_{i}) \rangle = \max_{\mathbf{h} \in \mathcal{H}_{i}} \langle \mathbf{w}, \Phi(\mathbf{x}_{i}, \mathbf{h}) \rangle + \min_{\mathbf{h} \in \mathcal{H}_{i}} \langle \mathbf{w}, \Phi(\mathbf{x}_{i}, \mathbf{h}) \rangle$$

Proposition 2.

Inference for the ranking instantiation is solved exactly by sorting the examples in descending order of score $\langle \mathbf{w}, \Phi_{-}^{+}(\mathbf{x}_{i}) \rangle$

Proposition 1.

 $\forall (x,y), s_w(x,y)$ for the ranking instantiation rewrites as $\Theta(x,y)$:

$$\Theta(\mathbf{x}, \mathbf{y}) = \frac{1}{|\mathcal{P}||\mathcal{N}|} \sum_{p \in \mathcal{P}} \sum_{n \in \mathcal{N}} y_{pn} \left(\langle \mathbf{w}, \Phi_{-}^{+}(\mathbf{x}_{p}) \rangle - \langle \mathbf{w}, \Phi_{-}^{+}(\mathbf{x}_{n}) \rangle \right)$$
(23)

where
$$\langle \mathbf{w}, \Phi_{-}^{+}(\mathbf{x}_{i}) \rangle = \max_{\mathbf{h} \in \mathcal{H}_{i}} \langle \mathbf{w}, \Phi(\mathbf{x}_{i}, \mathbf{h}) \rangle + \min_{\mathbf{h} \in \mathcal{H}_{i}} \langle \mathbf{w}, \Phi(\mathbf{x}_{i}, \mathbf{h}) \rangle$$

Proposition 2.

Inference for the ranking instantiation is solved exactly by sorting the examples in descending order of score $\langle \mathbf{w}, \Phi_{-}^{+}(\mathbf{x}_i) \rangle$

Proposition 3.

Efficient solution for the loss-augmented inference (LAI) problem if there exists a solver for the fully-supervised LAI problem

Experiments

Outline

- 1 Model: Transfer & Pooling in Deep Architecture
- 2 Learning & Optimization
- 3 Experiments
 - Classification
 - Weakly supervised localization
 - Weakly supervised segmentation
- 4 Conclusion

ImageNet

MS COCO

CUB-200

DATASET	#Train	#Test	#Classes	EVALUATION
VOC 07	5,011	4,952	20	MAP
VOC 12	11,540	10,991	20	MAP
VOC 12 Action	2,296	2,292	10	MAP
MS COCO	82,783	40,504	80	MAP
MIT67	5,360	1,340	67	accuracy
CUB-200	5,994	5,794	200	accuracy
ILSVRC 2012	1,281,167	50,000	1000	accuracy

 Feature extraction network: ResNet-101 pretrained on ImageNet

State-of-the-art results

Метнор	VOC 2007	VOC 2012	MS COCO
ResNet-101	89.8	89.2	72.5
Deep MIL	-	86.3	62.8
ProNet	-	89.3	70.9
SPLeaP	88.0	-	-
WILDCAT	95.0	93.4	80.7

IMAGENET	Top-5 error
ResNet-101 (1 crop)	6.21
ResNet-200 (10 crops)	4.93
ResNeXt-101 (1 crop)	4.4
Inception-ResNet-v2 (12 crops)	4.1
WILDCAT $(M=1)$	4.23

Visual results

• Negative evidence regions can be parts of other objects classes

train

bus

• Multi-label: learn correlation between classes

motorbike

bottle

AP ranking experiments

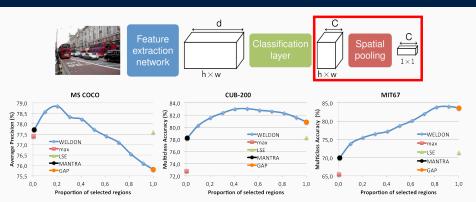
Dataset	VOC07	VOCAct	MS COCO
max + classif. loss	86.8	71.8	77.4
max + AP loss (LAPSVM)	87.9	73.3	77.9
${\tt max+min} + {\sf classif.}$ loss	89.9	78.5	77.7
max+min + AP loss	91.2	80.7	78.7

• Optimizing the evaluation metric during training is important

Aseem Behl and Pritish Mohapatra and C. V. Jawahar and M. Pawan Kumar Optimizing Average Precision Using Weakly Supervised Data.

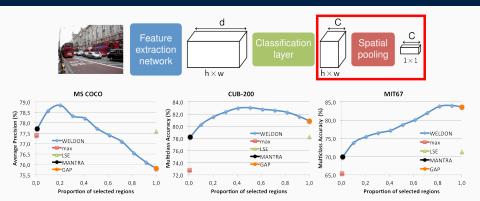
In IEEE Trans. on Pattern Analysis and Machine Intelligence (TPAMI), 2015.

Pooling analysis



- max / LSSVM
- max+min / MANTRA
- k-max+k-min / WELDON
- average / GAP
- soft-max / LSE / HCRF

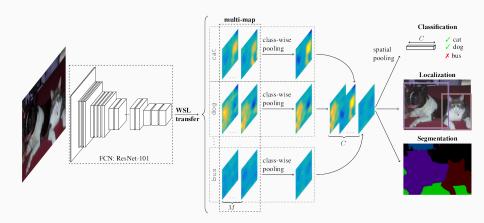
Pooling analysis



Unified pooling function

$$\begin{split} \mathbf{s}_{\mathbf{w}}^{(\alpha,\beta_{h}^{+},\beta_{h}^{-})}(\mathbf{x},\mathbf{y}) = & \frac{1}{2\beta_{h}^{+}} \log \left(\frac{1}{|\mathcal{H}|} \sum_{\mathbf{h} \in \mathcal{H}} \exp[\beta_{h}^{+} \langle \mathbf{w}, \Psi(\mathbf{x}_{i}, \mathbf{y}, \mathbf{h}) \rangle] \right) \\ & + \alpha \frac{1}{2\beta_{h}^{-}} \log \left(\frac{1}{|\mathcal{H}|} \sum_{\mathbf{h} \in \mathcal{H}} \exp[\beta_{h}^{-} \langle \mathbf{w}, \Psi(\mathbf{x}_{i}, \mathbf{y}, \mathbf{h}) \rangle] \right) \end{split}$$

Weakly supervised applications



- Weakly supervised localization
- Weakly supervised segmentation

Weakly supervised localization

Метнор	VOC 2012	MS COCO
Deep MIL [Oquab, CVPR15]	74.5	41.2
ProNet [Sun, CVPR16]	77.7	46.4
WSLocalization [Bency, ECCV16]	79.7	49.2
WILDCAT	82.9	53.4

• Pointwise metric [Oquab, CVPR15]

Weakly supervised segmentation

• Test architecture

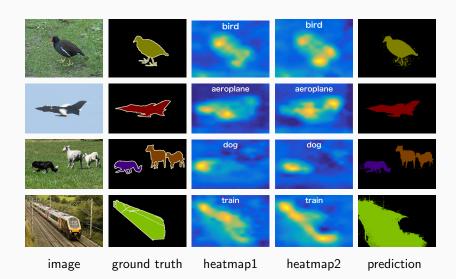
Метнор	Mean IoU
MIL-FCN	24.9
MIL-Base + ILP + SP-sppxI	36.6
EM-Adapt + FC-CRF	33.8
CCNN + FC-CRF	35.3
WILDCAT + FC-CRF	43.7

Weakly supervised segmentation

• Test architecture

Метнор	Mean IoU
MIL-FCN	24.9
MIL-Base+ILP+SP-sppxI	36.6
EM-Adapt + FC-CRF	33.8
CCNN + FC-CRF	35.3
WILDCAT + FC-CRF	43.7

Weakly supervised segmentation



Conclusion

Summary

Contributions

- Pooling: negative evidence model
 - Deep architecture
 - Can easily be integrated into any architecture
 - Latent Structured SVM framework
- Transfer
 - Multi-map transfer layer
- Structured output prediction: AP ranking
- Application on different type of data: image, text, molecule
- Publications: 1 ICCV, 2 CVPR, 2 journals under review

durandtibo/wildcat.pytorch

Future work

Pooling

- Learning the number of regions k^+ and k^- for each class
- Learning the number of maps per class

• What is the optimal architecture?

- Deep structure analysis / understanding
- Learning deep architecture: convolutional neural fabrics [Saxena, NIPS16], Genetic CNN [Xie, ICCV17]

Future work

Deep learning for complex images

- Spatial resolution of detection maps: FPN [Lin, CVPR17]
- Deep Structured ConvNets: [Chen, ICML15]
- Applications to WSL tasks: pose estimation, segmentation, sport analytics (video)...

Publications

Thibaut Durand, Nicolas Thome, and Matthieu Cord MANTRA: Minimum Maximum Latent Structural SVM for Image Classification and Ranking.

In IEEE International Conference on Computer Vision (ICCV), 2015.

Thibaut Durand, Nicolas Thome, and Matthieu Cord WELDON: Weakly Supervised Learning of Deep ConvNets.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

Thibaut Durand*, Taylor Mordan*, Nicolas Thome, and Matthieu Cord WILDCAT: Weakly Supervised Learning of Deep ConvNets for Image Classification, Pointwise Localization and Segmentation.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

Under review

Thibaut Durand, Nicolas Thome, and Matthieu Cord SyMIL: MinMax Latent SVM for Weakly Labeled Data. In IEEE Transactions on Neural Networks and Learning Systems.

Thibaut Durand, Nicolas Thome, and Matthieu Cord Exploiting Negative Evidence for WSL of Deep Structured Models.

In IEEE Transactions on Pattern Analysis and Machine Intelligence.

Publications

Thibaut Durand, Nicolas Thome, Matthieu Cord, and Sandra Avila Image Classification using Object Detectors.

In IEEE International Conference on Image Processing (ICIP), 2013.

Thibaut Durand, David Picard, Nicolas Thome, and Matthieu Cord Semantic Pooling for Image Categorization using Multiple Kernel Learning. In IEEE International Conference on Image Processing (ICIP), 2014.

Thibaut Durand, Nicolas Thome, Matthieu Cord, and David Picard Incremental Learning of Latent Structural SVM for Weakly Supervised Image Classification.

In IEEE International Conference on Image Processing (ICIP), 2014.

Yue Zhu, Thibaut Durand, Eric Chenin, Marc Pignal, Patrick Gallinari, Régine Vignes-Lebbe

Using a Deep Convolutional Neural Network for Extracting Morphological Traits from Herbarium Images.

In Proceedings of TDWG, 2017.

Bibliography

References i

- Stuart Andrews, Ioannis Tsochantaridis, and Thomas Hofmann.
 Support Vector Machines for Multiple-Instance Learning.
 In Advances in Neural Information Processing Systems (NIPS), 2003.
- [2] Archith J. Bency, Heesung Kwon, Hyungtae Lee, S. Karthikeyan, and B. S. Manjunath.
 Weakly Supervised Localization using Deep Feature Maps.
 In European Conference on Computer Vision (ECCV), 2016.
- [3] Liang-Chieh Chen, Alexander Schwing, Alan Yuille, and Raquel Urtasun. Learning deep structured models.
 In International Conference on Machine Learning (ICML), 2015.
- [4] Francois Chollet.
 Xception: Deep Learning with Depthwise Separable Convolutions.
 In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
- [5] Thomas Deselaers and Vittorio Ferrari.
 A Conditional Random Field for Multiple-Instance Learning.
 In International Conference on Machine Learning (ICML), 2010.

References ii

- [6] Trinh-Minh-Tri Do and Thierry Artières. Regularized bundle methods for convex and non-convex risks. Journal of Machine Learning Research (JMLR), 2012.
- [7] Peter Gehler and Olivier Chapelle.
 Deterministic Annealing for Multiple-Instance Learning.
 In International Conference on Artificial Intelligence and Statistics (AISTAT), 2007.
- [8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
 Deep Residual Learning for Image Recognition.
 In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
- [9] Justin Johnson, Andrej Karpathy, and Li Fei-Fei.
 DenseCap: Fully Convolutional Localization Networks for Dense Captioning.
 In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
- [10] Armand Joulin and Francis Bach.
 A convex relaxation for weakly supervised classifiers.
 In International Conference on Machine Learning (ICML), 2012.

References iii

[11] M. Kim and Fernando De la Torre. Multiple Instance Learning via Gaussian Processes. Data Mining and Knowledge Discovery (DMKD), 2013.

[12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton.
ImageNet Classification with Deep Convolutional Neural Networks.
In Advances in Neural Information Processing Systems (NIPS), 2012.

[13] Gabriel Krummenacher, Cheng S. Ong, and Joachim Buhmann. Ellipsoidal Multiple Instance Learning. In International Conference on Machine Learning (ICML), 2013.

[14] Li-Jia Li, Hao Su, Yongwhan Lim, and Li Fei-Fei.
Object Bank: An Object-Level Image Representation for High-Level Visual Recognition.

In Int. J. Comput. Vision, 2014.

[15] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie.

Feature Pyramid Networks for Object Detection.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

References iv

- [16] O.L. Mangasarian and E.W. Wild. Multiple Instance Classification via Successive Linear Programming. Journal of Optimization Theory and Applications, 2008.
- [17] Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic. Is Object Localization for Free? - Weakly-Supervised Learning With Convolutional Neural Networks. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.
- [18] Shreyas Saxena and Jakob Verbeek. Convolutional Neural Fabrics. In Advances in Neural Information Processing Systems (NIPS), 2016.
- [19] Karen Simonyan and Andrew Zisserman.
 Very Deep Convolutional Networks for Large-Scale Image Recognition.
 In International Conference on Learning Representations (ICLR), 2015.
- [20] Chen Sun, Manohar Paluri, Ronan Collobert, Ram Nevatia, and Lubomir Bourdev.
 - ProNet: Learning to Propose Object-specific Boxes for Cascaded Neural Networks.
 - In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

References v

[21] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich.

Going Deeper with Convolutions.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

[22] Lingxi Xie and Alan Yuille.

Genetic CNN.

In IEEE International Conference on Computer Vision (ICCV), 2017.

- [23] Saining Xie, Ross Girshick, Piotr Dollar, Zhuowen Tu, and Kaiming He. Aggregated residual transformations for deep neural networks. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
- [24] Chun-Nam Yu and Thorsten Joachims. Learning structural syms with latent variables. In International Conference on Machine Learning (ICML), 2009.
- [25] Dan Zhang, Jingrui He, Luo Si, and Richard D. Lawrence. MILEAGE: Multiple Instance LEArning with Global Embedding. In International Conference on Machine Learning (ICML), 2013.

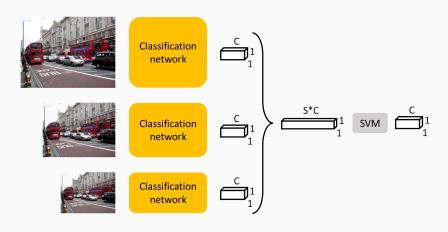
References vi

- [26] Xingcheng Zhang, Zhizhong Li, Chen Change Loy, and Dahua Lin. PolyNet: A Pursuit of Structural Diversity in Very Deep Networks. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
- [27] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning Deep Features for Discriminative Localization. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
- [28] Zhi-Hua Zhou, Yu-Yin Sun, and Yu-Feng Li. Multi-instance Learning by Treating Instances As non-I.I.D. Samples. In International Conference on Machine Learning (ICML), 2009.

Appendices

Multi-scale architecture

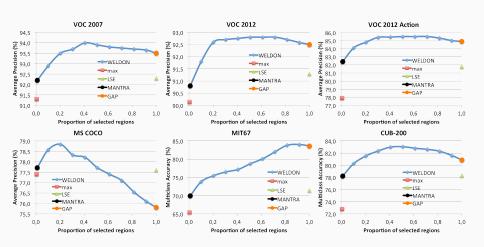
- Object Bank strategy [Li, IJCV14]
- Learn automatically the weight of each scale



State-of-the-art results

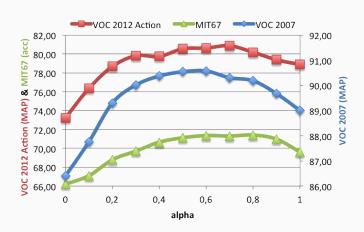
Метнор	CUB-200	MIT67	VOC ACTION
CaffeNet Places	_	68.2	-
MOP CNN	_	68.9	-
Compact Bilinear Pooling	84.0	76.2	-
ResNet-101	72.5	78.0	77.9
Spatial Transformer	84.1	-	-
Negative parts	-	77.1	-
GoogLeNet-GAP	63.0	66.6	-
SPLeaP	-	73.5	-
WILDCAT	85.6	84.0	86.4

Pooling analysis

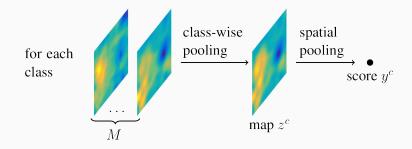


Pooling analysis

$$y^{c} = s_{k+}^{top}(z^{c}) + \alpha \cdot s_{k-}^{low}(z^{c})$$
 (24)



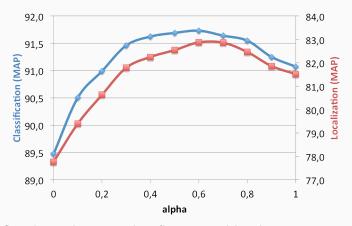
Pooling analysis



М	1	2	4	8	12	16
VOC 2007	89.0	91.0	91.6	92.5	92.3	92.0
VOC 2012 Action	78.9	81.5	82.1	83.2	83.0	82.7
MIT67	69.6	71.8	72.0	72.8	73.1	72.9

Weakly supervised localization

ullet Analysis of trade off parameter lpha on Pascal VOC 2012



Correlation between classification and localization

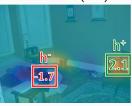
MANTRA: max+min pooling

- ullet **h**⁺: presence of the class o high **h**⁺
- h⁻: localized evidence of the absence of class: negative evidence

original image

airport inside (-1.7)

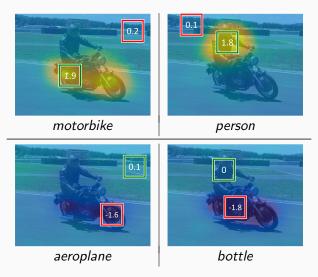
bedroom (2.1)



dining room (0.4)

MANTRA: max+min pooling

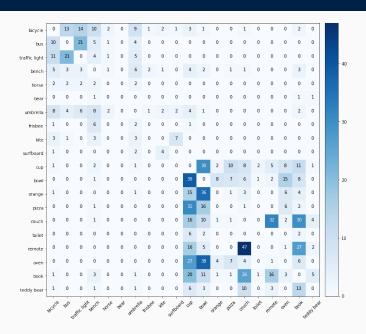
• Multi-label: learn correlation between classes



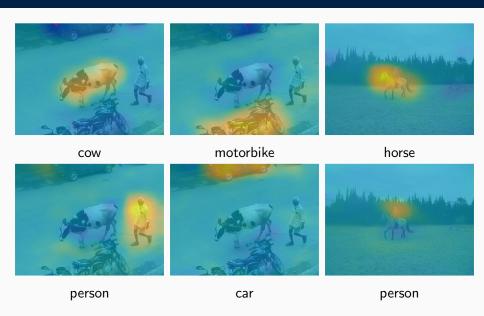
Pascal VOC 2007: co-occurence matrix



MS COCO: co-occurence matrix



Class activation maps



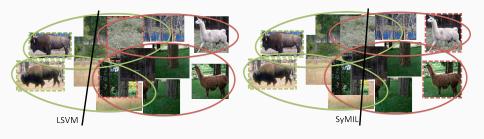
SyMIL

- Binary classification (e.g. bison vs llama)
- Pooling function

$$y = \begin{cases} \max_{i,j} z_{ij} & \text{if } \max_{i,j} z_{ij} \ge -\min_{i,j} z_{ij} \\ \min_{i,j} z_{ij} & \text{otherwise} \end{cases}$$
 (25)

• y > 0: bison class

• y < 0: Ilama class



SyMIL

Re-write the objective as a **difference of convex functions**:

$$\mathcal{P}(\mathbf{w}) = u(\mathbf{w}) - v(\mathbf{w}) \tag{26}$$

u and v are convex on w

Property:
$$\max(0, a - b) = \max(a, b) - b$$
 (27)

Example: first term of the loss

$$\max(0, \underbrace{1 - \max_{h \in \mathcal{H}} \langle \mathbf{w}, \Phi(\mathbf{x}_i, h) \rangle}_{concave}) = \underbrace{\max(0, \max_{h \in \mathcal{H}} \langle \mathbf{w}, \Phi(\mathbf{x}_i, h) \rangle - 1)}_{convex} - \underbrace{(\max_{h \in \mathcal{H}} \langle \mathbf{w}, \Phi(\mathbf{x}_i, h) \rangle - 1)}_{convex}$$
(28)

•
$$b = -(1 - \max_{h \in \mathcal{H}} \langle \mathbf{w}, \Phi(\mathbf{x}_i, h) \rangle)$$

SyMIL: difference of convex functions

$$\begin{split} \mathcal{P}(\mathbf{w}) = & u(\mathbf{w}) - v(\mathbf{w}) \\ u(\mathbf{w}) = & \frac{1}{2} \|\mathbf{w}\|^2 + \frac{C}{N} \Bigg(\sum_{i \in \mathcal{P}} \left[\frac{N}{N^+} \max \left(0, \max_{h \in \mathcal{H}} \langle \mathbf{w}, \Phi(\mathbf{x}_i, h) \rangle - 1 \right) \right. \\ & + \lambda \max \left(1 - \min_{h \in \mathcal{H}} \langle \mathbf{w}, \Phi(\mathbf{x}_i, h) \rangle, \max_{h \in \mathcal{H}} \langle \mathbf{w}, \Phi(\mathbf{x}_i, h) \rangle \right) \Bigg] \\ & + \sum_{i \in \mathcal{N}} \left[\frac{N}{N^-} \max \left(0, -\min_{h \in \mathcal{H}} \langle \mathbf{w}, \Phi(\mathbf{x}_i, h) \rangle - 1 \right) \right. \\ & + \lambda \max \left(1 + \max_{h \in \mathcal{H}} \langle \mathbf{w}, \Phi(\mathbf{x}_i, h) \rangle, -\min_{h \in \mathcal{H}} \langle \mathbf{w}, \Phi(\mathbf{x}_i, h) \rangle \right) \Bigg] \Bigg) \\ v(\mathbf{w}) = & \frac{C}{N} \Bigg(\sum_{i \in \mathcal{P}} \left[\left(\frac{N}{N^+} + \lambda \right) \max_{h \in \mathcal{H}} \langle \mathbf{w}, \Phi(\mathbf{x}_i, h) \rangle - \frac{N}{N^+} \right] \\ & + \sum_{i \in \mathcal{N}} \left[- \left(\frac{N}{N^-} + \lambda \right) \min_{h \in \mathcal{H}} \langle \mathbf{w}, \Phi(\mathbf{x}_i, h) \rangle + \frac{N}{N^-} \right] \Bigg) \end{split}$$

SyMIL: primal

• Linearization of the concave part $-v(\mathbf{w})$

$$\nabla_{\mathbf{w}} \nu(\mathbf{w}_t) = \left(\sum_{i \in \mathcal{P}} \left(\frac{N}{N^+} + \lambda \right) \Phi(\mathbf{x}_i, h_{i,t}^+) - \sum_{i \in \mathcal{N}} \left(\frac{N}{N^-} + \lambda \right) \Phi(\mathbf{x}_i, h_{i,t}^-) \right)$$

- Upper bound $-v(\mathbf{w}) \leq -\langle \mathbf{w}, \nabla_{\mathbf{w}} v(\mathbf{w}_t) \rangle$
- Convexified optimization problem

$$\mathcal{P}_{t}^{CCCP}(\mathbf{w}) = u(\mathbf{w}) - \langle \mathbf{w}, \nabla_{\mathbf{w}} v(\mathbf{w}_{t}) \rangle$$
 (29)

SyMIL: primal (gradient)

$$\nabla_{w} \mathcal{P}_{t}^{CCCP}(\mathbf{w}) = \begin{cases} \mathbf{w} + \frac{C}{N} (D + E - (\frac{N}{N^{+}} + \lambda) \Phi(\mathbf{x}_{i}, h_{i,t}^{+})) & \text{if } y_{i}^{\star} = +1 \\ \mathbf{w} + \frac{C}{N} (F + G + (\frac{N}{N^{-}} + \lambda) \Phi(\mathbf{x}_{i}, h_{i,t}^{-})) & \text{otherwise} \end{cases}$$

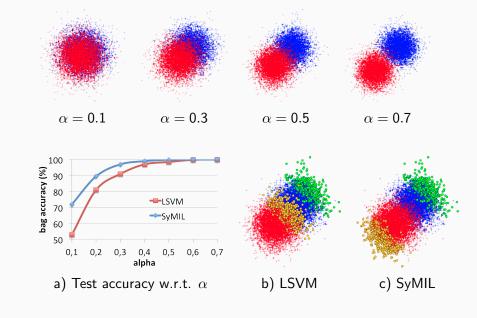
$$D = \begin{cases} \frac{N}{N^{+}} \Phi(\mathbf{x}_{i}, h_{i}^{+}) & \text{if } \langle \mathbf{w}, \Phi(\mathbf{x}_{i}, h_{i}^{+}) \rangle - 1 > 0 \\ 0 & \text{otherwise} \end{cases}$$

$$E = \begin{cases} -\lambda \Phi(\mathbf{x}_{i}, h_{i}^{-}) & \text{if } 1 - \langle \mathbf{w}, \Phi(\mathbf{x}_{i}, h_{i}^{-}) \rangle > \langle \mathbf{w}, \Phi(\mathbf{x}_{i}, h_{i}^{+}) \rangle \\ \lambda \Phi(\mathbf{x}_{i}, h_{i}^{+}) & \text{otherwise} \end{cases}$$

$$F = \begin{cases} -\frac{N}{N^{-}} \Phi(\mathbf{x}_{i}, h_{i}^{-}) & \text{if } -\langle \mathbf{w}, \Phi(\mathbf{x}_{i}, h_{i}^{-}) \rangle - 1 > 0 \\ 0 & \text{otherwise} \end{cases}$$

$$G = \begin{cases} \lambda \Phi(\mathbf{x}_{i}, h_{i}^{+}) & \text{if } 1 + \langle \mathbf{w}, \Phi(\mathbf{x}_{i}, h_{i}^{+}) \rangle > -\langle \mathbf{w}, \Phi(\mathbf{x}_{i}, h_{i}^{-}) \rangle \\ -\lambda \Phi(\mathbf{x}_{i}, h_{i}^{-}) & \text{otherwise} \end{cases}$$

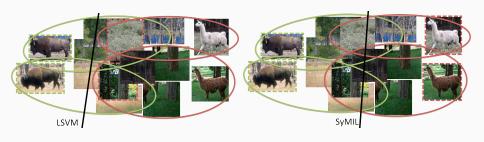
SyMIL: toy experiments



SyMIL: toy experiments on image data

• Classification performances (accuracy) on Mammal dataset

Метнор	BISON VS LLAMA	LLAMA VS BISON	
LSVM	90.3	87.7	
SyMIL	95.7	95.7	



SyMIL: toy experiments on text data

• Text dataset from Reuters21578

• positive class: *money* • negative class: *ship, crude*

	LSVM	SyMIL			
a) Pred	lictive accuracy				
	96.3%	97.6%			
b) Simi	b) Similarity between instances and category				
	$Bag \oplus = 74\%$	$Bag \oplus = 73\%$			
	$Bag \ominus = 67\%$	$Bag \ominus = 78\%$			
c) Exar	nples				
$Bag \; \oplus \;$	bank, currency, money,	bank, exchange, rate,			
	exchange, treasury	currency, monetary			
$Bag \ominus$	west, finance, bank,	oil, opec, shipping,			
	british, money	port, union			

SyMIL: standard MIL dataset results i

DATASET	Image	Musk1	Musk 2	Техт
pos/neg bags	100/100	47/45	39/63	200/200
instances/bag	~ 6.5	5.17	64.69	~ 8
feature dimension	230	166	166	~ 66500

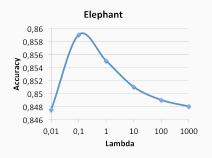
Метнор	IMAGE	Musk	Text
mi-SVM	73.4	84.5	81.6
MI-SVM	75.5	81.7	80.3
LSVM	74.4	82.7	80.0
SyMIL linear	79.1	88.2	84.8
RBF	80.2	89.2	-
Without constraints 1 & 2 linear	78.1	86.9	83.7
RBF	78.7	87.5	-

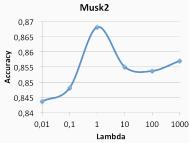
SyMIL: standard MIL dataset results ii

Метнор	IMAGE	Musk	Техт	Avg.
SyMIL	80.2	89.2	84.8	84.7
mi-SVM [1]	72.9	85.5	81.6	80.0
MI-SVM [1]	74.4	81.1	81.4	79.0
ALP-SVM [7]	77.9	86.3	-	-
MICA [16]	73.9	87.5	82.3	80.1
MIGraph [28]	76.1	90.0	-	-
MiGraph [28]	78.1	89.6	-	-
MI-CRF [5]	78.5	86.7	-	-
Convex relaxation [10]	75.8	-	-	-
GP-WDA [11]	79.0	88.4	83.2	83.5
eMIL [13]	77.0	85.3	82.7	81.7
MILEAGE [25]	77.7	-	-	-

SyMIL: hyper-parameter analysis

• Accuracy performance with respect to hyper-parameter λ (logarithmic scale)

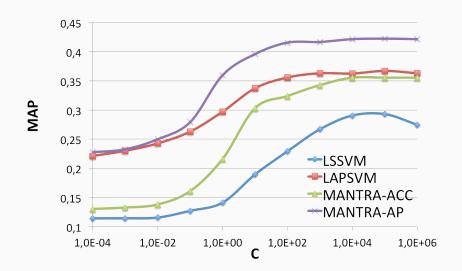




MANTRA: comparison to LSSVM

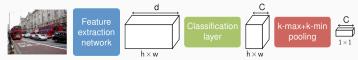
Метнор	UIUC	15 Scene	PPMI	MIT67				
Multi-class a	Multi-class accuracy (%)							
LSSVM MANTRA	73.3 ± 0.3 93.2 ± 1.0	65 ± 1.5 80.7 ± 0.7	13.3 51.0	26.6 56.4				
LSSVM-N MANTRA-C	71.6 ± 1.3 93.2 ± 0.9	$64.3 \pm 0.9 \\ 80.4 \pm 0.6$	13.6 50.9	25.2 56.5				
Average training time (seconds)								
LSSVM MANTRA	1863 61	14179 843	21327 2593	156360 41805				

MANTRA: impact of hyper-parameter C



Region-based strategy

• WELDON (ProNet [Sun, CVPR16])



- Thibaut Durand, Nicolas Thome, and Matthieu Cord WELDON: Weakly Supervised Learning of Deep ConvNets.
 In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
 - Deep MIL

Maxime Oquab, Léon Bottou, Ivan Laptev and Josef Sivic
 Is object localization for free? – Weakly-supervised learning with CNNs.
 In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.