Store-operated Ca2+ entry modulates sarcoplasmic reticulum Ca2+ loading in neonatal rabbit cardiac ventricular myocytes

Jingbo Huang, Casey van Breemen, Kuo-Hsing Kuo, Leif Hove-Madsen and Glen F. Tibbits

You might find this additional information useful...

Supplemental material for this article can be found at:
http://ajpcell.physiology.org/cgi/content/full/00226.2005/DC1

This article cites 41 articles, 23 of which you can access free at:
http://ajpcell.physiology.org/cgi/content/full/290/6/C1572#BIBL

This article has been cited by 4 other HighWire hosted articles:

SR Ca2+ refilling upon depletion and SR Ca2+ uptake rates during development in rabbit ventricular myocytes
J. Huang, L. Hove-Madsen and G. F. Tibbits
[Abstract] [Full Text] [PDF]

Three-Dimensional Distribution of Cardiac Na+-Ca2+ Exchanger and Ryanodine Receptor during Development
P. Dan, E. Lin, J. Huang, P. Biln and G. F. Tibbits
[Abstract] [Full Text] [PDF]

Sarcolemmal cation channels and exchangers modify the increase in intracellular calcium in cardiomyocytes on inhibiting Na+-K+-ATPase
H. K. Saini and N. S. Dhalla
[Abstract] [Full Text] [PDF]

Na:Ca Stoichiometry and Cytosolic Ca-Dependent Activation of NCX in Intact Cardiomyocytes
D. M. BERS and K. S. GINSBURG
[Abstract] [Full Text] [PDF]

Updated information and services including high-resolution figures, can be found at:
http://ajpcell.physiology.org/cgi/content/full/290/6/C1572

Additional material and information about *AJP - Cell Physiology* can be found at:
http://www.the-aps.org/publications/ajpcell

This information is current as of January 7, 2008.
Store-operated Ca\(^{2+}\) entry modulates sarcoplasmic reticulum Ca\(^{2+}\) loading in neonatal rabbit cardiac ventricular myocytes

Jingbo Huang,\(^1,2\) Casey van Breemen,\(^2,3\) Kuo-Hsing Kuo,\(^3\) Leif Hove-Madsen,\(^4\) and Glen F. Tibbits\(^1,2\)

\(^1\)Cardiac Membrane Research Laboratory, Simon Fraser University, Burnaby; \(^2\)Cardiovascular Sciences, Child and Family Research Institute, Vancouver; \(^3\)Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada; and \(^4\)Laboratorio de Fisiología Celular, Cardiología, Hospital de Sant Pau, Barcelona, Spain

Submitted 11 May 2005; accepted in final form 5 January 2006

Huang, Jingbo, Casey van Breemen, Kuo-Hsing Kuo, Leif Hove-Madsen, and Glen F. Tibbits. Store-operated Ca\(^{2+}\) entry modulates sarcoplasmic reticulum Ca\(^{2+}\) loading in neonatal rabbit cardiac ventricular myocytes. Am J Physiol Cell Physiol 290: C1572–C1582, 2006. First published January 18, 2006; doi:10.1152/ajpcell.00226.2005.—Store-operated Ca\(^{2+}\) entry (SOCE), which is Ca\(^{2+}\) entry triggered by the depletion of intracellular Ca\(^{2+}\) stores, has been observed in many cell types, but only recently has it been suggested to occur in cardiomyocytes. In the present study, we have demonstrated SOCE-dependent sarcoplasmic reticulum (SR) Ca\(^{2+}\) loading (loadSR) that was not altered by inhibition of L-type Ca\(^{2+}\) channels, reverse mode Na\(^+/Ca^{2+}\) exchange (NCX), or nonselective cation channels. In contrast, lowering the extracellular [Ca\(^{2+}\)] to 0 mM or adding either 0.5 mM Zn\(^{2+}\) or the putative store-operated channel (SOC) inhibitor SKF-96365 (100 \(\mu\)M) inhibited loadSR at rest. Interestingly, inhibition of forward mode NCX with 30 \(\mu\)M KB-R7943 stimulated SOCE significantly and resulted in enhanced loadSR. In addition, manipulation of the extracellular and intracellular Na\(^+\) concentrations further demonstrated the modulatory role of NCX in SOCE-mediated SR Ca\(^{2+}\) loading. Although there is little knowledge of SOCE in cardiomyocytes, the present results suggest that this mechanism, together with NCX, may play an important role in SR Ca\(^{2+}\) homeostasis. The data reported herein also imply the presence of microdomains unique to the neonatal cardiomyocyte. These findings may be of particular importance during open heart surgery in neonates, in which uncontrollable SOCE could lead to SR Ca\(^{2+}\) overload and arrhythmogenesis.

MATERIALS AND METHODS

Isolation of ventricular myocytes. Ventricular myocytes were isolated from the hearts of New Zealand White rabbits of either sex from three distinct age groups, 3 days (3d), 10 days (10d), and 56 days (56d) postpartum, using methods described previously (17, 34). In the 56d group, 25 mg of Yakult collagenase in 150 ml of a nominally Ca\(^{2+}\)-free solution, 5 mg of protease in 50 ml of storage solution, and a pump speed of 4 ml/min were used. The experiments described in this study were approved by the University Animal Care Committee at Simon Fraser University (permit no. 698K-96) and conformed to the guidelines established by the Canadian Council on Animal Care.

Whole cell perforated patch-clamp voltage. A whole cell amphotericin-perforated voltage-clamp technique was used at room temperature as described previously (17). The internal pipette solution contained (in mM) 110 CsCl, 5 MgATP, 1 MgCl\(_2\), 20 tetrathylationmonium (TEA), 5 Na\(_2\) phosphocreatine, and 10 HEPES at pH 7.1 adjusted with CsOH. The standard external solution contained (in mM) 130 NaCl, 5 CsCl, 1 MgCl\(_2\), 2.0 CaCl\(_2\), 5 Na\(^{+}\)-pyruvate, 10 glucose, and 10 HEPES at pH 7.4 adjusted with NaOH. In some experiments, the cells were perfused with a nominally Ca\(^{2+}\)-free solution (referred to herein as 0 mM) or with different internal and external Na\(^+\) concentrations ([Na\(^{+}\)]\(_i\) and [Na\(^{+}\)]\(_o\), respectively, and 125 and 14 mM, respectively, with the difference from standard external solution being replaced with CsCl). Only cells in which the access resistance was \(<20 \Omega\) were used in these experiments.

Address for reprint requests and other correspondence: G. F. Tibbits, Cardiac Membrane Research Laboratory, Simon Fraser Univ., 8888 University Dr., Burnaby, BC, Canada V5A 1S6 (e-mail: tibbits@sfu.ca).

The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
Measurement of Ca\(^{2+}\) fluorescence. Cytosolic Ca\(^{2+}\) concentration ([Ca\(^{2+}\)]\(i\)) was measured using the fluorescent Ca\(^{2+}\) indicator fluo-3 AM as described previously (17). \(\Delta F\) was assumed to be the difference between background fluorescence determined in the absence and presence of a cell in the area of measurement. \(\Delta F\) is the increment measured from baseline or the background fluorescence in the presence of a cell-free area. \(F_{\text{max}}\) was the fluorescence acquired after the cell was depolarized to +200 mV for 10–20 s to flood the cytosol with Ca\(^{2+}\) at the end of each experiment.

Electron microscopy. Images of the cross sections of the ventricular muscle myocytes were obtained with a Phillips 300 electron microscope as described previously (13). Briefly, each heart was perfused for 15 min using a Langendorff apparatus at age-appropriate perfusion speeds (37°C). After initial fixation, the hearts were removed from the Langendorff apparatus. The ventricle was trimmed into small blocks of −0.5 × 0.5 × 0.5 mm and immersed in the fixative for 2 h at 4°C on a shaker. The blocks were then washed three times in 0.1 M sodium cacodylate (10 min each). In the process of secondary fixation, the blocks were placed into 1% OsO\(_4\)-0.1 M sodium cacodylate buffer for 2 h and then were washed three times with distilled water (10 min each). The blocks were then treated with 1% uranyl acetate for 1 h (en bloc staining), followed by being washed with distilled water. Increasing concentrations of ethanol (50%, 70%, 80%, 90%, and 95%) were used (10 min each) in the process of dehydration. Ethanol (100%) and propylene oxide were used (three 10-min washes each) for the final process of dehydration. The blocks were infiltrated overnight in the resin (TAAB 812) and then embedded in molds and polymerized in an oven at 60°C for 8–10 h. The embedded blocks were sectioned on a microtome using a diamond knife and placed on 400-mesh copper grids. The section thickness was −80 nm. The sections were then stained with 1% uranyl acetate (4 min) and Reynolds lead citrate (3 min) and imaged using a Phillips 300 electron microscope. Twenty-five sections from each of three hearts for each of two age groups (3d and 56d) were used for statistical analysis.

Data analysis. Data are means ± SE. The statistical significance of the results was tested using one-way ANOVA with SPSS version 11.0 software (SPSS, Chicago, IL) or Student’s t-test for paired or unpaired samples. Post hoc tests were performed using Tukey’s multiple-comparison test. \(P \leq 0.05\) was considered statistically significant.

RESULTS

SR Ca\(^{2+}\) loading after clearance of SR Ca\(^{2+}\) content was prominent in newborns and diminished with age. To determine whether there was significant SOCE-dependent sarcoplasmic reticulum (SR) Ca\(^{2+}\) loading (load\(_{\text{SR}}\)) after clearance of the SR Ca\(^{2+}\) content, the protocol shown in Fig. 1A was used. The first rapid 10 mM CAF application was used to clear the Ca\(^{2+}\) stored in the SR before the protocol indicated. The integrals of Na\(^{+}\)/Ca\(^{2+}\) exchanger current (I\(_{\text{NCX}}\)) elicited by the second and third CAF applications were used to determine load\(_{\text{SR}}\) during the preceding 10- and 60-s intervals. During the entire experiment, the cell was voltage clamped at −80 mV (resting condition). The duration of CAF application was limited to 8 s to prevent a possible increase in intracellular cAMP concentration that could potentially result from longer exposure times (36) and confound the results. Figure 1B shows representative traces of membrane current and [Ca\(^{2+}\)]\(_i\) in 3d, 10d, and 56d myocytes superfused with control solution (CON). There was measurable load\(_{\text{SR}}\) after clearance of SR Ca\(^{2+}\) content in the 3d and 10d myocytes and substantially less load\(_{\text{SR}}\) in 56d cells. Load\(_{\text{SR}}\) was significantly enhanced when the perfusion time was increased from 10 to 60 s as shown in Fig. 1C. There were significant decreases in load\(_{\text{SR}}\) with age with regard to both the 10- and 60-s intervals.

Load\(_{\text{SR}}\) at rest depends on sarcolemmal Ca\(^{2+}\) entry but not on I\(_{\text{Ca}}\) or reverse mode NCX. To investigate whether the prominent load\(_{\text{SR}}\) at rest was due to Ca\(^{2+}\) entry through Ca\(^{2+}\) current (I\(_{\text{Ca}}\)) or reverse mode NCX, load\(_{\text{SR}}\) during the 60-s interval was determined in the presence of 10 \(\mu\)M nifedipine (NIF), an L-type Ca\(^{2+}\) channel blocker, and 5 \(\mu\)M KB-R 7943 (KB-R), a blocker primarily of reverse mode NCX and to a lesser degree of I\(_{\text{Ca}}\), as shown in Fig. 2A. Figure 2A, top, shows the sequence of events during the experimental protocol. With this design, the integrals of the second and third CAF-induced I\(_{\text{NCX}}\) (shown in gray) reflected the load\(_{\text{SR}}\) in the 60-s interval in CON and in NIF + KB-R solutions, respectively. There were no reductions in load\(_{\text{SR}}\) with NIF + KB-R for both 3d and 56d myocytes compared with CON solution. Furthermore, there were no appreciable changes in the fluorescence baseline (\(\Delta F/F_0\)) during 60-s load\(_{\text{SR}}\) (data not shown).

To determine whether load\(_{\text{SR}}\) at rest was due to another source of sarcolemmal Ca\(^{2+}\) entry, the effect of removal of extracellular [Ca\(^{2+}\)]\(_o\) ([Ca\(^{2+}\)]\(_o\)) on load\(_{\text{SR}}\) was examined in 3d cells in which load\(_{\text{SR}}\) was significantly more robust. Figure 2B shows three representative membrane current traces induced by CAF application after a 10-s loading period, with either 2.0 or 0 mM [Ca\(^{2+}\)]\(_o\) in a 3d myocyte. External Mg\(^{2+}\) concentration ([Mg\(^{2+}\)]\(_o\)) was increased to 3 mM in the 0 mM [Ca\(^{2+}\)]\(_o\) solution to improve seal stability. As shown in Fig. 2, CAF-induced load\(_{\text{SR}}\) was abolished by perfusion with 0 mM [Ca\(^{2+}\)]\(_o\) and was restored after reperfusion with 2 mM [Ca\(^{2+}\)]\(_o\).

Increased [Ca\(^{2+}\)]\(_i\), as consequence of SOCE. The results shown in Figs. 1 and 2 suggest that load\(_{\text{SR}}\) at rest occurs through SOCE or nonselective cation channels (NSCCs). To test this hypothesis, a classical approach based on readdition of 2 mM [Ca\(^{2+}\)]\(_o\) after transient extracellular Ca\(^{2+}\) removal (32) was used to evaluate the role of SOCE. Figure 3, A and B, shows representative Ca\(^{2+}\) transient traces measured during fast switching from 0 to 2 mM [Ca\(^{2+}\)]\(_o\) for 3d and 56d myocytes, respectively. These data were collected in the presence of 10 \(\mu\)M NIF and 5 \(\mu\)M KB-R, both with and without SR Ca\(^{2+}\) depletion. SR Ca\(^{2+}\) depletion was achieved by continuous stimulation of the cell with depolarization (from −80 mV to +10 mV for 400 ms every 5 s) in the presence of 25 mM cyclopiazonic acid (CPA), a blocker of the SR Ca\(^{2+}\) pump, and 10 mM ryanodine (Ry), which locks the Ry receptor (RyR) in a subconducting open state. CAF (10 mM) was applied rapidly to verify that SR Ca\(^{2+}\) depletion was complete (see Supplemental Fig. 1; http://ajpcell.physiology.org/cgi/content/full/00226.2005/DC1). SOCE was then induced by a 10-s perfusion of 0 mM [Ca\(^{2+}\)]\(_o\) solution, followed by readdition of 2 mM [Ca\(^{2+}\)]\(_o\). This caused a substantial increase in [Ca\(^{2+}\)]\(_i\) in the 3d myocyte (Fig. 3A) but a significantly smaller increase in the 56d myocyte (Fig. 3B). [Ca\(^{2+}\)]\(_i\) reached a steady state within −100 s of switching solutions. It is important to note that an increase in [Ca\(^{2+}\)]\(_i\) was not observed when the SR was fully loaded with Ca\(^{2+}\), which is clearly shown in Fig. 3, A–C.

Pharmacological inhibition of load\(_{\text{SR}}\) and SOCE. Because little evidence of SOCE was observed in the 56d group, the effects of different blockers on load\(_{\text{SR}}\) and SOCE were investigated in 3d myocytes only, using a 60-s SR loading interval as described in Fig. 1A. We investigated 30 \(\mu\)M KB-R, a blocker of both reverse mode and forward mode NCX at this concentration (1); 50–200 \(\mu\)M SKF-96365 (SKF) and 50–150 \(\mu\)M 2-aminoethoxydiphenyl borate (2-APB), both putative block-
ers of SOCE (25, 26); 30–100 μM (R,S)-(3,4-dihydro-6,7-dimethoxy-isoquinoline-1-yl)-2-phenyl-N,N-di[2-(2,3,4-trimethoxyphenyl)ethyl]acetamide (LOE-908), a blocker of NSCC (21); and 0.5 mM ZnCl2, a competitive cation inhibitor. It should be noted, however, that 30 μM KB-R is a relatively high dose of this lipophilic drug, and one must consider possible nonspecific effects in the interpretation of these results. As shown in Fig. 4, loadSR decreased significantly in the presence of 100 μM SKF and 0.5 mM ZnCl2. However, up to 100 μM LOE-908 and up to 150 μM 2-APB did not change loadSR significantly. Application of 10 μM nifedipine did not have a significant effect on loadSR (data not shown).

To corroborate the results shown in Fig. 4, the effects of the different blockers were also tested using the method described in Fig. 3. As shown in Fig. 5A, the increase in [Ca2+]i was significantly inhibited in the presence of SKF. Figure 5B shows that there was a substantial rise in [Ca2+]i that eventually reached the steady state after [Ca2+]o was switched from 0 to 2 mM while the cell was voltage clamped at −80 mV. [Ca2+]i increased further after the application of 30 μM KB-R, and hyperpolarizing the membrane potential (Em) from −80 to −120 mV caused an additional rise in [Ca2+]i. However, the rate of [Ca2+]i rise with 30 μM KB-R (at −80 mV or −120 mV) was slower than that observed under control conditions because of higher [Ca2+]i. Figure 5C shows the steady-state [Ca2+]i (expressed as ΔF/F0) after [Ca2+]o was switched from 0 to 2 mM in control solution, 30 μM KB-R, or 100 μM SKF. The magnitude of the rise in [Ca2+]i in the presence of KB-R and SKF was significantly different from that observed under control conditions. Neither LOE-908 nor 2-APB had a significant effect on [Ca2+]i, compared with the control group (data not shown).
Modulation of loadSR by NCX activity. To investigate further the modulation of loadSR by NCX, loadSR during 10- and 60-s intervals was investigated with different [Na\(^+/\)]o and [Na\(^+/\)]i. Three different groups of [Na\(^+/\)]o and [Na\(^+/\)]i combinations were used: 140/10, 125/10, and 125/14 mM, respectively, for [Na\(^+/\)]o/[Na\(^+/\)]i. As shown in Fig. 6A, there were significant differences in load SR measured on the basis of the CAF-induced I\(_{\text{NCX}}\) integral for the 10-s interval between 125/14 vs. 125/10 mM and 140/10 mM concentration combinations and for the 60-s interval between 140/10 vs. 125/14 mM concentration combinations. As shown in Fig. 6B, loadSR during the 10-s interval was significantly increased in the presence of 30 \(\mu\)M KB-R for both the 125/10 and 140/10 concentration combination groups. The magnitude of increase was significantly greater in the 140/10 group compared with the 125/10 group.

Voltage dependence of loadSR. Because the driving forces for reverse mode NCX- and SOCE-mediated loadSR have opposite voltage dependencies, loadSR was examined in 3d myocytes as a function of \(E_m\) (Fig. 7C). \(E_m\) was switched from −80 mV to −50 mV, −80 mV, −110 mV, or −140 mV for 10 s. CAF application before each depolarization was used to clear SR Ca\(^{2+}\), and the I\(_{\text{NCX}}\) integral induced by the second CAF application was used to determine loadSR at the four different \(E_m\) values. Figure 7B shows representative CAF-induced I\(_{\text{NCX}}\) at the indicated loading voltages in CON and with 10 \(\mu\)M NIF plus 30 \(\mu\)M KB-R (NIF + KB-R). For the test potentials −140 mV, −110 mV, and −80 mV, loadSR was significantly greater in the presence of NIF + KB-R (Fig. 7C). LoadSR in the control group showed a parabolic increase with \(E_m\) held at less negative potentials. With NIF + KB-R, however, there was an inverse relationship between loadSR and \(E_m\) that was well fitted (\(R^2 = 0.98\)) using linear regression analysis.

Subsarcolemma cisternal structure during development. Figure 8A shows representative cross-sectional electron photomicrographs of 3d and 56d myocytes. For clarification, ×1.67 magnification of the subsarcolemma cisternal (SSC) structure is shown (Fig. 8A, insets). The cleft between the sarcolemma (SL) and the SSC was ∼20 nm for both 3d and 56d myocytes. The SSC in the 3d myocytes appeared to form sheetlike structures that extended along the apposing SL and were determined to be, on average, about three times longer than those in the 56d myocytes.

DISCUSSION

LoadSR under resting conditions as a consequence of SL Ca\(^{2+}\) entry. The observation that the SR loaded with Ca\(^{2+}\) during the 10- and 60-s intervals after CAF-induced SR Ca\(^{2+}\) depletion while the cell was voltage clamped at −80 mV (Fig. 1) is difficult to explain on the basis of present knowledge of
the mechanisms of transsarcolemmal Ca\(^{2+}\) influx in cardiomyocytes, because one assumes that voltage-gated Ca\(^{2+}\) channels are not activated and reverse mode NCX activity is not favored under these conditions (see Supplemental Table 1). These assumptions were supported by the lack of a detectable membrane current during these loading periods. The Ca\(^{2+}\) source for loadSR could be from organelles or from the extracellular space. In this study, we present strong evidence that the loadSR was due to Ca\(^{2+}\) entry from external Ca\(^{2+}\) as demonstrated by the [Ca\(^{2+}\)]\(_o\) dependence of loadSR (Fig. 2B). Furthermore, because the loadSR was observed at \(-80\) mV and was resistant to 5 \(\mu\)M KB-R and 10 \(\mu\)M NIF (Fig. 2A), Ca\(^{2+}\) entry is unlikely to have occurred through reverse mode NCX or \(I_{Ca}\).

SOCE in cardiac myocytes. The notion that the depletion of SR or ER could initiate the activation of plasma membrane Ca\(^{2+}\) entry through SOCs was first proposed in smooth muscles more than two decades ago, and the time of activation

Fig. 3. Intracellular [Ca\(^{2+}\)] ([Ca\(^{2+}\)]\(_i\)) increase as a consequence of SOCE in cardiac myocytes. A and B: representative Ca\(^{2+}\) transient traces measured with both depleted SR Ca\(^{2+}\) [cyclopiazonic acid (CPA) + ryanodine (Ry), gray trace] and fully loaded SR Ca\(^{2+}\) [(CPA + Ry), black trace]. A: 3d myocyte preperfused with and without CPA + Ry as well as with 10 \(\mu\)M NIF + 5 \(\mu\)M KB-R. [Ca\(^{2+}\)]\(_i\) was switched from 0 mM (for 10 s) to 2 mM (arrow). B: response of [Ca\(^{2+}\)]\(_i\) in a 56d myocyte to conditions shown in A. C: magnitude of [Ca\(^{2+}\)]\(_i\) dependence of loadSR (Fig. 2B). Furthermore, because the loadSR was observed at \(-80\) mV and was resistant to 5 \(\mu\)M KB-R and 10 \(\mu\)M NIF (Fig. 2A), Ca\(^{2+}\) entry is unlikely to have occurred through reverse mode NCX or \(I_{Ca}\).

SOCE in cardiac myocytes. The notion that the depletion of SR or ER could initiate the activation of plasma membrane Ca\(^{2+}\) entry through SOCs was first proposed in smooth muscles more than two decades ago, and the time of activation has

Fig. 4. Effect of blockers on loadSR in 3d myocytes. Effects of blockers on 60-s loadSR were normalized to that of CON (taken as unity). LoadSR significantly increased in the presence of 30 \(\mu\)M KB-R (**\(P < 0.01\)) and decreased in the presence of either 100 \(\mu\)M SKF-96365 (SKF) or 0.5 mM ZnCl\(_2\) (*\(P < 0.05\) for both). 100 \(\mu\)M (R,S)-(3,4-dihydro-6,7-dimethoxyisoquinolin-1-yl)-2-phenyl-N,N-di[2-(2,3,4-trimethoxyphenyl)ethyl]acetamide (LOE-908), a blocker of nonselective cation channels (NSCCs), and 150 \(\mu\)M 2-aminoethoxydiphenyl borate (2-APB) did not show any significant effect on loadSR. \(n = 10\)
been investigated in a variety of nonexcitable (7) and excitable cells, including smooth muscle (7, 8, 30, 42) and skeletal muscle cells (23). Another type of plasma membrane Ca\(^{2+}\)/H\(^{+}\) entry appears to be selective predominantly for Na\(^{+}\)/H\(^{+}\) via the NSCC. Ca\(^{2+}\)/H\(^{+}\) influx through most SOCs can be blocked by the divalent cations Zn\(^{2+}\), Cd\(^{2+}\), Mn\(^{2+}\), Ni\(^{2+}\), and Ba\(^{2+}\) and by the trivalent cations La\(^{3+}\) and Gd\(^{3+}\) (2). Although it could be argued that Zn\(^{2+}\) may have some effect on Na\(^{+}\) and K\(^{+}\) channels, the presence of Zn\(^{2+}\) under our experimental conditions (−80 mV and K\(^{+}\) replacement) is unlikely to introduce any confounding consequences. Unfortunately, the lack of highly specific pharmacological tools has considerably impaired the identification of SOCs. SKF and 2-APB have been demonstrated as putative blockers of SOCE. LOE-908 has been implicated as an inhibitor of Ca\(^{2+}\)-permeable NSCCs, but it did not inhibit SOCE in our present experiments.

In the current study, the two basic experimental protocols based on SR Ca\(^{2+}\) reloading after CAF exposure and readdition of Ca\(^{2+}\) after exposure to Ca\(^{2+}\)-free extracellular solution both provided strong support for a robust SOCE in resting neonatal cardiac myocytes. Furthermore, significant inhibition of load\(_{SR}\) during the 60-s interval by both Zn\(^{2+}\) and SKF (Fig. 4), as well as the significant reduction of [Ca\(^{2+}\)]\(_{i}\) caused by SKF (Fig. 5A) but insensitivity to LOE-908, provides strong support for SOCE rather than nonspecific Ca\(^{2+}\) entry.

The interpretation of the effects of 2-APB is more complex. It has been known for some time that 2-APB is an inhibitor of inositol 1,4,5-trisphosphate (IP\(_{3}\)) receptors (IP\(_{3}\)Rs) (25) and at doses of 50–100 μM, 2-APB has been exploited to examine the role of IP\(_{3}\)-mediated SOCE. However, 2-APB within the same concentration range also has been reported to inhibit a variety of transient receptor potential (TRP) channels, including subclasses of TRP melastatin (TRPM) channels and TRP vanilloid-related (TRPV) channels, some of which are purported to be responsible for SOCE (5, 6, 20, 37). Furthermore, higher doses of 2-APB increased Ca\(^{2+}\) influx in rat basophilic leukemia (RBL)-2H3 mast cells (≥100 μM) (6) and heterologously expressed TRPV1–TRPV3 channels (≥200 μM) (16). In the present study, we found that there were no significant differences in load\(_{SR}\) between 0, 50, 75, and 150 μM 2-APB.
prolonged perfusion with 0 mM [Ca^{2+}]_o (see Supplemental Table 1). We used two different approaches to limit [Na^+]_o accumulation. First, SR Ca^{2+} depletion was achieved by perfusing the cell with 25 μM CPA, 10 μM Ry, and 2 mM [Ca^{2+}]_o instead of pretreatment with 0 mM [Ca^{2+}]_o, because the time needed to reach SR Ca^{2+} depletion in this manner may result in [Na^+]_i > 18 mM. Second, a 10-s perfusion time of 0 mM [Ca^{2+}]_o (Figs. 3 and 5) resulted in a change of [Ca^{2+}]_o that was <10% of the observed [Ca^{2+}]_o after switching to 2 mM [Ca^{2+}]_o. We submit, therefore, that the [Ca^{2+}]_o rise after switching [Ca^{2+}]_o from 0 to 2 mM in the present study was a consequence of SOCE only (Figs. 3 and 5).

In addition, load_{SR} was [Na^+]_o and [Na^+]_i (dependent (Fig. 6A), which is explained by the resultant changes in E_{NCX} (estimated to be −40, −50 and −77 mV for 140/10, 125/10, and 125/14 mV combinations, respectively; see Supplemental Table 1), and this dependence was abolished by 30 μM KB-R (Fig. 6B). One might argue that this slight modification of [Na^+]_o and [Na^+]_i might have an effect on either the Na^+/K^+ pump or Na^+/H^+ exchanger (NHE), which could have altered intracellular Ca^{2+} homeostasis in our experiments. However, experiments performed at the laboratories of Bers and Vaughn-Jones (4, 41) showed that variations in [Na^+]_i, from 7 to 16 mM have little or no effect on NHE. Furthermore, both load_{SR} (Fig. 2A) and elevation of [Ca^{2+}]_i (Fig. 3A) under resting conditions were not blocked by 5 μM KB-R, a dose that effectively inhibited reverse mode NCX (see Supplemental Fig. 3), but instead were significantly increased in the presence of 30 μM KB-R (Fig. 6B), with the caveat that 30 μM KB-R is a relatively high dose. Therefore, this evidence strongly supports the notion that forward mode NCX efficiently competes with the SR Ca^{2+} pump for Ca^{2+} entering through SOC and agrees with a study by Chernaya et al. (9), who used transfected CHO cells that expressed bovine cardiac NCX. The present study was conducted at room temperature to preserve myocyte function and to prevent potential temperature gradients created by the rapid application of various solutions. This nonphysiological temperature results in an attenuation of intracellular gradients created by the rapid application of various solutions. However, we think that our conclusions would remain qualitatively the same, although there might be quantitative differences, if the experiments had been conducted at physiological temperatures (37°C).

However, such a predominant role of forward mode NCX in limiting SOCE-dependent load_{SR} is contrary to observations in smooth muscle, neuronal, and nonexcitable cells, in which SR/ER Ca^{2+} refilling occurs primarily by reverse mode NCX activity (24). The reasons for this difference are not clear but may be related to different underlying mechanisms of SOCE. In particular, the selectivity of Ca^{2+} over Na^− and the fact that the activity of NCX in cardiac myocytes is more than 10-fold greater than that in smooth muscle (35), combined with the much slower kinetics of smooth muscle contraction, could critically alter the role of NCX in SOCE-dependent SR refilling.

Voltage dependence of SOCE. Assuming that the contribution of the sarcolemmal Ca^{2+} pump is minimal, the magnitude of load_{SR} appears to depend on competition between the SR Ca^{2+} pump and forward mode NCX for the SOCE. Thus more negative voltages increase the driving force for both SOCE (Fig. 5B) and forward mode NCX (Fig. 7). At a holding...
potential of −50 mV, the greater loadSR appears to be the consequence of Ca\(^{2+}\) entry by reverse mode NCX and/or L-type \(I_{\text{Ca}}\), because it is dramatically reduced by the presence of 10 μM NIF and 5 μM KB-R. LoadSR exhibited linear voltage dependence on \(E_m\) in the presence of 30 μM KB-R, consistent with an increased driving force for SOCE at more negative \(E_m\) values and with the fact that SOCs are not voltage-gated channels. Therefore, loadSR in the presence of 30 μM KB-R is more likely to reflect the actual SOCE, which is about twofold greater than that observed without KB-R.

Developmental changes in SOCE. Both the rise in [Ca\(^{2+}\)]\text{c}\text{0}\), when [Ca\(^{2+}\)]\text{c}\text{0}\) was switched from 0 to 2 mM (Fig. 3) and the loadSR observed during resting conditions (Fig. 1) were significantly greater in 3d than in 56d myocytes, even though the 60-s loadSR was only −50% of the steady-state loadSR in 3d myocytes (61.9 amol/pF) (17). In the present study, loadSR after the 10-s interval was −10 and 2 amol/pF in 3d and 56d myocytes, respectively, producing average SOC currents of 0.2 and 0.04 pA/pF, respectively, assuming that SOC exhibits high Ca\(^{2+}\) selectivity that is too small to be detected using the whole cell voltage patch-clamp technique. These values are considerably lower than the SOC density of −0.7 pA/pF at −90 mV in rat cardiomyocytes reported recently by Hunton and colleagues (19, 20). It should be taken into consideration that SOC density of 0.7 pA/pF is similar to the peak \(I_{\text{NCX}}\) density elicited by 10 mM CAF in the rat and that it would load the adult rat SR at rest within 20–30 s. This suggests that the reported SOC density of 0.7 pA/pF is likely overestimated, possibly because of prolonged exposure to Ca\(^{2+}\)-free extracellular solution and the use of Ca\(^{2+}\) chelators and ionophores. Furthermore, the likelihood of higher surface-to-volume ratios in the younger age groups could yield appreciable [Ca\(^{2+}\)]\text{c}\text{0}\) changes as well as the underestimation of loadSR normalized by cell membrane surface (pF) (14). Therefore, although the increased [Ca\(^{2+}\)]\text{c}\text{0}\),
Close spatial relationships between SOC, NCX, and SERCA2A within a microdomain are unique to neonatal myocytes. In the absence of SR Ca\(^{2+}\)/H\(^{1001}\)pump inhibition during the 60-s period of loadSR (Figs. 1B and 2A), there was no detectable increase in Ca\(^{2+}\)/H\(^{1001}\)fluorescence (Fig. 3). Therefore, it is likely that Ca\(^{2+}\) influx into a microdomain between the sarcolemma and the SR through the SOCs is pumped back to the SR by SERCA before it reaches the bulk phase cytosol (29). As predicted, blockade of SERCA with CPA revealed SOCE as a rise in [Ca\(^{2+}\)]. The efficiency of transfer of Ca\(^{2+}\) from SOCE to SERCA depends on the spatial relationship between SERCA and SOC and the kinetics of SR Ca\(^{2+}\) uptake and SOCE. SOCE has an overall lower rate compared with SR Ca\(^{2+}\)/H\(^{1001}\)uptake rate (11), presumably as a consequence of their relative densities (15). Thus little or no increase in [Ca\(^{2+}\)] would be expected if SOCs were in proximity to the SR Ca\(^{2+}\) pump. Page and Buecker (28) found that before the development of a T-system (~10 days after birth), the surface density of dyads as well as total dyad areas per unit of cell volume and per unit of myofibrillar volume increase progressively during embryogenesis until they approach constancy at near-adult rabbit values 1 day after birth. Furthermore, in the present study, we have presented the novel finding of the abundant sheetlike SSCs in 3d myocytes in contrast to tubular SSCs in 56d myocytes. This finding, as well as the narrow cleft (20 nm) between SL and SR (Fig. 8), provides strong structural support for the existence of a distinct SL microdomain and thus the functional link between SOC, SERCA2A, and NCX in neonatal cardiomyocytes. The functional studies conducted at our and other laboratories have shown that there is a much greater SR Ca\(^{2+}\) content than previously recognized and that reverse mode NCX plays a more important role in excitation-contraction (E-C) coupling in the early developmental stages (17, 18). Furthermore, we have demonstrated a significantly greater time delay between the peaks of \(I_{NCX}\) and Ca\(^{2+}\)/H\(^{1001}\) transient induced by rapid CAF application in myocytes from the youngest age groups (287 ms in 3d vs. 64 ms in 20d), as well as a significantly greater amount of Ca\(^{2+}\) already pumped out at the time of peak Ca\(^{2+}\) transient (50% of total Ca\(^{2+}\) in 3d vs. 17% of total Ca\(^{2+}\) in 20d) (17). These results support the hypothesis that there are ultrastructural differences in the subsarcolemma SR microdomain (17, 34) as a function of ontogeny. We propose, therefore, that NCX, SOC, and SERCA are in prox-

(Fig. 3) might be overestimated, it would not change the conclusion of developmental change in SOCE due to the strong support from the developmental change in loadSR.
inity to each other in the 3d myocyte as reported with regard to mature smooth muscle (27). We postulate that the depletion of SR Ca$^{2+}$ in neonatal ventricular myocytes triggers SOCs, which brings Ca$^{2+}$ into a restricted microdomain between the SL and peripheral SR membrane in the neonatal heart. Because NCX has a substantive impact on SOCE-dependent load$_{SR}$, it must be close enough to the SOC to be able to compete effectively with SERCA for SOCE. In addition, both NCX and SERCA might contribute to normal heart function by preventing an increase in [Ca$^{2+}$]$_i$ during SR Ca$^{2+}$ refilling. Further examination of the proximity of the proteins proposed in this model is required.

Mechanism and function of SOCE. Because it has commonly been accepted that SOCE does not exist in cardiomyocytes, the mechanism and function of SOCE in heart was not investigated until Hunton et al. (19) suggested that SOC might be involved in Ca$^{2+}$-mediated hypertrophy in rat cardiomyocytes. The present study is the first report of developmental regulation of SOCE, and these findings may be consistent with the observations of the latter study in that this period of ontogeny is characterized by substantial cardiomyocyte hypertrophic growth. In our study, myocyte surface area increased by $>$470% during the 3d–56d period on the basis of measurement of membrane capacitance (14.2 \pm 0.5 vs. 68.0 \pm 0.9 pF, respectively).

As a result of the apparently low unitary conductance and density of SOCE, SOCE is unlikely to make a significant contribution to E-C coupling even in the neonatal myocyte. Thus the SOCE-dependent load$_{SR}$ of \sim10 amol \cdot pF$^{-1}$, \sim10$^{-1}$ in the 3d myocyte corresponds to an uptake rate of 6.4 μM/s (assuming a conversion factor of 6.44 pF/pl), which is \sim10% of the total Ca$^{2+}$ transient. However, the data suggest that SOCE is likely to play an important role in maintaining SR Ca$^{2+}$ homeostasis, especially in the neonatal heart.

In conclusion, our results show that in the newborn rabbit, there is a robust reloading of SR Ca$^{2+}$ (after CAF-induced clearance of SR Ca$^{2+}$ content) mediated by SOCE and strongly modulated by NCX activity, suggesting that SOC, SERCA2A, and NCX are colocalized within a subsarcolemmal microdomain. Although the SOCE-dependent load$_{SR}$ is estimated to be too slow to contribute significantly to cytosolic Ca$^{2+}$ cycling on a beat-to-beat basis, SOCE-dependent load$_{SR}$, together with NCX, may play an important role in SR Ca$^{2+}$ homeostasis in the neonatal heart. This orchestrated interplay between SOCE, NCX, and SERCA2A may be of particular importance during open heart surgery in the neonate, in which an alteration of this balance could lead to uncontrolled SOCE-dependent load$_{SR}$ and arrhythmogenesis.

GRANTS

The generous support of the Canadian Institutes of Health Research and the Heart and Stroke Foundation of British Columbia and Yukon (to G. F. Tibbits) is gratefully acknowledged. J. Huang is the recipient of a Canada Research Scholarship from the Canadian Institutes of Health Research. L. Hove-Madsen is the recipient of a “Ramón y Cajal” grant from the Spanish Ministry of Science and Technology, and G. F. Tibbits is the recipient of a Tier I Canada Research Chair.

REFERENCES

27. Moore ED, Etter EF, Philipson KD, Carrington WA, Fogarty KE, Lifshitz LM, and Fay FS. Coupling of the Na+/H+/Ca2+/H+ exchanger, Na+/H+/K+ pump and sarcoplasmic reticulum in smooth muscle. Nature 365: 657–660, 1993.

36. Trafford AW, Diaz ME, Negretti N, and Eisner DA. Enhanced Ca2+ current and decreased Ca2+ efflux restore sarcoplasmic reticulum Ca2+ content after depletion. Circ Res 81: 477–484, 1997.

40. Watano T, Kimura J, Morita T, and Nakanishi H. A novel antagonist, no. 7943, of the Na+/H+/Ca2+/H+ exchange current in guinea-pig cardiac ventricular cells. Br J Pharmacol 119: 555–563, 1996.

41. Wu ML and Vaughan-Jones RD. Interaction between Na+ and H+ ions on Na+/H+ exchange in sheep cardiac Purkinje fibers. J Mol Cell Cardiol 29: 1131–1140, 1997.

42. Zhang S, Yuan JXJ, Barrett KE, and Dong H. Role of Na+/Ca2+ exchange in regulating cytosolic Ca2+ in cultured human pulmonary artery smooth muscle cells. Am J Physiol Cell Physiol 288: C245–C252, 2005.