CMPT 310 Sample Midterm Summer 2019

Last name exactly as it appears on student card					
First name					
SFU Student #					
SFU email ends with sfu.ca					

This is a **closed book exam**: notes, books, computers, calculators, electronic devices, etc. are **not permitted**. Do not speak to any other students during their exam or look at their work. If you have a question, please remain seated and raise your hand and a proctor will come to you.

	Out	Your
	of	Mark
Agent Architecture	9	
Search	13	
Constraint Satisfaction	10	
Short Answer	10	
Total	42	

Agent Architecture

a) (2 marks) Give the definition **percept**, along with an example of two different ones.

b) (2 marks) Give the definition of **percept sequence**.

c) (5 marks) What is a **simple reflex agent**, and how does it work? What is one **good** thing about such an agent? What are two different **bad** things about it?

Searching

In the tree on the left, the capital letter in each node is the node's name, and the number is the h-value for that node. Altogether, the h-values define a heuristic function h.

Each edge of the tree is labelled with its cost, and the two goal nodes, H and J, are marked.

For example, node J has an h-value of 0, and the cost of going from node C to node G is 1.

A node is **visited** when it is removed from the frontier. **If there is a tie** about what node to visit next, always choose the node that comes first alphabetically.

- a) (3 marks) What are the values of g(H), g(I), and g(J), where g is the regular g-function as defined in A*-search and related algorithms.
- b) (2 marks) If you start at node A, in what order will the nodes be visited by **uniform-cost search**?
- c) (2 marks) If you start at node A, in what order will the nodes be visited by greedy best-first search?
- d) (2 marks) Is the heuristic function h admissible? If not, why not?
- e) (2 marks) What are f(H) and f(I), where f is the f-value function as defined in A*-search?
- f) (2 marks) If you start at node A, in what order will the nodes be visited by A* search?

Constraint Satisfaction

b) (8 marks) Create an **arc consistent** version of the above CSP. Fill in the domains (in the circles) and constraints (under the corresponding letter pairs) here:

c) (1 mark) What is the size of the search space of the arc consistent CSP in b)?

Short Answer

a)	(1 mark) <i>True</i> or <i>False</i> : AlphaZero uses alpha-beta search as it is main search algorithm when playing chess.	
b)	(1 mark) <i>True</i> or <i>False</i> : One of the interesting things about AlphaZero is that it can be used to create world-class players for some games other than chess.	
c)	(1 mark) <i>True</i> or <i>False</i> : AlphaZero learned to play chess by playing games against other very strong chess programs (such as StockFish).	
d)	(1 mark) <i>True</i> or <i>False</i> : Genetic algorithms can be described as a variant of stochastic beam search.	
e)	(1 mark) <i>True</i> or <i>False</i> : If an A*-search heuristic is consistent , then it is also admissible .	
f)	(1 mark) <i>True</i> or <i>False</i> : If you run the AC3 algorithm on an arc consistent CSP, then the CSP will <i>not</i> be changed.	
g)	(1 mark) <i>True</i> or <i>False</i> : In CSP backtracking search, one very popular way of choosing the next variable to assign is to pick the variable with the largest domain.	
h)	(1 mark) <i>True</i> or <i>False</i> : The min-conflicts CSP algorithm assigns variables one at a time.	
i)	(1 mark) <i>True</i> or <i>False</i> : The min-conflicts algorithm for solving CSPs is an example of a local search algorithm.	
j)	(1 mark) <i>Absolutely</i> or <i>No Way</i> : Only humans can be truly intelligent.	