
CMPT 383 Midterm Sample

Summer 2019
Last name

exactly as it appears on student card

First name
exactly as it appears on student card

SFU Student #

SFU email
ends with sfu.ca

This is a closed book exam: notes, books, computers, calculators, electronic devices, etc. are not

permitted. Do not speak to any other students during their exam or look at their work. If you have a

question, please remain seated and raise your hand and a proctor will come to you.

Out
of

Your
Mark

Deep Functions 10

Folding 10

Short Answer: Scheme 6

Currying and Continuations 10

Haskell 10

 Total 46

CMPT 383, SFU Sample Midterm (Solutions) Summer 2019

Instructor: T. Donaldson Page 2 of 6

A Counter
(10 marks) Write a "deep" function called (acount x) that works as follows:

• If x is the symbol 'a, then 1 is returned.

• If x is a non-list other than 'a, then 0 is returned.

• If x is a list, it returns the number of occurrences of the symbol 'a (even ones deeply nested

within sub-lists) in x.

For example:

> (acount 'a)
1

> (acount'm)
0

> (acount '(a big (dog is a handful)))
2

> (acount'((a) (1 (((a)) dog) a)))

3

Use only basic Scheme functions that are part of standard Scheme and were discussed in the lectures and

notes (no loops!).

Make sure to use good Scheme programming style and perfect indentation: make your code easy to read.

(define (sum lst)

 (cond ((null? lst)

 0)

 (else

 (+ (car lst) (sum (cdr lst))))
)

)

(define (acount x)

 (cond ((equal? x 'a)
 1)

 ((not (list? x))

 0)

 (else

 (sum (map acount x))
)

)
)

Other solutions are possible!

CMPT 383, SFU Sample Midterm (Solutions) Summer 2019

Instructor: T. Donaldson Page 3 of 6

Let and Functions
a) (1 mark) Write the most general form of a Scheme let expression.

(let ((v1 val1) (v2 val2) … (vn valn)) body)

b) (2 marks) Rewrite the following expression as an equivalent one that doesn’t use let, and doesn’t use

any functions or special forms except for lambda:

(let ((x 2)

 (y 3))
 (* x y))

((lambda (x y) (* x y)) 2 3)

c) (2 marks) Rewrite the following expression as an equivalent one that doesn’t use let*, and doesn’t use

any functions or special forms except for let:

(let* ((x 2)

 (y x))

 (* x y))

(let ((x 2))

 (let ((y 2))
 (* x y)))

d) (5 marks) Consider the following function:

(define my-if

 (lambda (test true-body false-body)

 (cond (test true-body)
 (else false-body))))

Can this be used in place of Scheme’s built-in if? Justify your answer.

No, this cannot be used as a replacement for Scheme’s built-in if form. Scheme’s built-in if is a macro

(or special form), and it only evaluates true-body when test is true, and it only evaluates false-

body when test is false. The built-in if never evaluates both true-body and false-body.

In contrast, my-if is a function (not a macro) and so it evaluates both true-body and false-body

before evaluating the cond expression. This is a big difference!

For example, suppose you are using Scheme to control a robot that can turn left or right. The expression

(my-if (wall-on 'left) (turn_right) (turn_left)) would evaluate both (turn_right)

and (turn_left), i.e. the robot would turn both left and right. In contrast,

(if (wall-on 'left) (turn_right) (turn_left)) would correctly just make the robot turn

left.

CMPT 383, SFU Sample Midterm (Solutions) Summer 2019

Instructor: T. Donaldson Page 4 of 6

Short Answer: Scheme

a) (1 mark) True or False: if you evaluate the

following expression in the Scheme interpreter, you

will get an error:
 (list list list)

False

b) (1 mark) True or False: if you evaluate the

following expression in the Scheme interpreter, you

will get an error:

 (cons cons cons)

False (it returns a pair of functions)

b) (1 mark) True or False: if you evaluate the

following expression in the Scheme interpreter, you

will get an error:
 (cdr cdr cdr)

True

c) (3 marks) Is it possible to create a Scheme

expression f such that ((f)) evaluates to 5? If so,

define such an f. If it is not possible, explain why.

(define f
 (lambda ()
 (lambda () 5)))

CMPT 383, SFU Sample Midterm (Solutions) Summer 2019

Instructor: T. Donaldson Page 5 of 6

Currying and Continuations
(10 marks) Implement the following function using continuation passing style (CPS) and show how to

call the CPS version to calculate (hyp 2 3).

(define hyp

 (lambda (a b)

 (sqrt (+ (* a a) (* b b)))

)
)

(define (id x) x)

(define (+c a b k) (k (+ a b)))

(define (*c a b k) (k (* a b)))

(define (sqrt-c a k) (k (sqrt a)))

(define (hyp-c a b k)

 (*c a a (lambda (as)

 (*c b b (lambda (bs)

 (+c as bs (lambda (total)

 (sqrt-c total k)))))))
)

Sample call of hyp-c: (hyp-c 2 3 id)

CMPT 383, SFU Sample Midterm (Solutions) Summer 2019

Instructor: T. Donaldson Page 6 of 6

Haskell
(10 marks) Write a function (including its most general signature) called swapEnds that takes a list as

input and returns a new list that is the same as the input one except the first element and the last element

have been swapped. If the list as fewer than 2 elements, then its returned unchanged.

For example:

> swapEnds "yogurt"
"togury"

> swapEnds [1,2,3,4]
[4,2,3,1]

> swapEnds ["up","down"]

["down","up"]

> swapEnds "M"

"M"

To get full marks, don’t use recursion in your solution. Hint: The standard Haskell function last lst

returns the last element of the list lst.

swapEnds :: [a] -> [a]
swapEnds lst

 | length lst < 2 = lst

 | otherwise = [end] ++ middle ++ [begin]

 where begin = head lst

 end = last lst

 middle = take (n-2) (tail lst)
 n = length lst

 other solutions are possible

