Epidemiology of Multiple Sclerosis

(The Faroe islands story)

What is multiple sclerosis?

- "Multiple sclerosis is a chronic demyelinting, inflammatory and degenerative disorder of the central nervous system, and is the most common disabling nervous system disease among young adults"- (Pugliatti 2006)
- Etiology (or cause) is not known. Theories are:
 - 1. Autoimmune disease
 - 2. Infectious disease

Worldwide prevalence

Patterns in Multiple Sclerosis

- Age: Migration studies show that the disease is acquired after the age of 15
- Sex: The disease is more common on females
- Race: white people are more susceptible
- Geography: the further away from the equator, the higher the risk
- Genetics: a 35% chance of getting the disease if the your monozygotic twin sibling has it.

Forming a theory about disease spread

- Genetics (monozygotic twins)
- Autoimmune disease and hygiene hypothesis (>15 age of susceptibility)
- Epstein-Barr virus and mononucleosis
- Faroe Islands (disease introduced by British troops in WW II)

Epstein-Barr Virus

- 50% of children get infected and do not develop any symptoms
- If infected in adolescence, probably will develop infectious mononucleosis
- Mononucleosis highly correlated with MS
- More than 90% of adults have EBV
- Infection occurs through saliva (kissing disease)

Faroe Islands

- Background: Atlantic islands, part of Denmark
- WW II: British troops occupied the island during 1941-1945
- MS non-existent prior to occupation
- MS incidence rate spikes 1941-1953
- Today: one of the highest incidence rates worldwide

Kurtzke's theory

- Kurtzke studied for several decades the MS epidemic that occurred in the Faroe Islands.
- Kurtzke proposes that the disease is spread through an infective agent.
- PMSA: most infected are asymptomatic, and transmit the disease passively.

Kurtzke's theory

- CNMS: a small proportion develop the clinical symptoms (i.e. MS).
- Infectives age: 11-28 (28 is the average disease onset age).
- Exposure: two years to become infective.

One Strain with childhood Immunity (Model Assumptions 1)

- Kutzke divides the population into three age groups:
 - 1. Group 0 with age < 11
 - 2. Group 1 with 11 < age < 27
 - 3. Group 2 with 27 < age < 48.
- Uniform age distribution is assumed.

One Strain with childhood Immunity (Model Assumptions 2)

- Group 0 when exposed acquire life-long immunity.
- Group 1 is the only group that has infective individuals.
- Group 2 can become infected and develop MS.
- MS develops only in a small percentage of the infected individuals.

One Strain Disease Compartments

S_{0}	Susceptible individuals between 0 and 11 years of age
M_{0}	Immune individuals between 0 and 11 years of age
$S_{\scriptscriptstyle 1}$	Susceptible individuals between 11 and 28 years of age
$M_{\scriptscriptstyle 1}$	Immune individuals between 11 and 28 years of age
$E_{\scriptscriptstyle 1}$	Exposed individuals between 11 and 28 years of age
$I_{\scriptscriptstyle 1}$	Infective individuals between 11 and 28 years of age
S_2	Susceptible individuals between 28 and 48 years of age
M_{2}	Immune individuals between 28 and 48 years of age

Infected individuals between 28 and 48 years of age

 R_2

Parameters

$N_{\scriptscriptstyle 0}$	Population size between 0 and 11 years of age
$N_{\scriptscriptstyle 1}$	Population size between 11 and 28 years of age
$N_{\scriptscriptstyle 2}$	Population size between 28 and 48 years of age
$oldsymbol{eta}_{_1}$	Rate of infection in between ages 0 and 11
$oldsymbol{eta}_{\scriptscriptstyle 2}$	Rate of infection in between ages 11 and 48

Rate of change from exposed to infective

One Strain with childhood Immunity

Faroe Islands MS incidence rate 41-93 (Kurtzke 2001)

Absence of immunity

Immunity acquired in childhood

Problems with this model

 Poul Joensen reports in 2011 the following MS incidence rates from 1943-1952, in Faroe islands, with two peaks:

Period	1943- 1952	1953- 1962	1963- 1972	1973- 1982	1983- 1992	1992- 2002	2003- 2007	1943- 2007
Mean Age	32	27	26	34	33	37	38	30
Incidence Rate per 100,000	5.9	2.8	0.7	0.5	4.3	4.9	2.4	2.7

Poul Joensen MS Incidence Rates in Faroe Islands 1943-2007

Two Strains Theory

- There are two strains of the transmissible agent.
- One strain has a higher infectivity than the other, and a shorter period of infection.
- Both strains induce cross immunity on infecting children (age < 11), and on recovery.
- There are only two age cohorts: (group 0 of age < 11, and group 1 of age > 11)

Two Strains Disease Compartments

 $\mathbf{S}_{\scriptscriptstyle 0}$ Susceptible individuals between 0 and 11 years of age

 $M_{\scriptscriptstyle 0}$ Immune individuals between 0 and 11 years of age

 S_1 Susceptible individuals older than 11 years of age

 M_1 Immune individuals older than 11 years of age

 $E_{\scriptscriptstyle{11}}$

 E_{12}

 I_{12}

Strain 1 exposed individuals older than 11 years of age

 I_{11} Strain 1 infective individuals older than 11 years of age

Strain 2 exposed individuals older than 11 years of age

Strain 2 infective individuals older than 11 years of age

 R_2 Recovered individuals older than 11 years of age

Two Strains Parameters

 $N_{\scriptscriptstyle 0}$ Population size between 0 and 11 years of age

 $N_{\scriptscriptstyle 1}$ Population size between 11 and 48 years of age

N Population size between 0 and 48 years of age

 $oldsymbol{eta}_{11}$ Rate of infection with strain 1 for age < 11

 $oldsymbol{eta}_{21}$ Rate of infection with strain 1 for age > 11

 \mathcal{Y}_1 Rate of change from strain 1 exposed to strain 1 infective

 β_{12} Rate of infection with strain 2 for age < 11

 $oldsymbol{eta}_{22}$ Rate of infection with strain 2 for age > 11

Rate of change from strain 2 exposed to strain 2 infective

Two Strains Parameters

- α_1 Rate of recovery from infection with strain 1
- α_2 Rate of recovery from infection with strain 2
- $oldsymbol{B}$ Birth Rate

Two Strains with Cross Immunity

Infected and at risk of developing MS

All compartments

Infected and at risk of developing MS (The future)

Infected and at risk of developing MS (The future)

Discussion

- The two strain model does capture the general features of the disease:
 - 1. The sharp initial increase (1943-1953)
 - 2. The sharp decline to small values (1953-1983)
 - 3. The second peak

Future Work

- Study the age structure of incidence rates offered by the two strain hypothesis
- Try to fit the model to other available data in the literature

References

- Multiple sclerosis in the Faroe Islands: an epitome (Kurtzke and Heltberg-2001)
- Multiple sclerosis: variation of incidence of onset over time in the Faroe Islands (Poel Joensen-2011)
- Environmental Risk Factors for Multiple Sclerosis Part I: The Role of Infection (Ascherio and Munger-2007)