Modeling of Complex Social Systems

MATH 800

Fall 2011

- A system is a set of elements and relationships
- A complex system is a system whose behavior cannot be easily or intuitively predicted

- A system is a set of elements and relationships
- A complex system is a system whose behavior cannot be easily or intuitively predicted

$$300 = (5-3) t + 200$$

- A social system is a collection of individuals and interactions.
- A complex social system is a complex system whose behavior is primarily the result of the behavior of individuals

- A social system is a collection of individuals and interactions.
- A complex social system is a complex system whose behavior is primarily the result of the behavior of individuals

What is Modeling?

- is abstraction of reality!
- is a representation of a particular phenomena, idea, or condition.
- is never perfectly accurate.

What is Mathematical Modeling?

- Framing questions in/about the real world in mathematical terms.
- Simplified representations of some real-world entity in equations
- It is characterized:
 - Variables (the things which change)
 - Parameters (the things which do not change)
 - Functional forms (the relationships)

What is Mathematical Modeling?

$$300 = (5-3) t + 200$$

$$X(t) = (5-3\% X(t-1)) + 200$$

Purpose of Modeling

- In General, Modeling helps
 - Answering specific questions
 - Understanding problems better
 - Communicating with others

First Steps in Modeling

- Define systems and boundaries.
- Simplify assumptions.
- Draw an overall block diagram

Good Models

- Simple
 - Have clearly defined questions
 - Have clearly stated assumptions
- Adaptable
- Reproducible
 - Have clearly defined variables
- Validated
 - Use the best data available
 - Interpret results with caution

The Modeling Process

The Modeling Process

A Conceptual Modeling Diagram

Susceptibles (S): Individuals susceptible to the disease **Infectious (I):** Infected Individuals able to transmit the parasite to others **Recovered (R):** Individuals that have recovered, are immune or have died from the disease and do not contribute to the transmission of the disease

Parameters: α , β **Variables:** S, I, R

A Conceptual Modeling Diagram

Susceptibles (*S***):** Individuals susceptible to the disease

Infectious (/): Infected Individuals able to transmit the parasite to others

Recovered (R): Individuals that have recovered

Death (D): Individuals that have died from the disease

Parameters: α , β , γ , δ

Variables: S, I, R, D

Computational Modeling

- **Simulation:** Simulation is any technique for analyzing, designing, and operating complex systems.
- Visualization: Visualization is any technique for creating images, diagrams, or animations to communicate and describe the behavior of complex systems.

- Linear vs. Non-linear Models
 - In linear models all the variables and the parameters are connected by linear equations.
 Otherwise the model is non-linear.

Aggregate vs. Individual Models

- Deterministic vs. Stochastic Models
 - Deterministic models have no uncertain components (no parameters are characterized by probability), as opposed to stochastic models

- Static vs. Dynamic Models
 - A dynamic model refers to a system that changes over time, whereas static model refers to a system that is at steady state
 - Dynamic model is a representation of the behavior of the static components of the system.

- Continuous vs. Discrete Models
 - In discrete Models variables change only at a countable number of points in time, whereas in continuous models variables change in a continuous way.

- Qualitative vs. Quantitative Models
 - Quantitative models lead to a detailed, numerical predication about responses, whereas qualitative models lead to general descriptions about the responses.

