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Who is Roth?

-Klaus Roth is a German-British mathematician. He was born on
October 29th 1925 in Breslau, Germany and died on November
10th 2015 in Iverness, Scotland.
-In 1953, Roth proved what is now known as Roth’s Theorem, a
theorem that guarantees a 3-term arithmetic progression for a
positive density using Fourier analytic mehtods.
-In 1958, Klaus won a Field’s medal for his work in approximating
algebraic numbers with rationals, an open problem which he solved
in 1955. (O’Connor, 1998)



History Before Roth’s Theorem

-Additive number theory determines the conditions needed to be
imposed on a subset of integers.
-In order to determine if the subset of integers contains an
arithmetic progression, the size of the set needs to be large enough.
-We will be considering the following upper density for k ∈ Z+:

lim sup
N→∞

∣∣A ∩ [1,N]
∣∣

N

-In 1927, Bartel Van der Waerden determined N(r , k) yielded a
monochromatic arithmetic progression of length k on r colours.
-In 1936, Erdos and Turan made a stronger conjecture that the set
of positive upper density contain large arithmetic progressions.
-In 1953, Roth solved for 3-term arithmetic progressions. (Lott,
2017)



History After Roth’s Theorem

-In 1969, Szemeredi solved for k − term arithmetic progessions.
-In 1972, Roth extended his work to solve for 4-term arithmetic
progressions.
-In 1975, Szemeredi extended his work to solve for arithmetic
progressions of arbitrary length.
-In the 1990s, Timothy Gowers developed new analytical machinery
to work for both 4-term and arbitrarily long arithmetic progressions.
-Also in the 1990s, Ben Green showed the upper density contained
a 3-term arithmetic progression for the set of prime numbers.
(Lott, 2017)



What is Roth’s Theorem?

Theorem (Roth’s Theorem):
For any ϵ > 0, there exists N = N(ϵ) such that for any n ≥ N, if
A ⊆ [1, n] with |A| > ϵn, then A contains a 3-term arithmetic
progression. (Roth, 1955)



Information needed to Prove Roth’s Theorem

In order to Prove Roth’s Theorem, we will be using the following
ideas:
1. Discrete Fourier Analysis: Application of the Discrete Fourier
Transform
2. Modular arithmetic on Zn for the arbitrary 3-term arithmetic
progression x + y ≡ 2z (mod n), where x ̸= y ̸= z
3. Indicator Function of an arbitrary set A
4. Density of the function for an arbitrary set A and the size of its
Fourier Coefficients:

Â(0) =
|A|
n

(The density of A in [1, n])

(Robertson, 2021)



Approach for Roth’s Theorem Summary:

1. Start by considering an arbitrary set holding for a positive
density of an interval containing a finite number of elements.
We can show by contradiction that if this is not the case, we will
get a positive density greater than 1, which contradicts the fact
that the positive density is at most 1.
2. We compute the number of possible solutions in Zn for our
arbitrary 3-term arithmetic progression x + y ≡ 2z (mod n)
Computing the Discrete Fourier Transform of the function yields
the arbitrary 3-term arithmetic progression in terms of its Fourier
Coefficients.
We show that the Fourier Coefficients have to be small, which can
be done by contradiction in assuming they were large.
3. We prove 2 claims regarding the density involving 3-term
arithmetic progressions. (Robertson, 2021)
Note: Proving claims 1 and 2 will be sufficient to prove Roth’s
Theorem!



Helper Function for Pseudocode Proof of Roth’s Theorem:

def Keytest(U,A)
d = |A| /|U|
Â = Calculate Â from indicator function of A
for k from 1 to n do

if Â(k) ≥ δ2/10 then
Return False

end if
end for
Return True

The indicator function is calculated as follows:

Â(k) =
1

n

n∑
x=1

A(x)·w−xk =
1

n

n∑
x=1

A(x)·e−2πixk/n (Robertson, 2021)



Pseudocode Proof of Roth’s Theorem:

def Roth ():
U = [1, n]
A = Subset of U with positive density
while True do

if Keytest(U,A) = True then
3-AP can be found
Return 3-AP

else
An AP ’P’ can be found in the motherset
Unew = P[1,|P|] // compressed in index
Anew = [A ∩ P] // matches with Anew

U = Unew

A = Anew

end if
end while



Example From Pseudocode:

Suppose we took n = 20. This gives us U = [1, 20], where U is our
universal set.
So U[1, 2, . . . , 20]
Let A and P be the following sets:
A[3, 5, 6, 8, 11, 15, 17, 19], P[2, 5, 8, 11, 14, 17, 20],
A ∩ P = {5, 8, 11, 17}
=⇒ δN = |A|

n = 8
20 = 2

5
|A∩P|
|P| = 4

7

Notice that A ∩ P > A ∩ N: 4
7 > 2

5 =⇒ 28
35 > 14

35
We now make new variables to ”prepare” for the next iteration:
Anew = [Aold ∩ P] =⇒ [2, 3, 4, 6]
Unew = [1,|P|] =⇒ [1, 2, 3, 4, 5, 6, 7]
δnew = Anew

Unew

Note: Anew is the ”compressed” version of Aold ∩ P, where the key
information is preserved: The relative positions stay the same, but
the AP shrinks to a distance of 1. Additionally, Unew is the
”compressed” version of the AP P.



Example From Pseudocode (Larger set):

Algorithm for Claims 1 and 2:
Link

https://colab.research.google.com/drive/1g6aKlBzuiFCZz7j8gIn3f_BOsTt8OeK2?usp=sharing


Proof of Roth’s Theorem (1):

Theorem (Roth’s Theorem):
For any ϵ > 0, there exists N = N(ϵ) such that for any n ≥ N, if
A ⊆ [1, n] with |A| > ϵn, then A contains a 3-term arithmetic
progression. (Roth, 1955)
Proof:
Let A ⊆ [1, n] with |A| = δn
Let B be the intersection of our set A and a finite interval.
Claim: If B is a partition of A, it has a positive density of at most 1
Contradiction Hypothesis: Suppose that if B is a partition of A, it
has a positive density greater than 1.
Since B is a partition of A =⇒ B must be smaller than A
=⇒ The size of our interval dividing our partition must yield a
positive result of at most 1, a contradiction (Since we assumed it
could have a positive density greater than 1).



Proof of Roth’s Theorem (2):

Consider the arbitrary 3-term arithmetic progression
x + y ≡ 2z (modn), x ̸= y ̸= z
Taking the Discrete Fourier Transform, we get the following
equation M and error term E :

M =
|A||B|2

n
+ n2

∑
j∈Zn
j ̸=0

B̂(j)Â(j)B̂(−2j)

E = n2
∑
j∈Zn

B̂(j)Â(j)B̂(−2j) (Robertson, 2021)

We will be using this to consider the size of the Fourier Transform
Coefficients.



Proof of Roth’s Theorem (3):

We now attempt to prove the following Claims:
Claim 1: If the Fourier coefficients are all small(∣∣∣Â(j)∣∣∣ ≤ ϵ with ϵ ≤ δ2/10 being the boundary for all j ∈ Zn \ {0}

)
,

then A contains a 3-term AP.
Claim 2: If at least one Fourier Coefficient is larger than the

boundary δ2/10
(
Â(k) ≥ δ2

10 for some k
)
, we can find an AP P in

the mother set not in A such that the density of A relative to P is
greater than the density of A relative to [1,N]:

|A ∩ P|
|P|

> δ +
δ2

80
(Robertson, 2021)



Proof of Roth’s Theorem (4):

Structure of Claim 1:
Suppose all of the Fourier coefficients are small.

=⇒
(∣∣∣Â(j)∣∣∣ ≤ ϵ with boundary ϵ ≤ δ2/10 for all j ∈ Zn \ {0}

)
Calculating the Fourier Transform coefficients, we have that

E ≤ 1

2m
|A||B|2

M ≥ 1

2m
|A||B|2

Since we were given that M was the number of solutions to
x + y ≡ 2z (mod n), x ̸= y ̸= z and x , z ∈ B in the Fourier
Transform shown on (2), we have a 3− term AP in Z+

(Robertson, 2021)



Proof of Roth’s Theorem (5):
Structure of Claim 2 (1):
Suppose at least one Fourier Coefficient is larger than the
boundary δ2/10.

=⇒
∣∣∣Â(k)∣∣∣ > ϵ for some k ∈ Zn \ {0}, where ϵ = δ2/10.

We try to find an AP that satisfies

|A ∩ P|
|P|

≥ δ +
ϵ

8

In order to find such P, we start from Qn. Qn has

2
⌈√

n
16

⌉
+ 3 terms This will approximate to

√
n/8 as n gets large.

We define Qn to start centered at 0, with d <
√
n. We have that

Qn = [. . . ,−2d ,−d , 0, d , 2d , . . . ]

And ∣∣∣Q̂n(k)
∣∣∣ > 1

16
√
n
=
|Qn|
2n

(Robertson, 2021)



Proof of Roth’s Theorem (6):

Structure of Claim 2 (2):
We now want to find the ”shift” value (a) that makes A ∩Qn large
enough.
In order to find the shift value that makes A ∩Qn large enough, we
define

g(a) =
∑
j∈Z

(A(j)− δ) · Qn(a− j),
∑
l∈Z

g(l) = 0

After finding an a that satisfies

g(a) >
|Qn|
4

· ϵ (This is strong enough!)

We now have Pn(j) = Qn(a− j) (Robertson, 2021)
∴ We have successfully found our AP P.



Proof of Roth’s Theorem (7):

Now that we have shown Claims 1 and 2, we start with applying
Claims 1 and 2 assuming the Fourier Coefficients are small
(ϵ = δ2/10)) and apply recursion:
If Claim 1 applies, we have our 3-term AP and are done!
=⇒ We assume Claim 2 applies, which means we can find an AP
P1

=⇒ For an arbitrary long recursion k, we again assume Claim 2
applies and can find an AP Pk

(∵ If Claim 1 applies, we have our 3-term AP and are done).
Recall that we saw earlier on that it is impossible for A to have a
positive density exceeding 1.
=⇒ Either Claim 1 must eventually apply, or the assumption that
A contains a 3-term AP is wrong, a contradiction to Claim 1.
∴ We have proven Roth’s Theorem.
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