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1 Constrained Optimization

1.1 Method of Substitution

Consider the following Utility Max problem:
Max x1,x2

U = U(x1,x2) (1)

Subject to:
B = P1x1 + P2x2 (2)

Re-write Eq. 2

x2 =
B

P2
− P1
P2
x1 (2‘)

Now x2 = x2(x1) and dx2
dx1

= −P1
P2

Sub into Eq. 1 for x2

U = U(x1, x2(x1)) (3)
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Eq. 3 is an unconstrained function of one variable, x1

Differentiate, using the Chain Rule

dU

dx1
=
∂U

∂x1
+
∂U

∂x2

dx2
dx1

= 0

From Eq. 2‘we know dx2
dx1

= −P1
P2

Therefore:
dU

dx1
= U1 + U2

(
−P1
P2

)
= 0

OR
U1
U2

=
P1
P2

This is our usual condition that MRS(x2, x1) = P1
P2
or the consumer’s

willingness to grade equals his ability to trade.
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The More General Constrained Maximum Problem
Max:

y = f(x1, x2) (4)

Subject to:
g(x1, x2) = 0 (5)

Take total differentials of Eq. 4 and Eq. 5

dy = f1dx1 + f2dx2 = 0 (6)

dg = g1dx1 + g2dx2 = 0 (7)

or Eq.6′

dx1 = −f2
f1
dx2

Eq. 7′

dx1 = −g2
g1
dx2

Subtract 6′ from 7′

dx1 − dx1 =
[
−g2
g1
−
(
−f2
f1

)]
dx2 =

(
f2
f1
− g2

g1

)
dx2 = 0

Therefore
f2
f1

=
g2
g1

Eq. 8: says that the level curves of the objective function must be
tangent to the level curves of the constraint

1.2 Lagrange Multiplier Approach

Create a new function called the Lagrangian:

L = f(x1, x2) + λg (x1, x2)
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since g (x1, x2) = 0 when the constraint is satisfied

L = f(x1, x2) + zero

We have created a new independent variable λ (lambda), which is
called the Lagrangian Multiplier.
We now have a function of three variables; x1,x2,and λ
Now we Maximize

L = f(x1, x2) + λg (x1, x2)

First Order Conditions

Lλ = ∂L
∂λ = g (x1, x2) = 0 Eq.1

L1 = ∂L
∂x1

= f1 + λg1 = 0 Eq.2

L2 = ∂L
∂x2

= f2 + λg2 = 0 Eq.3

From Eq. 2 and 3 we get:

f1
f2

=
−λg1
−λg2

=
g1
g2

From the 3 F.O.C.’s we have 3 equations and 3 unknowns (x1,x2, λ).
In principle we can solve for x∗1, x

∗
2, and λ

∗.

1.2.1 Example 1:

Let:
U = xy

Subject to:
10 = x+ y Px = Py = 1

Lagrange:

L = f(x, y) + λ(g(x, y))

L = xy + λ(10− x− y)
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F.O.C.
Lλ = 10− x− y = 0 Eq.1
Lx = y − λ = 0 Eq.2
Ly = x− λ = 0 Eq.3

From (2) and (3) we see that:

y
x = λ

λ = 1 or y = x Eq.4

From (1) and (4) we get:

10− x− x = 0 or x∗ = 5 and y∗ = 5

From either (2) or (3) we get:

λ∗ = 5

1.2.2 Example 2: Utility Maximization

Maximize
u = 4x2 + 3xy + 6y2

subject to
x+ y = 56

Set up the Lagrangian Equation:

L = 4x2 + 3xy + 6y2 + λ(56− x− y)

Take the first-order partials and set them to zero

Lx = 8x+ 3y − λ = 0

Ly = 3x+ 12y − λ = 0

Lλ = 56− x− y = 0
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From the first two equations we get

8x+ 3y = 3x+ 12y

x = 1.8y

Substitute this result into the third equation

56− 1.8y − y = 0

y = 20

therefore
x = 36 λ = 348

1.2.3 Example 3: Cost minimization

A firm produces two goods, x and y. Due to a government quota, the
firm must produce subject to the constraint x + y = 42. The firm’s
cost functions is

c(x, y) = 8x2 − xy + 12y2

The Lagrangian is

L = 8x2 − xy + 12y2 + λ(42− x− y)

The first order conditions are

Lx = 16x− y − λ = 0

Ly = −x+ 24y − λ = 0

Lλ = 42− x− y = 0 (8)

Solving these three equations simultaneously yields

x = 25 y = 17 λ = 383
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1.2.4 Example 4:

Max:
U = x1x2

Subject to:
B = P1x1 + P2x2

Langrange:

L = x1x2 + λ (B − P1x1 − P2x2)

F.O.C.
Lλ = B − P1x1 − P2x2 = 0 Eq. 1

L1 = x2 − λP1 = 0 Eq. 2
L2 = x1 − λP2 = 0 Eq. 3

From Eq. (2) and (3)
(
x2
x1

= P1
P2

= MRS
)

x2 = λP1
x1 = λP2

divide top equation by the bottom

x2
x1

=
λP1
λP2

Cancel the λ from top/bottom of RHS

x2
x1

=
P1
P2

Solve for x∗1
From (2) and (3)

x2 =
P1
P2
x1
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Sub into (1) and simplify

B = P1x1 + P2x2

B = P1x1 + P2

(
P1
P2
x1

)
B = 2P1x1

x∗1 =
B

2P1

Substitute your answer for x∗1 into Eq 1

B = P1x1 + P2x2

B = P1

(
B

2P1

)
+ P2x2

B =
B

2
+ P2x2

B − B

2
= P2x2

B

2
= P2x2

x∗2 =
B

2P2

The solution to x∗1and x
∗
2 are the Demand Functions for x1 and x2

1.2.5 Properties of Demand Functions

1. "Homogenous of degree zero" multiply prices and income by α

x∗1 =
αB

2 (αP1)
=

B

2P1
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2. "For normal goods demand has a negative slope"

∂x∗1
∂P1

= − B

2P 21
< 0

3. "For normal goods Engel curve positive slope"

∂x∗1
∂B

=
1

2P1
> 0

In this example x∗1 and x
∗
2are both normal goods (rather than

inferior or giffen)

Given:
U = x1x2

And:
x∗1 = B

2P1
and x∗2 = B

2P2

Substituting into the utility function we get:

U = x∗1, x
∗
2 =

(
B

2P1

)(
B

2P2

)
U =

(
B2

4P1P2

)
Now we have the utility expressed as a function of Prices and In-

come
U ∗ = U(P1P2, B) is "The Indirect Utility Function"
At U = U0 = B2

4P1P2
we can re-arrange to get:

B = 2P
1
2
1 P

1
2
2 U

1
2
0︸ ︷︷ ︸

This is the "Expenditure Function"
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1.3 Minimization and Lagrange

Min x, y
PxX + PyY

Subject to
U0 = U(x, y)

Lagrange
L = PxX + PyY + λ(U0 − U(x, y))

F.O.C.
Lλ = U0 − U(x, y) = 0 Eq. 1
Lx = Px − λ∂U∂x = 0 Eq. 2
Ly = Py − λ∂U∂y = 0 Eq. 3

From (2) and (3) we get

Px
Py

=
λUx
λUy

=
Ux
Uy

= MRS︸ ︷︷ ︸
(The same result as in the MAX problem)

Solving (1), (2), and (3), we get:

x∗ = x(Px, Py, U0) y∗ = y(Px, Py, U0) λ∗ = λ(Px, Py, U0)

1.3.1 Example (part 1)

Max
xy + λ(B − Pxx− Pyy)

F.O.C.’s
Lx = y − λPx = 0
Ly = x− λPy = 0

Lλ = B − Pxx− Pyy = 0︸ ︷︷ ︸
x∗ = B

2Px
y∗ = B

2Py
λ∗ = B

2PxPy
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1.3.2 Example (part 2)

Min
Pxx+ Pyy + λ(U0 − xy)

F.O.C.’s
Lx = Px − λy = 0 (1)
Ly = Py − λx = 0 (2)
Lλ = U0 − xy = 0 (3)

First, use equations (1) and (2) to eliminate λ

Px = λy

Py = λx

divide (1) by (2)

Px
Py

=
λy

λx
Px
Py

=
y

x

y =
Px
Py
x

Substitute into eq (3)

U0 = xy

U0 = x

(
Px
Py
x

)
U0 =

Px
Py
x2

x2 =
Py
Px
U0

x =

√
Py
Px
U0 =

P
1
2
y U

1
2
0

P
1
2
x
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Follow the same procedure to find

y∗ = P
1
2
x U

1
2
0

P
1
2
y

λ∗ = U
1
2
0

P
1
2
x P

1
2
y

1.4 Interpreting λ

Given Max
U(x, y) + λ (B − Pxx− Pyy)

By solving the F.O.C.’s we get

x∗ = x(Px, Py, B) y∗ = y(Px, Py, B) λ∗ = λ(Px, Py, B)

Sub x∗, y∗, λ∗ back into the Lagrange

L∗ = U (x∗, y∗) + λ∗ (B − Pxx∗ − Pyy∗)

Differentiate with respect to the constant,B

∂L∗

∂B
= Ux

dx∗

dB
+Uy

dy∗

dB
−λ∗Px

dx∗

dB
−λ∗Pydy

∗

dB
+λ∗

dB

dB
+(B − Pxx∗ − Pyy∗)

dλ∗

dB

Or

∂L∗

∂B
= (Ux − λ∗Px)︸ ︷︷ ︸

=0

dx∗

dB
+(Uy − λ∗Py)︸ ︷︷ ︸

=0

dy∗

dB
+(B − Pxx∗ − Pyy∗)︸ ︷︷ ︸

=0

dλ∗

dB
+λ∗

∂L∗

∂B = λ∗ = ∆ in utility from ∆ in the constant
= Marginal Utility of Money
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2 Extensions and Applications of Constrained
Optimization

2.1 Homogenous Functions

2.1.1 Constant Returns to Scale

=⇒ Given
y = f(x1, x2, ...xn)

if we change all the inputs by a factor of t, then

f(tx1, tx2, ...txn) = tf(x1, x2, ...xn) = tY

ie. if we double inputs, we double output
=⇒ A constant returns to scale production function is said to be:
HOMOGENOUS of DEGREE ONE or LINEARLY HO-

MOGENOUS

2.1.2 Homogenous of Degree r

A function, Y = f(x1, ..., xn) is said to be Homogenous of Degree r if

f(tx1, tx2, ...txn) = trf(x1, x2, ...xn)

Example
Let f(x1, x2) = x1x2
change all x′is by t

f(tx1, tx2) = (tx1)(tx2)

= t2(x1x2)

= t2f(x1x2)

Therefore f(x1, x2) = x1x2 is homogenous of degree 2
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2.1.3 Cobb-Douglas

Let output, Y = f(K,L) = LαK1−α {where 0 ≤ 1}

Multiply K, L by t

f(tL, tK) = (tL)α(tK)1−α

= tα+1−αLαK1−α

tLαK1−α

Therefore LαK1−αis H.O.D one.
General Cobb-Douglas: y=LαKβ

f(tL, tK) = (tL)α(tK)β

= tα+βLαKβ

LαKβ is homogenous of degree α + β

2.1.4 Further properties of Cobb-Douglas

Given
y = LαK1−α

MPL =
dY

dL
= dLα−1K1−α = α

(
K

L

)1−α
MPK =

dY

dK
= (1− α)LαK−α = (1− α)

(
K

L

)−α
MPL and MPK are homogenous of degree zero
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MPL(tL, tK) = α

(
tK

tL

)1−α
= α

(
K

L

)1−α
MPL and MPK depend only on the K

L ratio

2.2 The Marginal Rate of Technical Substitution

MRTS =
MPL
MPK

=
α(KL )1−α

(1− α)(KL )−α
=

(
α

1− α

)(
K

L

)
MRTS is homogenous of degree zero
The slope of the isoquant (MRTS) depends only on the K

L ratio,
not the absolute levels of K and L

Along any ray from the origin the isoquants are parallel. This is
true for all homogenous functions regardless of the degree.

Given:
f(tx1, ...txn) = trf(x1, ...xn)

Differentiate both sides with respect to x1
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df

d(tx)

d(tx1)

dx1
= tr

df

dx1

But

d(tx1)

dx1
= t

df

d(tx1)
t = tr

df

dx1

df

d(tx1)
=
tr

t

df

dx1
= tr−1

df

dx1

Therefore: For any function homogenous of degree r, that function’s
first partial derivatives are homogenous of degree r − 1.

2.3 Monotonic Transformations and Homothetic
Functions

Let y = f(x1, x2)and Let z = g(y)
{where g‘(y) > 0 and f(x1, x2) is H.O.D. r}
g(y) is a monotonic transformation of y

We know:

MRTS = − f1
fx

=
dx2
dx1

Totally differentiate z = g(y) and set dz = 0

dz =
dg

dy

dy

dx1
dx1 +

dg

dy

dy

dx2
dx2 = 0
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or

dx2
dx1

=
−
(
dg
dy1

)(
dy
dx1

)
(
dg
dy1

)(
dy
dx2

) =
−
(
dy
dx1

)
(
dy
dx2

) =
−f1
f2

The slope of the level curves (isoquants) are invariant to monotonic
transformations.

A monotonic transformation of a homogenous function creates a
homothetic function

Homothetic functions have the same slope properties along a ray
from the origin as the homogenous function.

However, homothetic functions are NOT homogenous.

Example: Let f(x1, x2) = x1, x2 {where r = 2}

Let:

z = g(y) = ln(x1, x2)

= ln x1 + lnx2
g(f(tx1, tx2)) = ln(tx1) + ln(tx2)

= 2 ln t+ lnx1 + lnx2
6= tr ln(x1, x2)

Properties of Homothetic Functions

1. A homothetic function has the same shaped level curves as the
homogenous function that was transformed to create it.

2. Homogenous production functions cannot produce U-shaped av-
erage cost curves, but a homothetic function can.
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3. Slopes of Level Curves (ie. Indifference Curves)

For homothetic functions the slope of their level curves only de-
pend on the ratio of quantities.

ie. If: y = f(x1, x2) is homothetic

Then:f1f2 = g
(
x2
x1

)
2.4 Euler’s Theorem

Let f(x1, x2) be homogenous of degree r
Then f(tx1, tx2) = trf(x1, x2)
Differentiate with respect to t

df

d(tx1)

d (tx1)

dt
+

df

d(tx2)

d(tx2)

dt
= rtr−1f(tx1, tx2)

Since: dtxi
dt = xi for all i

df

d(tx1)
x1 +

df

d(tx2)
x2 = rtr−1f(tx1, tx2)

This is true for all values of t, so let t = 1

df

dx1
x1 +

df

dx2
x2 = f1x1 + f2x2 = rf(x1, x2)︸ ︷︷ ︸
"Euler’s Theorm"

If y = f(L,K) is constant returns to scale
Then y=MPLL+MPKK (Euler’s Theorm)
Example: Let

y = LαK1−α

Where:
MPL = αLα−1K1−α
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MPK = (1− α)LαK−α

From Euler’s Theorm

y = MPLL+MPKK =
(
αLα−1K1−α)L+

(
(1− α)LαK−α

)
K

= αLα−1K1−α + (1− α)LαK−α

= [d+ (1− α)]LαK1−α

= LαK1−α

= y

2.4.1 Euler’s Theorm and Long Run Equilibrium

Suppose q = f(K,L) is H.O.D 1
Then the profit function for a perfectly competitive firm is

π = pq − rK − wL
π = pf(K,L)− rK − wL

F.O.C’s

dπ

dL
= pfL − w = 0

dπ

dK
= pfK − r = 0

{fL = MPL fK = MPK}
or MPL = w

p ,MPK = r
p are necessary conditions for Profit Maxi-

mization
Therefore, at the optimum
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π∗ = pf(K∗L∗)− wL∗ − rK∗

From Euler‘s Theorem

f(K∗L∗) = MPKK
∗ +MPLL

∗

Substitute into π∗

π∗ = P [MPKK
∗ +MPLL

∗]− wL∗ − rK∗

OR
π∗ = [wL∗ + rK∗]− wL∗ − rK∗ = 0

Long Run π=0
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2.5 Concavity and Quasiconcavity

2.5.1 Concavity:

· Convex level curves and concave in scale
· Necessary for unconstrained optimum

2.5.2 Quasi-Concavity:

· Only has convex level curves
· Necessary for constrained optimum

Example:
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1. Concave: y = x
1
3
1x

1
3
2 is H.O.D. 2/3 (diminishing returns)

MRTS =
x2
x1

2. Quasi -Concave: y = x21x
2
2 is H.O.D. 4 (increasing returns)

MRTS =
x2
x1
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