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1 Constrained Optimization

1.1 Method of Substitution

Consider the following Utility Max problem:
Max x1
U = U(l‘Lxg)

Subject to:
B =Pz + P

Re-write Eq. 2

B P
Tyg = — — —=
2 P, P 1
-P,

Now x9 = x9(x1) and g_;’i —
Sub into Eq. 1 for xy

Py

U = U(Slfl, .’EQ(CBl))
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Eq. 3 is an unconstrained function of one variable, x;
Differentiate, using the Chain Rule
dU  0U  OU dzxs

=0
d(L‘l 8513‘1 + 8$2 dl"l
From Eq. 2° we know Ezi_fgf = —%
Therefore:
dU P
—=U14+Us | —— | =0
e 1+ Us ( P2>
OR
U _ 7~
Uy P

This is our usual condition that MRS(xz, z1) = % or the consumer’s
willingness to grade equals his ability to trade.
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The More General Constrained Maximum Problem
Max:

y = f(x1,72) (4)
Subject to:

g(a1,22) =0 (5)
Take total differentials of Eq. 4 and Eq. 5

dy = fidzy + fadwy =0 (6)
dg = gldlbl + gzd$2 =0 (7)
or Eq.6’
)
d.fL’l = ——dxg
1
Eq. 7
dry = —@dxz
g1

Subtract 6’ from 7’
dr; — dry = [—9—2 — (—ﬁ)} dry = (ﬁ — 9—2) drs =0

g1 f 1 f 1 g1
Therefore
f2_ 9

fi a g1
Eq. 8: says that the level curves of the objective function must be
tangent to the level curves of the constraint

1.2 Lagrange Multiplier Approach

Create a new function called the Lagrangian:
L = f(z1,22) + Ag (21, 22)
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since g (71, x2) = 0 when the constraint is satisfied

L = f(x1,29) + zero

We have created a new independent variable A (lambda), which is
called the Lagrangian Multiplier.

We now have a function of three variables; x; x2,and A

Now we Maximize

L= f(x1,22) + Ag (21, 72)
First Order Conditions
L, = %—i =g (r1,72) =0 FEq.l
L1:%:f1+)\gl =0 Eq2
Ly=$E = fo+ A2 =0 Eq3

From Eq. 2 and 3 we get:

h_ =\ _ o

f2 —Ag2 g2
From the 3 F.O.C.’s we have 3 equations and 3 unknowns (1 x2, \).
In principle we can solve for z7, x5, and \".

1.2.1 Example 1:

Let:
U=uzxy

Subject to:
10=2+y P,=PFP,=1

Lagrange:

L = f(z,y)+ Mg(z,y))
L = xy+ 10 -2 —y)
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F.O.C.
Ly=10—-2—-y=0 Eq.1
L,=y—XA=0 Eq.2
Ly=2—-X=0 Eq.3

From (2) and (3) we see that:
= % =1 or y==x Eq4
From (1) and (4) we get:

0—2z—2=0 or =5 and y* =5
From either (2) or (3) we get:

A'=5

1.2.2 Example 2: Utility Maximization

Maximize
u = 42 + 3zy + 6y°

subject to
T+ 1y =956

Set up the Lagrangian Equation:
L = 42 + 32y + 6y° + (56 — = — y)
Take the first-order partials and set them to zero

L, = 8 +3y—A=0
3r+ 12y — A =0
Ly = 6—-2—-y=0

t~
<
I
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From the first two equations we get

8r+3y = 3x+ 12y
r = 1.8y

Substitute this result into the third equation

6 —18y—y = 0
y = 20

therefore
xr =36 A = 348
1.2.3 Example 3: Cost minimization

A firm produces two goods, x and y. Due to a government quota, the
firm must produce subject to the constraint x + y = 42. The firm’s
cost functions is

c(x,y) = 8z% — xy + 1212

The Lagrangian is
L =8z —ay+12y° + \(42 — 2 — y)
The first order conditions are

L, = 16z —y—X=0
Ly, = —o+24y—A=0
Ly = 42—2z—-y=0 (8)

Solving these three equations simultaneously yields

xr =125 y=17 A =383



1.2.4 Example 4:

Max:
U= T1T9
Subject to:
B = P1$1 + PQ.IQ

Langrange:

L:$1$2+>\(B—P1$1 —PQ.QJQ)
F.O0.C.

L)\:B—Plxl—PQCCQZO qu
L1:I’2—>\P1:0 Eq2
ngxl—)\PQ:O Eq3

From Eq. (2) and (3) (@ = % = MRS)

o
To = AP}
T = AP
divide top equation by the bottom
Ty AP

I N )\_PQ
Cancel the A from top/bottom of RHS

T2 Py
o P
Solve for ]
From (2) and (3)
P
T9 = FQ.CUl



Sub into (1) and simplify

B = Pxi+ Py
P
B = Pxi+ P (321'1)
B = 2P1£I?1
. B
17 9P

Substitute your answer for z] into Eq 1

= Plilfl +P2$2

B
B
B = P |— P
1(2P1>+ 209
B

= —+ P
2+2962

= Py

= Py

B
2P,

The solution to xjand z5 are the Demand Functions for x; and x4

1.2.5 Properties of Demand Functions

1. "Homogenous of degree zero" multiply prices and income by «

. aB B
'rl —= —_=

2(04P1) 2P1
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2. "For normal goods demand has a negative slope"

0x] B <0
0P 2P}
3. "For normal goods Engel curve positive slope"
ox] 1
=—>0
0B 2P

In this example z7 and zjare both normal goods (rather than
inferior or giffen)

Given:
U= T1T9
And:
B

« — B x — B
T =55 and 23 = 55

Substituting into the utility function we get:

oo o (B B
- = \5p )\ 2p,

2
U B
AP, P,

Now we have the utility expressed as a function of Prices and In-
come

U* = U(P1P,, B) is "The Indirect Utility Function"
AU =Uy= % we can re-arrange to get:

B =2P PiU;

~
This is the "Expenditure Function"




1.3 Minimization and Lagrange

Min x, y
P, X+ P)Y
Subject to
UO = U(.CU, y)
Lagrange
L=PX+PY + U —Ulz,y))
F.O.C.

LA:UO U(r,y) =0 Eq. 1
L, = —A%U_o Eq. 2
Ly—P—)\U—O Eq. 3

From (2) and (3) we get

| &

(The same result as in the MAX problem)

Solving (1), (2), and (3), we get:

= MRS

g

:Z’(Px,Py,Uo) y* :y(Pz,Py,U()) )\* :)\(Px,Py,U())

1.3.1 Example (part 1)

Max
ry + AN(B — Pyx — Pyy)
F.O0.C.’s
L,=y— AP, =0
Ly=x—-AP,=0
Ly=B—-FPax—-Py=0
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1.3.2 Example (part 2)
Min
Pyx + Py + MUy — zy)
F.O.C.’s

Ly=P,—\y=0 (1)
L,=P,—Xx=0 (2)
L/\:Uo—ivyzo (3)
First, use equations (1) and (2) to eliminate A
P, = My
P, = \x
divide (1) by (2)
P, &
P, o\
P,y
P, o
P,
Yy = —x
y
Substitute into eq (3)
Uy = oy
P
Uy = =
o=+ (5)
P
Uy = —a’
0 Pyﬂf
P
P y
= =
a Px 0
P P:Uz
r = —yUo =7 10
P, Y



Follow the same procedure to find

- 3
Y= . A=
P? P2 P2

1.4 Interpreting A\

Given Max
U(z,y) + A (B — Pyx — Pyy)

By solving the F.O.C.’s we get

vy =y(Py, Py, B) N = \NFy, Py, B)

" = x(P, Py, B)
Sub z*, y*, \* back into the Lagrange
L*=U(z",y") + X" (B — Pya™ — Pyy")

Differentiate with respect to the constant,B

OL* de*  dy* da* dy* _dB AN

U, sy _p & _\p 42 L(B— Pat— Pyt
o = VeqptUgg A g =N Pyt gt =By

Or
oL dz* dy’ ax

— U, - NP s, - NP (B— Pt — Py A
OB de +Md3 +( R L4 gt

=0 =0

=0

%g = A" = A in utility from A in the constant
= Marginal Utility of Money
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2 Extensions and Applications of Constrained
Optimization

2.1 Homogenous Functions
2.1.1 Constant Returns to Scale

— Given
y = f(x1,T9,...2,)
if we change all the inputs by a factor of t, then

f(tzy, tag, .. txy) = tf(xy, 29, ...x,) = tY

te. if we double inputs, we double output

—> A constant returns to scale production function is said to be:
HOMOGENOUS of DEGREE ONE or LINEARLY HO-
MOGENOQOUS

2.1.2 Homogenous of Degree r

A function, Y = f(x1,...,2,) is said to be Homogenous of Degree r if

f(tey, tag, .. txy) =t f(x1, 29, ...1p)
Example
Let f(x1,x9) = 2129
change all /s by t

f(tzy,tee) = (txy)(txs)
= t2(a:1x2)
= t*f(2122)

Therefore f(x1,x2) = 129 is homogenous of degree 2
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2.1.3 Cobb-Douglas
Let output, Y = f(K,L) = L*K1~*{where 0 < 1}

Multiply K, L by t

FLAK) = (tD)"(tK)'
— toz—|—1—ozLozK1—o¢
tLaKl_a

Therefore L*K'~%s H.O.D one.
General Cobb-Douglas: y=L*K?"
FULUK) = (L) (tK)?
= "L KP

L*K” is homogenous of degree a + 3

2.1.4 Further properties of Cobb-Douglas

Given

y = LaKl—a

dY K\
MP;, = —— —dL* 'K — o (—)

dL L
dy e K\

MP; and MPy are homogenous of degree zero
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tK 11—« K -«
MPr(tL,tK) = — = —
ek =a(ip) o ()

MP; and MPg depend only on the %ratio

2.2 The Marginal Rate of Technical Substitution

Mrrs = MPL_ B ( o ) <f§)

MPrx  (1—a)(%) \l-a/\L

MRT'S is homogenous of degree zero
The slope of the isoquant (MRTS) depends only on the % ratio,
not the absolute levels of K and L

K

Homothetic Production Function

= kq

=

=

=k,

P Isoquants

L

Along any ray from the origin the isoquants are parallel. This is
true for all homogenous functions regardless of the degree.

Given:
fltxy, .. txy) =t" f(x1, ...2p)

Differentiate both sides with respect to x;
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df d(tz) _ . df
d(tr) dv;  dxy
But
d(tﬂfl) — ¢
d$1 B
g, _ A
d(t&Cl) dSCl

g
d(tzy) tdr, —  dn

Therefore: For any function homogenous of degree r, that function’s
first partial derivatives are homogenous of degree r — 1.

2.3 Monotonic Transformations and Homothetic
Functions
Let y = f(x1,22)and Let z = g(y)

{where ¢‘(y) > 0 and f(x1,27) is H.O.D. r}
g(y) is a monotonic transformation of y

We know: F g
L2
MRTS = —2L =2
fr  dry
Totally differentiate z = g(y) and set dz =0
dg dy dg dy
dz = ——=d ———dry =0
: dy dx4 i dy dz 2
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or

B ()
U@ @) ()

The slope of the level curves (isoquants) are invariant to monotonic
transformations.

A monotonic transformation of a homogenous function creates a
homothetic function

Homothetic functions have the same slope properties along a ray
from the origin as the homogenous function.

However, homothetic functions are NOT homogenous.
Example: Let f(z1,22) = x1, 29 {where r = 2}
Let:
z = g(y) = In(zy, 29)
Inzy + In 2o
In(tz1) + In(txs)

= 2Int+Inx; +1Inzy
# t"In(z1, x9)

g(f(tx1,tx9))

Properties of Homothetic Functions

1. A homothetic function has the same shaped level curves as the
homogenous function that was transformed to create it.

2. Homogenous production functions cannot produce U-shaped av-
erage cost curves, but a homothetic function can.

17



3. Slopes of Level Curves (ie. Indifference Curves)

For homothetic functions the slope of their level curves only de-
pend on the ratio of quantities.

ie. If: y = f(z1,x2) is homothetic

Then:% =g (f:—i)

2.4 FEuler’s Theorem

Let f(x1,x2) be homogenous of degree r
Then f(twy,tas) = 1" f(z1,22)
Differentiate with respect to t

df d(tx1)+ df d(txs)

= rtrflf(txl, txo)

Since: dfifi = x; for all ¢
df df 1
=rt" try,t
ey T g2 = S te)
This is true for all values of £, so let t =1
df

—I + 7332 = fix1 + foxg = 1 f(21, 29)

7

TV
"Euler’s Theorm"

If y = f(L, K) is constant returns to scale
Then y=MP;L + M Px K (Euler’s Theorm)
Example: Let

y = LozKl—Oé

Where:
MPy = aL* 'K
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MPy = (1 —a)L"K™®

From Euler’s Theorm

y = MP,L+MPxK = (aL® "K' )L+ (1 - a)L*K*) K
aLl* K7 4+ (1 —a)L*K ™

[d+ (1 —a)] LK

= L°K'"°

=Y

2.4.1 Euler’s Theorm and Long Run Equilibrium

Suppose ¢ = f(K,L) is HO.D 1
Then the profit function for a perfectly competitive firm is

™ = pqg—rK —wlL
T = pf(K,L)—rK —wL

F.O.C’s
dm
ap, = Plimw=0
dm
axk ~ Plrmr=0

{fr=MP,  fx=MPg}
or MP; = %, M Py = % are necessary conditions for Profit Maxi-
mization

Therefore, at the optimum
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™ =pf(K'L") —wL* —rK*
From Euler‘s Theorem
f(K*L*) = MPxK*+ MP,L"
Substitute into 7*
7" =P[MPxkK"+ MP,L*| —wL* — rK*
OR
m=wLl +rK ] —wLl*—rK*=0

Long Run 7=0
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2.5 Concavity and Quasiconcavity

Quasiconcave function
|\
/A7
N
e ——

X

z Strictly concave function

e —

L
=

2.5.1 Concavity:

- Convex level curves and concave in scale
- Necessary for unconstrained optimum

2.5.2 Quasi-Concavity:

- Only has convex level curves
- Necessary for constrained optimum

Example:
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1
1. Concave: y = zix; is H.O.D. 2/3 (diminishing returns)

MRTS = =
I
2. Quasi -Concave: y = x3x3 is H.O.D. 4 (increasing returns)
MRTS = =
I
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