OPMT 5701
 Constrained Optimization

Kevin Wainwright

(Ch 12)
November 25, 2012

1 Constrained Optimization

1.1 Method of Substitution

Consider the following Utility Max problem:
$\operatorname{Max} x_{1}, x_{2}$

$$
\begin{equation*}
U=U\left(x_{1}, x_{2}\right) \tag{1}
\end{equation*}
$$

Subject to:

$$
\begin{equation*}
B=P_{1} x_{1}+P_{2} x_{2} \tag{2}
\end{equation*}
$$

Re-write Eq. 2

$$
x_{2}=\frac{B}{P_{2}}-\frac{P_{1}}{P_{2}} x_{1}
$$

Now $x_{2}=x_{2}\left(x_{1}\right)$ and $\frac{d x_{2}}{d x_{1}}=\frac{-P_{1}}{P_{2}}$
Sub into Eq. 1 for x_{2}

$$
\begin{equation*}
U=U\left(x_{1}, x_{2}\left(x_{1}\right)\right) \tag{3}
\end{equation*}
$$

Eq. 3 is an unconstrained function of one variable, x_{1}
Differentiate, using the Chain Rule

$$
\frac{d U}{d x_{1}}=\frac{\partial U}{\partial x_{1}}+\frac{\partial U}{\partial x_{2}} \frac{d x_{2}}{d x_{1}}=0
$$

From Eq. 2‘ we know $\frac{d x_{2}}{d x_{1}}=-\frac{P_{1}}{P_{2}}$
Therefore:

$$
\frac{d U}{d x_{1}}=U_{1}+U_{2}\left(-\frac{P_{1}}{P_{2}}\right)=0
$$

OR

$$
\frac{U_{1}}{U_{2}}=\frac{P_{1}}{P_{2}}
$$

This is our usual condition that $\operatorname{MRS}\left(\mathrm{x}_{2}, x_{1}\right)=\frac{P_{1}}{P_{2}}$ or the consumer's willingness to grade equals his ability to trade.

The More General Constrained Maximum Problem Max:

$$
\begin{equation*}
y=f\left(x_{1}, x_{2}\right) \tag{4}
\end{equation*}
$$

Subject to:

$$
\begin{equation*}
g\left(x_{1}, x_{2}\right)=0 \tag{5}
\end{equation*}
$$

Take total differentials of Eq. 4 and Eq. 5

$$
\begin{align*}
& d y=f_{1} d x_{1}+f_{2} d x_{2}=0 \tag{6}\\
& d g=g_{1} d x_{1}+g_{2} d x_{2}=0 \tag{7}
\end{align*}
$$

or Eq. 6^{\prime}

$$
d x_{1}=-\frac{f_{2}}{f_{1}} d x_{2}
$$

Eq. 7^{\prime}

$$
d x_{1}=-\frac{g_{2}}{g_{1}} d x_{2}
$$

Subtract 6^{\prime} from 7^{\prime}
$d x_{1}-d x_{1}=\left[-\frac{g_{2}}{g_{1}}-\left(-\frac{f_{2}}{f_{1}}\right)\right] d x_{2}=\left(\frac{f_{2}}{f_{1}}-\frac{g_{2}}{g_{1}}\right) d x_{2}=0$
Therefore

$$
\frac{f_{2}}{f_{1}}=\frac{g_{2}}{g_{1}}
$$

Eq. 8: says that the level curves of the objective function must be tangent to the level curves of the constraint

1.2 Lagrange Multiplier Approach

Create a new function called the Lagrangian:

$$
L=f\left(x_{1}, x_{2}\right)+\lambda g\left(x_{1}, x_{2}\right)
$$

since $g\left(x_{1}, x_{2}\right)=0$ when the constraint is satisfied

$$
L=f\left(x_{1}, x_{2}\right)+\text { zero }
$$

We have created a new independent variable λ (lambda), which is called the Lagrangian Multiplier.

We now have a function of three variables; x_{1}, x_{2}, and λ
Now we Maximize

$$
L=f\left(x_{1}, x_{2}\right)+\lambda g\left(x_{1}, x_{2}\right)
$$

First Order Conditions

$$
\begin{array}{ll}
L_{\lambda}=\frac{\partial L}{\partial \lambda}=g\left(x_{1}, x_{2}\right)=0 & E q .1 \\
L_{1}=\frac{\partial L}{\partial x_{1}}=f_{1}+\lambda g_{1}=0 & E q .2 \\
L_{2}=\frac{\partial L}{\partial x_{2}}=f_{2}+\lambda g_{2}=0 & E q .3
\end{array}
$$

From Eq. 2 and 3 we get:

$$
\frac{f_{1}}{f_{2}}=\frac{-\lambda g_{1}}{-\lambda g_{2}}=\frac{g_{1}}{g_{2}}
$$

From the 3 F.O.C.'s we have 3 equations and 3 unknowns (x_{1}, x_{2}, λ). In principle we can solve for x_{1}^{*}, x_{2}^{*}, and λ^{*}.

1.2.1 Example 1:

Let:

$$
U=x y
$$

Subject to:

$$
10=x+y \quad P_{x}=P_{y}=1
$$

Lagrange:

$$
\begin{aligned}
& L=f(x, y)+\lambda(g(x, y)) \\
& L=x y+\lambda(10-x-y)
\end{aligned}
$$

F.O.C.

$$
\begin{array}{cc}
L_{\lambda}=10-x-y=0 & \text { Eq. } 1 \\
L_{x}=y-\lambda=0 & \text { Eq. } 2 \\
L_{y}=x-\lambda=0 & \text { Eq. } 3
\end{array}
$$

From (2) and (3) we see that:

$$
\frac{y}{x}=\frac{\lambda}{\lambda}=1 \quad \text { or } y=x \quad E q .4
$$

From (1) and (4) we get:

$$
10-x-x=0 \text { or } x^{*}=5 \text { and } y^{*}=5
$$

From either (2) or (3) we get:

$$
\lambda^{*}=5
$$

1.2.2 Example 2: Utility Maximization

Maximize

$$
u=4 x^{2}+3 x y+6 y^{2}
$$

subject to

$$
x+y=56
$$

Set up the Lagrangian Equation:

$$
L=4 x^{2}+3 x y+6 y^{2}+\lambda(56-x-y)
$$

Take the first-order partials and set them to zero

$$
\begin{aligned}
L_{x} & =8 x+3 y-\lambda=0 \\
L_{y} & =3 x+12 y-\lambda=0 \\
L_{\lambda} & =56-x-y=0
\end{aligned}
$$

From the first two equations we get

$$
\begin{aligned}
8 x+3 y & =3 x+12 y \\
x & =1.8 y
\end{aligned}
$$

Substitute this result into the third equation

$$
\begin{aligned}
56-1.8 y-y & =0 \\
y & =20
\end{aligned}
$$

therefore

$$
x=36 \quad \lambda=348
$$

1.2.3 Example 3: Cost minimization

A firm produces two goods, x and y . Due to a government quota, the firm must produce subject to the constraint $x+y=42$. The firm's cost functions is

$$
c(x, y)=8 x^{2}-x y+12 y^{2}
$$

The Lagrangian is

$$
L=8 x^{2}-x y+12 y^{2}+\lambda(42-x-y)
$$

The first order conditions are

$$
\begin{align*}
L_{x} & =16 x-y-\lambda=0 \\
L_{y} & =-x+24 y-\lambda=0 \\
L_{\lambda} & =42-x-y=0 \tag{8}
\end{align*}
$$

Solving these three equations simultaneously yields

$$
x=25 \quad y=17 \quad \lambda=383
$$

1.2.4 Example 4:

Max:

$$
U=x_{1} x_{2}
$$

Subject to:

$$
B=P_{1} x_{1}+P_{2} x_{2}
$$

Langrange:

$$
L=x_{1} x_{2}+\lambda\left(B-P_{1} x_{1}-P_{2} x_{2}\right)
$$

F.O.C.

$$
\begin{array}{cc}
L_{\lambda}=B-P_{1} x_{1}-P_{2} x_{2}=0 & \text { Eq. } 1 \\
L_{1}=x_{2}-\lambda P_{1}=0 & \text { Eq. } 2 \\
L_{2}=x_{1}-\lambda P_{2}=0 & \text { Eq. } 3
\end{array}
$$

From Eq. (2) and (3) $\left(\frac{x_{2}}{x_{1}}=\frac{P_{1}}{P_{2}}=M R S\right)$

$$
\begin{aligned}
& x_{2}=\lambda P_{1} \\
& x_{1}=\lambda P_{2}
\end{aligned}
$$

divide top equation by the bottom

$$
\frac{x_{2}}{x_{1}}=\frac{\lambda P_{1}}{\lambda P_{2}}
$$

Cancel the λ from top/bottom of RHS

$$
\frac{x_{2}}{x_{1}}=\frac{P_{1}}{P_{2}}
$$

Solve for x_{1}^{*}
From (2) and (3)

$$
x_{2}=\frac{P_{1}}{P_{2}} x_{1}
$$

Sub into (1) and simplify

$$
\begin{aligned}
B & =P_{1} x_{1}+P_{2} x_{2} \\
B & =P_{1} x_{1}+P_{2}\left(\frac{P_{1}}{P_{2}} x_{1}\right) \\
B & =2 P_{1} x_{1} \\
x_{1}^{*} & =\frac{B}{2 P_{1}}
\end{aligned}
$$

Substitute your answer for x_{1}^{*} into Eq 1

$$
\begin{aligned}
B & =P_{1} x_{1}+P_{2} x_{2} \\
B & =P_{1}\left(\frac{B}{2 P_{1}}\right)+P_{2} x_{2} \\
B & =\frac{B}{2}+P_{2} x_{2} \\
B-\frac{B}{2} & =P_{2} x_{2} \\
\frac{B}{2} & =P_{2} x_{2} \\
x_{2}^{*} & =\frac{B}{2 P_{2}}
\end{aligned}
$$

The solution to x_{1}^{*} and x_{2}^{*} are the Demand Functions for x_{1} and x_{2}

1.2.5 Properties of Demand Functions

1. "Homogenous of degree zero" multiply prices and income by α

$$
x_{1}^{*}=\frac{\alpha B}{2\left(\alpha P_{1}\right)}=\frac{B}{2 P_{1}}
$$

2. "For normal goods demand has a negative slope"

$$
\frac{\partial x_{1}^{*}}{\partial P_{1}}=-\frac{B}{2 P_{1}^{2}}<0
$$

3. "For normal goods Engel curve positive slope"

$$
\frac{\partial x_{1}^{*}}{\partial B}=\frac{1}{2 P_{1}}>0
$$

In this example x_{1}^{*} and x_{2}^{*} are both normal goods (rather than inferior or giffen)

Given:

$$
U=x_{1} x_{2}
$$

And:

$$
x_{1}^{*}=\frac{B}{2 P_{1}} \text { and } x_{2}^{*}=\frac{B}{2 P_{2}}
$$

Substituting into the utility function we get:

$$
\begin{aligned}
U & =x_{1}^{*}, x_{2}^{*}=\left(\frac{B}{2 P_{1}}\right)\left(\frac{B}{2 P_{2}}\right) \\
U & =\left(\frac{B^{2}}{4 P_{1} P_{2}}\right)
\end{aligned}
$$

Now we have the utility expressed as a function of Prices and Income
$U^{*}=U\left(P_{1} P_{2}, B\right)$ is "The Indirect Utility Function"
At $U=U_{0}=\frac{B^{2}}{4 P_{1} P_{2}}$ we can re-arrange to get:

$$
\underbrace{B=2 P_{1}^{\frac{1}{2}} P_{2}^{\frac{1}{2}} U_{0}^{\frac{1}{2}}}_{\text {This is the "Expenditure Function" }}
$$

1.3 Minimization and Lagrange

Min x , y

$$
P_{x} X+P_{y} Y
$$

Subject to

$$
U_{0}=U(x, y)
$$

Lagrange

$$
L=P_{x} X+P_{y} Y+\lambda\left(U_{0}-U(x, y)\right)
$$

F.O.C.

$$
\begin{array}{cc}
L_{\lambda}=U_{0}-U(x, y)=0 & \text { Eq. } 1 \\
L_{x}=P_{x}-\lambda \frac{\partial U}{\partial x}=0 & \text { Eq. } 2 \\
L_{y}=P_{y}-\lambda \frac{\partial U}{\partial y}=0 & \text { Eq. } 3
\end{array}
$$

From (2) and (3) we get

$$
\underbrace{\frac{P_{x}}{P_{y}}=\frac{\lambda U_{x}}{\lambda U_{y}}=\frac{U_{x}}{U_{y}}=M R S}
$$

(The same result as in the MAX problem)
Solving (1), (2), and (3), we get:

$$
x^{*}=x\left(P_{x}, P_{y}, U_{0}\right) \quad y^{*}=y\left(P_{x}, P_{y}, U_{0}\right) \quad \lambda^{*}=\lambda\left(P_{x}, P_{y}, U_{0}\right)
$$

1.3.1 Example (part 1)

Max

$$
x y+\lambda\left(B-P_{x} x-P_{y} y\right)
$$

F.O.C.'s

$$
\begin{gathered}
L_{x}=y-\lambda P_{x}=0 \\
L_{y}=x-\lambda P_{y}=0 \\
x^{*}=\frac{B}{2 P_{x}} \quad \underbrace{L_{\lambda}=B-P_{x} x-P_{y} y=0}_{y^{*}=\frac{B}{2 P_{y}} \quad \lambda^{*}=\frac{B}{2 P_{x} P_{y}}}
\end{gathered}
$$

1.3.2 Example (part 2)

Min

$$
P_{x} x+P_{y} y+\lambda\left(U_{0}-x y\right)
$$

F.O.C.'s

$$
\begin{align*}
& L_{x}=P_{x}-\lambda y=0 \tag{1}\\
& L_{y}=P_{y}-\lambda x=0 \tag{2}\\
& L_{\lambda}=U_{0}-x y=0 \tag{3}
\end{align*}
$$

First, use equations (1) and (2) to eliminate λ

$$
\begin{aligned}
P_{x} & =\lambda y \\
P_{y} & =\lambda x
\end{aligned}
$$

divide (1) by (2)

$$
\begin{aligned}
\frac{P_{x}}{P_{y}} & =\frac{\lambda y}{\lambda x} \\
\frac{P_{x}}{P_{y}} & =\frac{y}{x} \\
y & =\frac{P_{x}}{P_{y}} x
\end{aligned}
$$

Substitute into eq (3)

$$
\begin{aligned}
U_{0} & =x y \\
U_{0} & =x\left(\frac{P_{x}}{P_{y}} x\right) \\
U_{0} & =\frac{P_{x}}{P_{y}} x^{2} \\
x^{2} & =\frac{P_{y}}{P_{x}} U_{0} \\
x & =\sqrt{\frac{P_{y}}{P_{x}} U_{0}}=\frac{P_{y}^{\frac{1}{2}} U_{0}^{\frac{1}{2}}}{P_{x}^{\frac{1}{2}}}
\end{aligned}
$$

Follow the same procedure to find

$$
y^{*}=\frac{P_{x}^{\frac{1}{x}} U_{0}^{\frac{1}{2}}}{P_{y}^{\frac{1}{2}}} \quad \lambda^{*}=\frac{U^{\frac{1}{2}}}{P_{x}^{\frac{1}{2}} P_{y}^{\frac{1}{2}}}
$$

1.4 Interpreting λ

Given Max

$$
U(x, y)+\lambda\left(B-P_{x} x-P_{y} y\right)
$$

By solving the F.O.C.'s we get

$$
x^{*}=x\left(P_{x}, P_{y}, B\right) \quad y^{*}=y\left(P_{x}, P_{y}, B\right) \quad \lambda^{*}=\lambda\left(P_{x}, P_{y}, B\right)
$$

$\operatorname{Sub} x^{*}, y^{*}, \lambda^{*}$ back into the Lagrange

$$
L^{*}=U\left(x^{*}, y^{*}\right)+\lambda^{*}\left(B-P_{x} x^{*}-P_{y} y^{*}\right)
$$

Differentiate with respect to the constant,B

$$
\begin{aligned}
& \frac{\partial L^{*}}{\partial B}=U_{x} \frac{d x^{*}}{d B}+U_{y} \frac{d y^{*}}{d B}-\lambda^{*} P_{x} \frac{d x^{*}}{d B}-\lambda^{*} P y \frac{d y^{*}}{d B}+\lambda^{*} \frac{d B}{d B}+\left(B-P_{x} x^{*}-P_{y} y^{*}\right) \frac{d \lambda^{*}}{d B} \\
& \text { Or } \\
& \begin{aligned}
& \frac{\partial L^{*}}{\partial B}=\underbrace{\left(U_{x}-\lambda^{*} P_{x}\right)}_{=0} \frac{d x^{*}}{d B}+\underbrace{\left(U_{y}-\lambda^{*} P_{y}\right)}_{=0} \frac{d y^{*}}{d B}+\underbrace{\left(B-P_{x} x^{*}-P_{y} y^{*}\right)}_{=0} \frac{d \lambda^{*}}{d B}+\lambda^{*} \\
& \quad \begin{aligned}
& \frac{\partial L^{*}}{\partial B}=\lambda^{*} \\
&=\Delta \text { in utility from } \Delta \text { in the constant } \\
&=\text { Marginal Utility of Money }
\end{aligned}
\end{aligned} .
\end{aligned}
$$

2 Extensions and Applications of Constrained Optimization

2.1 Homogenous Functions

2.1.1 Constant Returns to Scale

\Longrightarrow Given

$$
y=f\left(x_{1}, x_{2}, \ldots x_{n}\right)
$$

if we change all the inputs by a factor of t, then

$$
f\left(t x_{1}, t x_{2}, \ldots t x_{n}\right)=t f\left(x_{1}, x_{2}, \ldots x_{n}\right)=t Y
$$

ie. if we double inputs, we double output
\Longrightarrow A constant returns to scale production function is said to be: HOMOGENOUS of DEGREE ONE or LINEARLY HOMOGENOUS

2.1.2 Homogenous of Degree r

A function, $Y=f\left(x_{1}, \ldots, x_{n}\right)$ is said to be Homogenous of Degree r if

$$
f\left(t x_{1}, t x_{2}, \ldots t x_{n}\right)=t^{r} f\left(x_{1}, x_{2}, \ldots x_{n}\right)
$$

Example
Let $\mathrm{f}\left(x_{1}, x_{2}\right)=x_{1} x_{2}$
change all $x_{i}^{\prime} s$ by t

$$
\begin{aligned}
f\left(t x_{1}, t x_{2}\right) & =\left(t x_{1}\right)\left(t x_{2}\right) \\
& =t^{2}\left(x_{1} x_{2}\right) \\
& =t^{2} f\left(x_{1} x_{2}\right)
\end{aligned}
$$

Therefore $f\left(x_{1}, x_{2}\right)=x_{1} x_{2}$ is homogenous of degree 2

2.1.3 Cobb-Douglas

Let output, $Y=f(K, L)=L^{\alpha} K^{1-\alpha}\{$ where $0 \leq 1\}$
Multiply K, L by t

$$
\begin{aligned}
f(t L, t K)= & (t L)^{\alpha}(t K)^{1-\alpha} \\
= & t^{\alpha+1-\alpha} L^{\alpha} K^{1-\alpha} \\
& t L^{\alpha} K^{1-\alpha}
\end{aligned}
$$

Therefore $\mathrm{L}^{\alpha} K^{1-\alpha_{\text {is }}}$ H.O.D one.
General Cobb-Douglas: $\mathrm{y}=\mathrm{L}^{\alpha} K^{\beta}$

$$
\begin{aligned}
f(t L, t K) & =(t L)^{\alpha}(t K)^{\beta} \\
& =t^{\alpha+\beta} L^{\alpha} K^{\beta}
\end{aligned}
$$

$\mathrm{L}^{\alpha} K^{\beta}$ is homogenous of degree $\alpha+\beta$

2.1.4 Further properties of Cobb-Douglas

Given

$$
\begin{gathered}
y=L^{\alpha} K^{1-\alpha} \\
M P_{L}=\frac{d Y}{d L}=d L^{\alpha-1} K^{1-\alpha}=\alpha\left(\frac{K}{L}\right)^{1-\alpha} \\
M P_{K}=\frac{d Y}{d K}=(1-\alpha) L^{\alpha} K^{-\alpha}=(1-\alpha)\left(\frac{K}{L}\right)^{-\alpha}
\end{gathered}
$$

MP_{L} and MP_{K} are homogenous of degree zero

$$
M P_{L}(t L, t K)=\alpha\left(\frac{t K}{t L}\right)^{1-\alpha}=\alpha\left(\frac{K}{L}\right)^{1-\alpha}
$$

MP_{L} and MP_{K} depend only on the $\frac{K}{L}$ ratio

2.2 The Marginal Rate of Technical Substitution

$$
M R T S=\frac{M P_{L}}{M P_{K}}=\frac{\alpha\left(\frac{K}{L}\right)^{1-\alpha}}{(1-\alpha)\left(\frac{K}{L}\right)^{-\alpha}}=\left(\frac{\alpha}{1-\alpha}\right)\left(\frac{K}{L}\right)
$$

MRTS is homogenous of degree zero
The slope of the isoquant (MRTS) depends only on the $\frac{K}{L}$ ratio, not the absolute levels of K and L

Along any ray from the origin the isoquants are parallel. This is true for all homogenous functions regardless of the degree.

Given:

$$
f\left(t x_{1}, \ldots t x_{n}\right)=t^{r} f\left(x_{1}, \ldots x_{n}\right)
$$

Differentiate both sides with respect to x_{1}

$$
\frac{d f}{d(t x)} \frac{d\left(t x_{1}\right)}{d x_{1}}=t^{r} \frac{d f}{d x_{1}}
$$

But

$$
\begin{gathered}
\frac{d\left(t x_{1}\right)}{d x_{1}}=t \\
\frac{d f}{d\left(t x_{1}\right)} t=t^{r} \frac{d f}{d x_{1}} \\
\frac{d f}{d\left(t x_{1}\right)}=\frac{t^{r}}{t} \frac{d f}{d x_{1}}=t^{r-1} \frac{d f}{d x_{1}}
\end{gathered}
$$

Therefore: For any function homogenous of degree r, that function's first partial derivatives are homogenous of degree $r-1$.

2.3 Monotonic Transformations and Homothetic Functions

Let $y=f\left(x_{1}, x_{2}\right)$ and Let $z=g(y)$
\{where $g^{\iota}(y)>0$ and $f\left(x_{1}, x_{2}\right)$ is H.O.D. r\}
$g(y)$ is a monotonic transformation of y
We know:

$$
M R T S=-\frac{f_{1}}{f x}=\frac{d x_{2}}{d x_{1}}
$$

Totally differentiate $z=g(y)$ and set $d z=0$

$$
d z=\frac{d g}{d y} \frac{d y}{d x_{1}} d x_{1}+\frac{d g}{d y} \frac{d y}{d x_{2}} d x_{2}=0
$$

or

$$
\frac{d x_{2}}{d x_{1}}=\frac{-\left(\frac{d g}{d y_{1}}\right)\left(\frac{d y}{d x_{1}}\right)}{\left(\frac{d g}{d y_{1}}\right)\left(\frac{d y}{d x_{2}}\right)}=\frac{-\left(\frac{d y}{d x_{1}}\right)}{\left(\frac{d y}{d x_{2}}\right)}=\frac{-f_{1}}{f_{2}}
$$

The slope of the level curves (isoquants) are invariant to monotonic transformations.

A monotonic transformation of a homogenous function creates a homothetic function

Homothetic functions have the same slope properties along a ray from the origin as the homogenous function.

However, homothetic functions are NOT homogenous.
Example: Let $f\left(x_{1}, x_{2}\right)=x_{1}, x_{2}\{$ where $r=2\}$
Let:

$$
\begin{aligned}
z & =g(y)=\ln \left(x_{1}, x_{2}\right) \\
& =\ln x_{1}+\ln x_{2} \\
g\left(f\left(t x_{1}, t x_{2}\right)\right) & =\ln \left(t x_{1}\right)+\ln \left(t x_{2}\right) \\
& =2 \ln t+\ln x_{1}+\ln x_{2} \\
& \neq t^{r} \ln \left(x_{1}, x_{2}\right)
\end{aligned}
$$

Properties of Homothetic Functions

1. A homothetic function has the same shaped level curves as the homogenous function that was transformed to create it.
2. Homogenous production functions cannot produce U-shaped average cost curves, but a homothetic function can.
3. Slopes of Level Curves (ie. Indifference Curves)

For homothetic functions the slope of their level curves only depend on the ratio of quantities.
ie. If: $y=f\left(x_{1}, x_{2}\right)$ is homothetic
Then: $\frac{f_{1}}{f_{2}}=g\left(\frac{x_{2}}{x_{1}}\right)$

2.4 Euler's Theorem

Let $f\left(x_{1}, x_{2}\right)$ be homogenous of degree r
Then $f\left(t x_{1}, t x_{2}\right)=t^{r} f\left(x_{1}, x_{2}\right)$
Differentiate with respect to t

$$
\frac{d f}{d\left(t x_{1}\right)} \frac{d\left(t x_{1}\right)}{d t}+\frac{d f}{d\left(t x_{2}\right)} \frac{d\left(t x_{2}\right)}{d t}=r t^{r-1} f\left(t x_{1}, t x_{2}\right)
$$

Since: $\frac{d t x_{i}}{d t}=x_{i}$ for all i

$$
\frac{d f}{d\left(t x_{1}\right)} x_{1}+\frac{d f}{d\left(t x_{2}\right)} x_{2}=r t^{r-1} f\left(t x_{1}, t x_{2}\right)
$$

This is true for all values of t, so let $t=1$

$$
\underbrace{\frac{d f}{d x_{1}} x_{1}+\frac{d f}{d x_{2}} x_{2}=f_{1} x_{1}+f_{2} x_{2}=r f\left(x_{1}, x_{2}\right)}_{\text {"Euler's Theorm" }}
$$

If $y=f(L, K)$ is constant returns to scale
Then $\mathrm{y}=\mathrm{MP}_{L} L+M P_{K} K$ (Euler's Theorm)
Example: Let

$$
y=L^{\alpha} K^{1-\alpha}
$$

Where:

$$
M P_{L}=\alpha L^{\alpha-1} K^{1-\alpha}
$$

$$
M P_{K}=(1-\alpha) L^{\alpha} K^{-\alpha}
$$

From Euler's Theorm

$$
\begin{aligned}
y & =M P_{L} L+M P_{K} K=\left(\alpha L^{\alpha-1} K^{1-\alpha}\right) L+\left((1-\alpha) L^{\alpha} K^{-\alpha}\right) K \\
& =\alpha L^{\alpha-1} K^{1-\alpha}+(1-\alpha) L^{\alpha} K^{-\alpha} \\
& =[d+(1-\alpha)] L^{\alpha} K^{1-\alpha} \\
& =L^{\alpha} K^{1-\alpha} \\
& =y
\end{aligned}
$$

2.4.1 Euler's Theorm and Long Run Equilibrium

Suppose $q=f(K, L)$ is H.O.D 1
Then the profit function for a perfectly competitive firm is

$$
\begin{aligned}
\pi & =p q-r K-w L \\
\pi & =p f(K, L)-r K-w L
\end{aligned}
$$

F.O.C's

$$
\begin{aligned}
& \frac{d \pi}{d L}=p f_{L}-w=0 \\
& \frac{d \pi}{d K}=p f_{K}-r=0
\end{aligned}
$$

$\left\{f_{L}=M P_{L} \quad f_{K}=M P_{K}\right\}$
or $M P_{L}=\frac{w}{p}, M P_{K}=\frac{r}{p}$ are necessary conditions for Profit Maximization

Therefore, at the optimum

$$
\pi^{*}=p f\left(K^{*} L^{*}\right)-w L^{*}-r K^{*}
$$

From Euler's Theorem

$$
f\left(K^{*} L^{*}\right)=M P_{K} K^{*}+M P_{L} L^{*}
$$

Substitute into π^{*}

$$
\pi^{*}=P\left[M P_{K} K^{*}+M P_{L} L^{*}\right]-w L^{*}-r K^{*}
$$

OR

$$
\pi^{*}=\left[w L^{*}+r K^{*}\right]-w L^{*}-r K^{*}=0
$$

2.5 Concavity and Quasiconcavity

2.5.1 Concavity:

- Convex level curves and concave in scale
- Necessary for unconstrained optimum

2.5.2 Quasi-Concavity:

- Only has convex level curves
- Necessary for constrained optimum

Example:

1. Concave: $\quad y=x_{1}^{\frac{1}{3}} x_{2}^{\frac{1}{3}}$ is H.O.D. $2 / 3$ (diminishing returns)

$$
M R T S=\frac{x_{2}}{x_{1}}
$$

2. Quasi -Concave: $\quad y=x_{1}^{2} x_{2}^{2}$ is H.O.D. 4 (increasing returns)

$$
M R T S=\frac{x_{2}}{x_{1}}
$$

