OPMT 5701 Examples of Lagrange

Kevin Wainwright

November 26, 2012

1 Lagrange Multiplier Approach

Create a new function called the Lagrangian:

$$
L=f\left(x_{1}, x_{2}\right)+\lambda g\left(x_{1}, x_{2}\right)
$$

since $g\left(x_{1}, x_{2}\right)=0$ when the constraint is satisfied

$$
L=f\left(x_{1}, x_{2}\right)+\text { zero }
$$

We have created a new independent variable λ (lambda), which is called the Lagrangian Multiplier.

We now have a function of three variables; x_{1}, x_{2}, and λ
Now we Maximize

$$
L=f\left(x_{1}, x_{2}\right)+\lambda g\left(x_{1}, x_{2}\right)
$$

First Order Conditions

$$
\begin{array}{ll}
L_{\lambda}=\frac{\partial L}{\partial \lambda}=g\left(x_{1}, x_{2}\right)=0 & E q .1 \\
L_{1}=\frac{\partial L}{\partial x_{1}}=f_{1}+\lambda g_{1}=0 & E q .2 \\
L_{2}=\frac{\partial L}{\partial x_{2}}=f_{2}+\lambda g_{2}=0 & E q .3
\end{array}
$$

From Eq. 2 and 3 we get:

$$
\frac{f_{1}}{f_{2}}=\frac{-\lambda g_{1}}{-\lambda g_{2}}=\frac{g_{1}}{g_{2}}
$$

From the 3 F.O.C.'s we have 3 equations and 3 unknowns (x_{1}, x_{2}, λ). In principle we can solve for x_{1}^{*}, x_{2}^{*}, and λ^{*}.

1.1 Example 1:

Let:

$$
U=x y
$$

Subject to:

$$
10=x+y \quad P_{x}=P_{y}=1
$$

Lagrange:

$$
\begin{aligned}
& L=f(x, y)+\lambda(g(x, y)) \\
& L=x y+\lambda(10-x-y)
\end{aligned}
$$

F.O.C.

$$
\begin{array}{cc}
L_{\lambda}=10-x-y=0 & E q .1 \\
L_{x}=y-\lambda=0 & E q .2 \\
L_{y}=x-\lambda=0 & E q .3
\end{array}
$$

From (2) and (3) we see that:

$$
\frac{y}{x}=\frac{\lambda}{\lambda}=1 \quad \text { or } \quad y=x \quad E q .4
$$

From (1) and (4) we get:

$$
10-x-x=0 \text { or } x^{*}=5 \text { and } y^{*}=5
$$

From either (2) or (3) we get:

$$
\lambda^{*}=5
$$

1.2 Example 2: Utility Maximization

Maximize

$$
u=4 x^{2}+3 x y+6 y^{2}
$$

subject to

$$
x+y=56
$$

Set up the Lagrangian Equation:

$$
L=4 x^{2}+3 x y+6 y^{2}+\lambda(56-x-y)
$$

Take the first-order partials and set them to zero

$$
\begin{aligned}
L_{x} & =8 x+3 y-\lambda=0 \\
L_{y} & =3 x+12 y-\lambda=0 \\
L_{\lambda} & =56-x-y=0
\end{aligned}
$$

From the first two equations we get

$$
\begin{aligned}
8 x+3 y & =3 x+12 y \\
x & =1.8 y
\end{aligned}
$$

Substitute this result into the third equation

$$
\begin{aligned}
56-1.8 y-y & =0 \\
y & =20
\end{aligned}
$$

therefore

$$
x=36 \quad \lambda=348
$$

1.3 Example 3: Cost minimization

A firm produces two goods, x and y . Due to a government quota, the firm must produce subject to the constraint $x+y=42$. The firm's cost functions is

$$
c(x, y)=8 x^{2}-x y+12 y^{2}
$$

The Lagrangian is

$$
L=8 x^{2}-x y+12 y^{2}+\lambda(42-x-y)
$$

The first order conditions are

$$
\begin{align*}
L_{x} & =16 x-y-\lambda=0 \\
L_{y} & =-x+24 y-\lambda=0 \\
L_{\lambda} & =42-x-y=0 \tag{1}
\end{align*}
$$

Solving these three equations simultaneously yields

$$
x=25 \quad y=17 \quad \lambda=383
$$

1.4 Example 4: Utility Max \#2

Max:

$$
U=x_{1} x_{2}
$$

Subject to:

$$
B=P_{1} x_{1}+P_{2} x_{2}
$$

Langrange:

$$
L=x_{1} x_{2}+\lambda\left(B-P_{1} x_{1}-P_{2} x_{2}\right)
$$

F.O.C.

$$
\begin{array}{cl}
L_{\lambda}=B-P_{1} x_{1}-P_{2} x_{2}=0 & \text { Eq. } 1 \\
L_{1}=x_{2}-\lambda P_{1}=0 & \text { Eq. } 2 \\
L_{2}=x_{1}-\lambda P_{2}=0 & \text { Eq. } 3
\end{array}
$$

From Eq. (2) and (3) $\left(\frac{x_{2}}{x_{1}}=\frac{P_{1}}{P_{2}}=M R S\right)$

$$
\begin{aligned}
& x_{2}=\lambda P_{1} \\
& x_{1}=\lambda P_{2}
\end{aligned}
$$

divide top equation by the bottom

$$
\frac{x_{2}}{x_{1}}=\frac{\lambda P_{1}}{\lambda P_{2}}
$$

Cancel the λ from top/bottom of RHS

$$
\frac{x_{2}}{x_{1}}=\frac{P_{1}}{P_{2}}
$$

Solve for x_{1}^{*}
From (2) and (3)

$$
x_{2}=\frac{P_{1}}{P_{2}} x_{1}
$$

Sub into (1) and simplify

$$
\begin{aligned}
B & =P_{1} x_{1}+P_{2} x_{2} \\
B & =P_{1} x_{1}+P_{2}\left(\frac{P_{1}}{P_{2}} x_{1}\right) \\
B & =2 P_{1} x_{1} \\
x_{1}^{*} & =\frac{B}{2 P_{1}}
\end{aligned}
$$

Substitute your answer for x_{1}^{*} into Eq 1

$$
\begin{aligned}
B & =P_{1} x_{1}+P_{2} x_{2} \\
B & =P_{1}\left(\frac{B}{2 P_{1}}\right)+P_{2} x_{2} \\
B & =\frac{B}{2}+P_{2} x_{2} \\
B-\frac{B}{2} & =P_{2} x_{2} \\
\frac{B}{2} & =P_{2} x_{2} \\
x_{2}^{*} & =\frac{B}{2 P_{2}}
\end{aligned}
$$

The solution to x_{1}^{*} and x_{2}^{*} are the Demand Functions for x_{1} and x_{2}

1.5 Minimization and Lagrange

Min x , y

$$
P_{x} x+P_{y} y
$$

Subject to

$$
U_{0}=U(x, y)
$$

Lagrange

$$
L=P_{x} X+P_{y} Y+\lambda\left(U_{0}-U(x, y)\right)
$$

F.O.C.

$$
\begin{array}{cc}
L_{\lambda}=U_{0}-U(x, y)=0 & \text { Eq. } 1 \\
L_{x}=P_{x}-\lambda \frac{\partial U}{\partial x}=0 & \text { Eq. } 2 \\
L_{y}=P_{y}-\lambda \frac{\partial U}{\partial y}=0 & \text { Eq. } 3
\end{array}
$$

From (2) and (3) we get

$$
\underbrace{\frac{P_{x}}{P_{y}}=\frac{\lambda U_{x}}{\lambda U_{y}}=\frac{U_{x}}{U_{y}}=M R S}
$$

(The same result as in the MAX problem)
Solving (1), (2), and (3), we get:

$$
x^{*}=x\left(P_{x}, P_{y}, U_{0}\right) \quad y^{*}=y\left(P_{x}, P_{y}, U_{0}\right) \quad \lambda^{*}=\lambda\left(P_{x}, P_{y}, U_{0}\right)
$$

1.5.1 Example (part 1)

Max

$$
x y+\lambda\left(B-P_{x} x-P_{y} y\right)
$$

F.O.C.'s

$$
\begin{gathered}
L_{x}=y-\lambda P_{x}=0 \\
L_{y}=x-\lambda P_{y}=0 \\
\underbrace{L_{\lambda}=B-P_{x} x-P_{y} y=0}
\end{gathered}
$$

$$
x^{*}=\frac{B}{2 P_{x}} \quad y^{*}=\frac{B}{2 P_{y}} \quad \lambda^{*}=\frac{B}{2 P_{x} P_{y}}
$$

1.5.2 Example (part 2)

Min

$$
P_{x} x+P_{y} y+\lambda\left(U_{0}-x y\right)
$$

F.O.C.'s

$$
\begin{align*}
& L_{x}=P_{x}-\lambda y=0 \tag{1}\\
& L_{y}=P_{y}-\lambda x=0 \tag{2}\\
& L_{\lambda}=U_{0}-x y=0 \tag{3}
\end{align*}
$$

First, use equations (1) and (2) to eliminate λ

$$
\begin{aligned}
P_{x} & =\lambda y \\
P_{y} & =\lambda x
\end{aligned}
$$

divide (1) by (2)

$$
\begin{aligned}
\frac{P_{x}}{P_{y}} & =\frac{\lambda y}{\lambda x} \\
\frac{P_{x}}{P_{y}} & =\frac{y}{x} \\
y & =\frac{P_{x}}{P_{y}} x
\end{aligned}
$$

Substitute into eq (3)

$$
\begin{aligned}
U_{0} & =x y \\
U_{0} & =x\left(\frac{P_{x}}{P_{y}} x\right) \\
U_{0} & =\frac{P_{x}}{P_{y}} x^{2} \\
x^{2} & =\frac{P_{y}}{P_{x}} U_{0} \\
x & =\sqrt{\frac{P_{y}}{P_{x}} U_{0}}=\frac{P_{y}^{\frac{1}{2}} U_{0}^{\frac{1}{2}}}{P_{x}^{\frac{1}{2}}}
\end{aligned}
$$

Follow the same procedure to find

$$
y^{*}=\frac{P_{x}^{\frac{1}{2}} U_{0}^{\frac{1}{2}}}{P_{y}^{\frac{1}{2}}} \quad \lambda^{*}=\frac{U_{0}^{\frac{1}{2}}}{P_{x}^{\frac{1}{2}} P_{y}^{\frac{1}{2}}}
$$

