Find $f_{x y}$ for

$$
f(x, y)=8 x^{4} y^{3}-5 x^{5} y^{6}
$$

First find $f_{x}$

$$
\begin{aligned}
f_{x} & =8\left(4 x^{3}\right) y^{3}-5\left(5 x^{4}\right) y^{6} \\
f_{x} & =32 x^{3} y^{3}-25 x^{4} y^{6}
\end{aligned}
$$

Now find $f_{x y}$ which is $\partial\left(f_{x}\right) / \partial y$

$$
\begin{aligned}
f_{x y} & =\frac{\partial f_{x}}{\partial y}=32 x^{3}\left(3 y^{2}\right)-25 x^{4}\left(6 y^{5}\right) \\
f_{x y} & =96 x^{3} y^{2}-150 x^{4} y^{5}
\end{aligned}
$$

Now, let's do the derivative in reverse order. Let's find $f_{y x}$

$$
f(x, y)=8 x^{4} y^{3}-5 x^{5} y^{6}
$$

First find $f_{y}$

$$
\begin{aligned}
& f_{y}=8 x^{4}\left(3 y^{2}\right)-5 x^{5}\left(6 y^{5}\right) \\
& f_{y}=24 x^{4} y^{2}-30 x^{5} y^{5}
\end{aligned}
$$

Now find $f_{y x}$ which is $\partial\left(f_{y}\right) / \partial x$

$$
\begin{aligned}
f_{y x} & =24\left(4 x^{3}\right) y^{2}-30\left(5 x^{4}\right) y^{5} \\
f_{y x} & =96 x^{3} y^{2}-150 x^{4} y^{5}
\end{aligned}
$$

Notice that the answer is the same both ways. This is known as Young's Theorem, which says that, for cross-partial derivatives, the order of differentiation does not matter, i.e.

$$
f_{x y}=f_{y x}
$$

