OPMT 7701

Working with cost functions and production functions

Costs:
Given the total cost function

$$
C=Q^{3}-18 Q^{2}+120 Q
$$

the marginal cost is found by taking the derivative of C

$$
\frac{d C}{d Q}=M C=3 Q^{2}-36 Q+120
$$

note that the total cost is a "cubic" function and the marginal cost is a "quadratic" function.

The average cost function is found by dividing costs by Q

$$
\frac{C}{Q}=A C=Q^{2}-18 Q+120
$$

note that average cost $(A C)$ is also a "quadratic" equation.
IMPORTANT: Marginal Cost intersects Average Cost at the MINIMUM of Average Cost. See Figure 1

To test this statement:
First, minimize average cost $(A C)$. Take the derivative of $A C$ and set it to zero. Then find Q

$$
\begin{aligned}
\frac{d A C}{d Q} & =2 Q-18=0 \\
Q & =9
\end{aligned}
$$

verify that this is a minimum

$$
\frac{d^{2} A C}{d Q^{2}}=A C^{\prime \prime}=2>0
$$

Substitute $Q=9$ into $A C$

$$
\begin{aligned}
A C & =Q^{2}-18 Q+120 \\
& =(9)^{2}-18(9)+120 \\
& =39
\end{aligned}
$$

Now subsititute $Q=9$ into $M C$

$$
\begin{aligned}
M C & =3 Q^{2}-36 Q+120 \\
& =3(9)^{2}-36(9)+120 \\
& =39
\end{aligned}
$$

we see that $M C=A C$ at $Q=9$, which is also the value of Q that minimizes AC

Now find the mimum of marginal cost $(M C)$

$$
\begin{aligned}
\frac{d M C}{d Q} & =M C^{\prime}=6 Q-36=0 \\
Q & =6
\end{aligned}
$$

check the second derivative to verify a minimum

$$
\frac{d^{2} M C}{d Q^{2}}=M C^{\prime \prime}=6>0
$$

Production Functions (cubic)

Suppose output, Q, is a function of one input, labour (L) and is given by

$$
Q=12 L^{2}-L^{3}
$$

Note that output, Q, is also known as TOTAL PRODUCT (TP).

$$
T P=12 L^{2}-L^{3}
$$

To find the marginal product $(M P)$, take the derivative of total product

$$
M P=T P^{\prime}=24 L-3 L^{2}
$$

and to find average product, divide total product by L

$$
\frac{T P}{L}=A P=12 L-L^{2}
$$

The three functions are illustrated in figure 2:

Each of these functions have a maximum. Also, when average product is at a maximum, it is equal to marginal product. When total product is at a maximum, marginal product equals zero

1. Maximize Total product

$$
\begin{aligned}
T P & =12 L^{2}-L^{3} \\
T P^{\prime} & =24 L-3 L^{2}=0
\end{aligned}
$$

there are two solutions, found by factoring:

$$
\begin{aligned}
L(24-3 L) & =0 \\
L & =0,8
\end{aligned}
$$

2. Maximize Average Product

$$
\begin{aligned}
A P & =12 L-L^{2} \\
A P^{\prime} & =12-2 L=0 \\
L= & 6 \\
& \text { and } \\
A P^{\prime \prime} & =-2<0
\end{aligned}
$$

second derivative is negative, so a maximum
3. Maximize Marginal Product

$$
\begin{aligned}
M P= & 24 L-3 L^{2} \\
M P^{\prime}= & 24-6 L=0 \\
L= & 4 \\
& \text { and } \\
M P^{\prime \prime}= & -6<0
\end{aligned}
$$

second derivative is negative, so a maximum
4. Check that $M P=A P$ when $A P$ is at a maximum.

$$
\begin{aligned}
A P & =12 L-L^{2} \\
& =12(6)-6^{2}=36
\end{aligned}
$$

and marginal product

$$
\begin{aligned}
M P & =24 L-3 L^{2} \\
& =24(6)-3(6)^{2}=36
\end{aligned}
$$

For doing applications of one variable maximums and minimums, you will often be asked questions involving either production or costs. It is important that you understand:

1. The relationship between total cost (C), marginal cost $(M C)$ and average cost $(A C)$. You should be able to derive $M C$ and $A C$ from the cost function. You should be able to minimize $A C$ and verify that $M C=A C$ at the minimum of $A C$.
2. The relationship between the production function, marginal product ($M P$) and average product $(A P)$. It is important to remember that output (Q) and total product $(T P)$ are the same thing.
