OPMT 5701 Lecture Notes

1 Matrix Algebra

1. Gives us a shorthand way of writing a large system of equations.
2. Allows us to test for the existance of solutions to simultaneous systems.
3. Allows us to solve a simultaneous system.

DRAWBACK: Only works for linear systems. However, we can often covert non-linear to linear systems.
Example

$$
\begin{aligned}
& y=a x^{b} \\
& \ln y=\ln a+b \ln x
\end{aligned}
$$

Matrices and Vectors
Given

$$
\begin{aligned}
& y=10-x \quad \Rightarrow \quad x+y=10 \\
& y=2+3 x \quad \Rightarrow \quad-3 x+y=2
\end{aligned}
$$

In matrix form

$$
\left[\begin{array}{cc}
1 & 1 \\
-3 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
10 \\
2
\end{array}\right]
$$

Matrix of Coefficients Vector of Unknows Vector of Constants
In general

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=d_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=d_{2} \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}=d_{m}
\end{gathered}
$$

n-unknowns $\left(x_{1}, x_{2}, \ldots x_{n}\right)$
Matrix form

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
d_{1} \\
d_{2} \\
\vdots \\
d_{m}
\end{array}\right]
$$

Matrix shorthand

$$
A x=d
$$

Where:
$\mathrm{A}=$ coefficient martrix or an array
$\mathrm{x}=$ vector of unknowns or an array
$d=$ vector of constants or an array
Subscript notation

$$
a_{i j}
$$

is the coefficient found in the i -th row $(\mathrm{i}=1, \ldots, \mathrm{~m})$ and the j -th column $(\mathrm{j}=1, \ldots, \mathrm{n})$

1.1 Vectors as special matrices

The number of rows and the number of columns define the DIMENSION of a matrix.
A is m rows and n is columns or "mxn."
A matrix containing 1 column is called a "column VECTOR"
x is a $n \times 1$ column vector
d is a $\mathrm{m} \times 1$ column vector
If x were arranged in a horizontal array we would have a row vector.
Row vectors are denoted by a prime

$$
x^{\prime}=\left[x_{1}, x_{2}, \ldots, x_{n}\right]
$$

A 1×1 vector is known as a scalar.

$$
x=[4] \text { is a scalar }
$$

Matrix Operators
If we have two matrices, A and B , then

$$
A=B \quad \text { iff } \quad a_{i j}=b_{i j}
$$

Addition and Subtraction of Matrices
Suppose A is an $m \times n$ matrix and B is a $p \times q$ matrix then A and B is possible only if $m=p$ and $n=q$. Matrices must have the same dimensions.

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]+\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right]=\left[\begin{array}{ll}
\left(a_{11}+b_{11}\right) & \left(a_{12}+b_{12}\right) \\
\left(a_{21}+b_{21}\right) & \left(a_{22}+b_{22}\right)
\end{array}\right]=\left[\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{array}\right]
$$

Subtraction is identical to addition

$$
\left[\begin{array}{ll}
9 & 4 \\
3 & 1
\end{array}\right]-\left[\begin{array}{ll}
7 & 2 \\
1 & 6
\end{array}\right]=\left[\begin{array}{cc}
(9-7) & (4-2) \\
(3-1) & (1-6)
\end{array}\right]=\left[\begin{array}{cc}
2 & 2 \\
2 & -5
\end{array}\right]
$$

Scalar Multiplication
Suppose we want to multiply a matrix by a scalar

$$
\begin{array}{lll}
k & \times & A \\
1 \times 1 & & m \times n
\end{array}
$$

We multiply every element in A by the scalar k

$$
k A=\left[\begin{array}{cccc}
k a_{11} & k a_{12} & \ldots & k a_{1 n} \\
k a_{21} & k a_{22} & \ldots & k a_{2 n} \\
\vdots & & & \\
k a_{m 1} & k a_{m 2} & \ldots & k a_{m n}
\end{array}\right]
$$

Example
Let $\mathrm{k}=[3]$ and $\mathrm{A}=\left[\begin{array}{ll}6 & 2 \\ 4 & 5\end{array}\right]$
then $\mathrm{kA}=$

$$
k A=\left[\begin{array}{ll}
3 \times 6 & 3 \times 2 \\
3 \times 4 & 3 \times 5
\end{array}\right]=\left[\begin{array}{cc}
18 & 6 \\
12 & 15
\end{array}\right]
$$

Multiplication of Matrices
To multiply two matrices, A and B , together it must be true that for

$$
\begin{array}{ccc}
A & \times & B \\
m \times n & & = \\
n \times q
\end{array} \quad \begin{gathered}
C \\
m \times q
\end{gathered}
$$

That A must have the same number of columns (n) as B has rows (n).
The product matrix, C, will have the same number of rows as A and the same number of columns as B.

Example

$$
\begin{array}{ccccc}
A & \times & B & = & C \\
(1 \times 3) & & (3 \times 4) & & (1 \times 4) \\
1 \text { row } & & 3 \text { rows } & & 1 \text { row } \\
3 \text { cols } & & 4 \text { cols } & & 4 \text { cols }
\end{array}
$$

In general

$$
\left.\left.\left.\begin{array}{c}
A \\
(3 \times 2)
\end{array} \times \begin{array}{c}
B \\
(2 \times 5)
\end{array}\right) \times \begin{array}{c}
C \\
(5 \times 4)
\end{array}\right) \times \begin{array}{c}
(4 \times 1)
\end{array}\right)
$$

To multiply two matrices:
(1) Multiply each element in a given row by each element in a given column
(2) Sum up their products

Example 1

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \times\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right]=\left[\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{array}\right]
$$

Where:
$c_{11}=a_{11} b_{11}+a_{12} b_{21}$ (sum of row 1 times column 1)
$c_{12}=a_{11} b_{12}+a_{12} b_{22}$ (sum of row 1 times column 2)
$c_{21}=a_{21} b_{11}+a_{22} b_{21}$ (sum of row 2 times column 1)
$c_{22}=a_{21} b_{12}+a_{22} b_{22}$ (sum of row 2 times column 2)
Example 2

$$
\left[\begin{array}{ll}
3 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]=\left[\begin{array}{llll}
(3 \times 1) & +(2 \times 3) & (3 \times 2) & +(2 \times 4)
\end{array}\right]=\left[\begin{array}{ll}
9 & 14
\end{array}\right]
$$

Example 3

$$
\left[\begin{array}{lll}
3 & 2 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
1 \\
4
\end{array}\right]=\left[\begin{array}{lll}
(3 \times 2)+(2 \times 1) & +(1 \times 4)
\end{array}\right]=[12]
$$

12 is the inner product of two vectors.
Suppose

$$
x=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \quad \text { then } \quad x^{\prime}=\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]
$$

therefore

$$
\begin{aligned}
x^{\prime} x= & {\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] } \\
& =\left[x_{1}^{2}+x_{2}^{2}\right]
\end{aligned}
$$

However

$$
x x^{\prime}=2 \text { by } 2 \text { matrix }
$$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]=\left[\begin{array}{cc}
x_{1}^{2} & x_{1} x_{2} \\
x_{2} x_{1} & x_{2}^{2}
\end{array}\right]
$$

Example 4

$$
\begin{gathered}
A=\left[\begin{array}{ll}
1 & 3 \\
2 & 8 \\
4 & 0
\end{array}\right] \\
b=\left[\begin{array}{l}
5 \\
9
\end{array}\right] \\
A b=\left[\begin{array}{ccc}
(1 \times 5) & +(3 \times 9) \\
(2 \times 5) & +(8 \times 9) \\
(4 \times 5) & +(0 \times 9)
\end{array}\right]=\left[\begin{array}{l}
32 \\
82 \\
20
\end{array}\right]
\end{gathered}
$$

Example

$$
A x=d
$$

$$
\left.\begin{array}{c}
A \\
{\left[\begin{array}{ccc}
6 & 3 & 1 \\
1 & 4 & -2 \\
4 & -1 & 5
\end{array}\right]}
\end{array} \begin{array}{c}
x \\
(3 \times 3)
\end{array} \begin{array}{c}
d \\
{\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]}
\end{array}=\begin{array}{c}
{[3 \times 1)}
\end{array} \begin{array}{c}
22 \\
12 \\
10
\end{array}\right]
$$

This produces

$$
\begin{aligned}
& 6 x_{1}+3 x_{2}+x_{3}=22 \\
& x_{1}+4 x_{2}-2 x_{3}=12 \\
& 4 x_{1}-x_{2}+5 x_{3}=10
\end{aligned}
$$

1.1.1 National Income Model

$$
\begin{gathered}
y=c+I_{0}+G_{0} \\
C=a+b Y
\end{gathered}
$$

Arrange as

$$
\begin{aligned}
& y-C=I_{0}+G_{0} \\
& -b Y+C=a
\end{aligned}
$$

Matrix form

$$
\left.\begin{array}{cc}
A & \begin{array}{c}
x \\
1
\end{array}-1 \\
-b & 1
\end{array}\right] \begin{gathered}
=d \\
{\left[\begin{array}{c}
Y \\
C
\end{array}\right]}
\end{gathered}=\left[\begin{array}{c}
I_{o}+G_{o} \\
a
\end{array}\right]
$$

1.1.2 Division in Matrix Algebra

In ordinary algebra

$$
\frac{a}{b}=c
$$

is well defined iff $\mathrm{b} \neq 0$.
Now $\frac{1}{b}$ can be rewritten as b^{-1}, therefore $a b^{-1}=c$, also $\mathrm{b}^{-1} a=c$.
But in matrix algebra

$$
\frac{A}{B}=C
$$

is not defined. However,

$$
A B^{-1}=C
$$

is well defined. BUT

$$
A B^{-1} \neq B^{-1} A
$$

B^{-1} is called the inverse of B

$$
B^{-1} \neq \frac{1}{B}
$$

In some ways B^{-1} has the same properties as b^{-1} but in other ways it differs. We will explore these differences later.

1.2 Linear Dependance

Suppose we have two equations

$$
\begin{aligned}
& x_{1}+2 x_{2}=1 \\
& 3 x_{1}+6 x_{2}=3
\end{aligned}
$$

To solve

$$
\begin{aligned}
& 3\left[-2 x_{2}+1\right]-6 x_{2}=3 \\
& 6 x_{2}+3-6 x_{2}=3 \\
& 3=3
\end{aligned}
$$

There is no solution. These two equations are linearly dependent. Equation 2 is equal to two times equation one.

$$
\begin{gathered}
{\left[\begin{array}{ll}
1 & 2 \\
3 & 6
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
3
\end{array}\right]} \\
A x=d
\end{gathered}
$$

where A is a two column vectors

$$
\left[\begin{array}{c}
U_{1} \\
1 \\
3
\end{array}\right]\left[\begin{array}{c}
U_{2} \\
2 \\
6
\end{array}\right]
$$

Or A is two row vector

$$
\begin{aligned}
V_{1}^{\prime} & =\left[\begin{array}{ll}
1 & 2
\end{array}\right] \\
V_{2}^{\prime} & =\left[\begin{array}{ll}
3 & 6
\end{array}\right]
\end{aligned}
$$

Where column two is twice column one and/or row two is three times row one

$$
2 U_{1}=U_{2} \text { or } 3 V_{1}^{\prime}=V_{2}^{\prime}
$$

Linear Dependence Generally:
A set of vectors is said to be linearly dependent iff any one of them can be expressed as a linear combination of the remaining vectors.

Example:

Three vectors,

$$
V_{1}=\left[\begin{array}{l}
2 \\
7
\end{array}\right] \quad V_{2}=\left[\begin{array}{l}
1 \\
8
\end{array}\right] \quad V_{3}=\left[\begin{array}{l}
4 \\
5
\end{array}\right]
$$

are linearly dependent since

$$
\begin{aligned}
& 3 V_{1}-2 V_{2}=V_{3} \\
& {\left[\begin{array}{c}
6 \\
21
\end{array}\right]-\left[\begin{array}{c}
2 \\
16
\end{array}\right]=\left[\begin{array}{l}
4 \\
5
\end{array}\right]}
\end{aligned}
$$

or expressed as

$$
3 V_{1}-2 V_{2}-V_{3}=0
$$

General Rule
A set of vectors, $\mathrm{V}_{1}, V_{2}, \ldots, V_{n}$ are linearly dependent if there exsists a set of scalars (i=1, ..,n). Not all equal to zero, such that

$$
\sum_{i=1}^{n}=k_{i} V_{i}=0
$$

Note

$$
\sum_{i=1}^{n} k_{i} V_{i}=k_{1} V_{1}+k_{2} V_{2}+\ldots+k_{n} V_{n}
$$

1.3 Commutative, Associative, and Distributive Laws

From Highschool algebra we know commutative law of addition,

$$
a+b=b+a
$$

commutative law of multiplication,

$$
a b=b a
$$

Associative law of addition,

$$
(a+b)+c=a+(b+c)
$$

associative law of multiplication,

$$
(a b) c=a(b c)
$$

Distributive law

$$
a(b+c)=a b+a c
$$

In matrix algebra most, but not all, of these laws are true.

1.3.1 I) Communicative Law of Addition

$$
A+B=B+A
$$

Since we are adding individual elements and $a_{i j}+b_{i j}=b_{i j}+a_{i j}$ for all i and j .

1.3.2 II) Similarly Associative Law of Addition

$$
A+(B+C)=(A+B)+C
$$

for the same reasons.

1.3.3 III) Matrix Multiplication

Matrix multiplication in not communtative

$$
I B \neq B A
$$

Example 1
Let A be 2×3 and B be 3×2

Example 2
Let $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ and $B=\left[\begin{array}{cc}0 & -1 \\ 6 & 7\end{array}\right]$

$$
A B=\left[\begin{array}{cc}
(1 \times 10)+(2 \times 6) & (1 \times-1)+(2 \times 7) \\
(3 \times 0)+(4 \times 6) & (3 \times-1)+(4 \times 7)
\end{array}\right]=\left[\begin{array}{ll}
12 & 13 \\
24 & 25
\end{array}\right]
$$

But

$$
B A=\left[\begin{array}{cc}
(0)(1)-(1)(3) & (0)(2)-(1)(4) \\
(6)(1)+(7)(3) & (6)(2)+(7)(4)
\end{array}\right]=\left[\begin{array}{cc}
-3 & -4 \\
27 & 40
\end{array}\right]
$$

Therefore, we realize the distinction of post multiply and pre multiply. In the case

$$
A B=C
$$

B is pre multiplied by A, A is post multiplied by B .

1.3.4 IV) Associative Law

Matrix multiplication is associative

$$
(A B) C=A(B C)=A B C
$$

as long as their dimensions conform to our earlier rules of multiplication.

$$
\begin{array}{ccc}
A \\
(m \times n)
\end{array} \quad \times \begin{gathered}
B \\
(n \times p)
\end{gathered} \quad \times \quad \begin{gathered}
C \\
(p \times q)
\end{gathered}
$$

1.3.5 V) Distributive Law

Matrix multiplication is distributive

$$
\begin{aligned}
& A(B+C)=A B+A C \quad \text { Pre multiplication } \\
& (B+C) A=B A+C A \quad \text { Post multiplication }
\end{aligned}
$$

1.4 Identity Matrices and Null Matrices

1.4.1 Identity matrix:

is a square matrix with ones on its principal diagonals and zeros everywhere else.

$$
I_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad I_{3}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad I_{n}=\left[\begin{array}{cccc}
1 & 0 & \ldots & n \\
0 & 1 & & \vdots \\
\vdots & & \ddots & 0 \\
0 & \ldots & 0 & 1
\end{array}\right]
$$

Identity Matrix in scalar algebra we know

$$
1 \times a=a \times 1=a
$$

In matrix algebra the identity matrix plays the same role

$$
I A=A I=A
$$

Example 1
Let $A=\left[\begin{array}{ll}1 & 3 \\ 2 & 4\end{array}\right]$

$$
I A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right]=\left[\begin{array}{ll}
(1 \times 1)+(0 \times 2) & (1 \times 3)+(0 \times 4) \\
(0 \times 1)+(1 \times 2) & (0 \times 3)+(1 \times 4)
\end{array}\right]=\left[\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right]
$$

Example 2
Let $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 0 & 3\end{array}\right]$

$$
\begin{gathered}
I A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 0 & 3
\end{array}\right]=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 0 & 3
\end{array}\right]=A\left\{I_{2} \text { Case }\right\} \\
A I=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 0 & 3
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 0 & 3
\end{array}\right]=A\left\{I_{3} \text { Case }\right\}
\end{gathered}
$$

Furthermore,

$$
\begin{gathered}
A I B \\
(m \times n)(n \times p)
\end{gathered}=(A I) B=A(I B)=\begin{gathered}
A B \\
(m \times n)(n \times p)
\end{gathered}
$$

1.4.2 Null Matrices

A null matrix is simply a matrix where all elements equal zero.

$$
\begin{aligned}
0= & \underset{(2 \times 2)}{\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]} \quad 0=\underset{(2 \times 3)}{\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]} \\
& (2 \times 3
\end{aligned}
$$

The rules of scalar algebra apply to matrix algebra in this case.
Example

$$
\begin{gathered}
a+0=a \Rightarrow\{\text { scalar }\} \\
A+0=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]=A \quad\{\text { matrix }\} \\
A \times 0=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]=0
\end{gathered}
$$

1.5 Idiosyncracies of matrix algebra

1) We know $\mathrm{AB} \neq \mathrm{BA}$
2) $a b=0$ implies a or $b=0$

In matrix

$$
A B=\left[\begin{array}{ll}
2 & 4 \\
1 & 2
\end{array}\right]\left[\begin{array}{cc}
-2 & 4 \\
1 & -2
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

1.5.1 Transposes and Inverses

1)Transpose: is when the rows and columns are interchanged.

Transpose of $\mathrm{A}=\mathrm{A}$ ' or A^{T}
Example
If $\mathrm{A}=\left[\begin{array}{ccc}3 & 8 & -9 \\ 1 & 0 & 4\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{ll}3 & 4 \\ 1 & 7\end{array}\right]$
$\mathrm{A}^{\prime}=\left[\begin{array}{cc}3 & 1 \\ 8 & 0 \\ -9 & 4\end{array}\right]$ and $\mathrm{B}^{\prime}=\left[\begin{array}{ll}3 & 4 \\ 1 & 7\end{array}\right]$
Symmetrix Matrix
If $A=\left[\begin{array}{lll}1 & 0 & 4 \\ 0 & 3 & 7 \\ 4 & 7 & 2\end{array}\right]$ then $A^{\prime}=\left[\begin{array}{lll}1 & 0 & 4 \\ 0 & 3 & 7 \\ 4 & 7 & 2\end{array}\right]$
A is a symmetric matrix.
Properties of Transposes

1) $\left(A^{\prime}\right)^{\prime}=A$
2) $(A+B)^{\prime}=A^{\prime}+B^{\prime}$
3) $(\mathrm{AB})^{\prime}=\mathrm{B}^{\prime} \mathrm{A}^{\prime}$

Inverses and their Properties
In scalar algebra if

$$
a x=b
$$

then

$$
x=\frac{b}{a} \text { or } b a^{-1}
$$

In matrix algebra
if

$$
A x=d
$$

then

$$
x=A^{-1} d
$$

where A^{-1} is the inverse of A .

Properties of Inverses

1) Not all matrices have inverses

> non-singular: if there is an inverse
singular: if there is no inverse
2) A matrix must be square in order to have an inverse. (Necessary but not sifficient)
3) In scalar algebra $\frac{a}{a}=1$, in matrix algebra $\mathrm{AA}^{-1}=A^{-1} A=I$
4) If an inverse exists then it must be unique.

Example
Let $A=\left[\begin{array}{ll}3 & 1 \\ 0 & 2\end{array}\right]$ and $A^{-1}=\left[\begin{array}{cc}\frac{1}{3} & -\frac{1}{6} \\ 0 & \frac{1}{2}\end{array}\right]$
$\mathrm{A}^{-1}=\frac{1}{6}\left[\begin{array}{cc}2 & -1 \\ 0 & 3\end{array}\right]$ by factoring $\left\{\frac{1}{6}\right.$ is a scalar $\}$
Post Multiplication

$$
A A^{-1}=\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{cc}
2 & -1 \\
0 & 3
\end{array}\right] \frac{1}{6}=\left[\begin{array}{ll}
6 & 0 \\
0 & 6
\end{array}\right] \frac{1}{6}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Pre Multiplication

$$
A^{-1} A=\frac{1}{6}\left[\begin{array}{cc}
2 & -1 \\
0 & 3
\end{array}\right]\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right]=\frac{1}{6}\left[\begin{array}{ll}
6 & 0 \\
0 & 6
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Further properties
If A and B are square and non-singular then:

1) $\left(\mathrm{A}^{-1}\right)^{-1}=A$
2) $(\mathrm{AB})^{-1}=B^{-1} A^{-1}$
3) $\left(\mathrm{A}^{\prime}\right)^{-1}=\left(A^{-1}\right)^{1}$

Solving a linear system
Suppose

$$
\begin{array}{cc}
A & x \\
(3 \times 3) & = \\
(3 \times 1)
\end{array} \begin{gathered}
d \\
(3 \times 1)
\end{gathered}
$$

then

$$
\begin{array}{ccccc}
\begin{array}{ccc}
A^{-1} & A & x \\
(3 \times 3) & & = \\
(3 \times 3) & (3 \times 1)
\end{array} & \begin{array}{cc}
A^{-1} & d \\
(3 \times 3) & (3 \times 1)
\end{array} \\
\left.\begin{array}{ccc}
I & x & = \\
(3 \times 3) & (3 \times 1) & A^{-1}
\end{array}\right] \\
(3 \times 3) & (3 \times 1) \\
x= & A^{-1} d
\end{array}
$$

Example

$$
A x=d
$$

$$
A=\left[\begin{array}{ccc}
6 & 3 & 1 \\
1 & 4 & -2 \\
4 & -1 & 5
\end{array}\right] \quad x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \quad d=\left[\begin{array}{c}
22 \\
12 \\
10
\end{array}\right] \quad A^{-1}=\frac{1}{52}\left[\begin{array}{ccc}
18 & -16 & -10 \\
-13 & 26 & 13 \\
-17 & 18 & 21
\end{array}\right]
$$

then

$$
\begin{gathered}
{\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\frac{1}{52}\left[\begin{array}{ccc}
18 & -16 & -10 \\
-13 & 26 & 13 \\
-17 & 18 & 21
\end{array}\right]\left[\begin{array}{l}
22 \\
12 \\
10
\end{array}\right]=\left[\begin{array}{l}
2 \\
3 \\
1
\end{array}\right]} \\
x_{1}^{*}=2 \quad x_{2}^{*}=3 \quad x_{3}^{*}=1
\end{gathered}
$$

1.6 Linear Dependence and Determinants

Suppose we have the following

1. $x_{1}+2 x_{2}=1$
2. $2 x_{1}+4 x_{2}=2$
where equation two is twice equation one. Therefore, there is no solution for x_{1}, x_{2}.
In matrix form:

$$
\begin{gathered}
A x=d \\
{\left[\begin{array}{rr}
1 & 2 \\
2 & 4
\end{array}\right]\left[\begin{array}{c}
x \\
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
d \\
2
\end{array}\right]}
\end{gathered}
$$

The determinant of the coefficient matrix is

$$
|A|=(1)(4)-(2)(2)=0
$$

a determinant of zero tells us that the equations are linearly dependent. Sometimes called a "vanishing determinant."

In general, the determinant of a square matrix, A is written as $|A|$ or $\operatorname{det} \mathrm{A}$.
For two by two case

$$
|A|=\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}=a_{11} a_{22}-a_{12} a_{21}=k
$$

where k is unique
any $\mathrm{k} \neq 0$ implies linear independence
Example 1
$A=\left[\begin{array}{ll}3 & 2 \\ 1 & 5\end{array}\right]$

$$
|A|=(3 \times 5)-(1 \times 2)=13 \quad\{\text { Non-singular }\}
$$

Example 2
$\mathrm{B}=\left[\begin{array}{cc}2 & 6 \\ 8 & 24\end{array}\right]$

$$
|B|=(2 \times 24)-(6 \times 8)=0 \quad\{\text { Singular }\}
$$

Three by three case
Given $\mathrm{A}=\left[\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right]$
then

$$
|A|=\left(a_{1} b_{2} c_{3}\right)+\left(a_{2} b_{3} c_{1}\right)+\left(b_{1} c_{2} a_{3}\right)-\left(a_{3} b_{2} c_{1}\right)-\left(a_{2} b_{1} c_{3}\right)-\left(b_{3} c_{2} a_{1}\right)
$$

Cross-diagonals

$$
\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right]
$$

Use viso to display cross diagonals
Multiple along the diagonals and add up their products
\Rightarrow The product along the BLUE lines are given a positive sign
\Rightarrow The product of the RED lines are negative.

1.7 Using Laplace expansion

\Rightarrow The cross diagonal method does not work for matrices greater than three by three \Rightarrow Laplace expansion evaluates the determinant of a matrix, A, by means of subdeterminants of A.

Subdeterminants or Minors
Given $\mathrm{A}=\left[\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right]$
By deleting the first row and first column, we get

$$
\left|M_{11}\right|=\left[\begin{array}{ll}
b_{2} & b_{3} \\
c_{2} & c_{3}
\end{array}\right]
$$

The determinant of this matrix is the minor element a_{1}.
$\left|M_{i j}\right| \equiv$ is the subdeterminant from deleting the i -th row and the j -th column.
Given $\mathrm{A}=\left[\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right]$
then

$$
M_{21} \equiv\left[\begin{array}{ll}
a_{12} & a_{13} \\
a_{32} & a_{33}
\end{array}\right] \quad M_{31} \equiv\left[\begin{array}{ll}
a_{12} & a_{13} \\
a_{22} & a_{23}
\end{array}\right]
$$

1.7.1 Cofactors

A cofactor is a minor with a specific algebraic sign.

$$
C_{i j}=(-1)^{i+j}\left|M_{i j}\right|
$$

therefore

$$
\begin{gathered}
C_{11}=(-1)^{2}\left|M_{11}\right|=\left|M_{11}\right| \\
C_{21}=(-1)^{3}\left|M_{21}\right|=-\left|M_{21}\right|
\end{gathered}
$$

The determinant by Laplace
Expanding down the first column

$$
\begin{gathered}
A=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \\
|A|=a_{11}\left|C_{11}\right|+a_{21}\left|C_{21}\right|+a_{31}\left|C_{31}\right|=\sum_{i=1}^{3} a_{i 1}\left|C_{i 1}\right|
\end{gathered}
$$

$$
|A|=a_{11}\left|\begin{array}{cc}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{21}\left|\begin{array}{cc}
a_{12} & a_{13} \\
a_{32} & a_{33}
\end{array}\right|+a_{31}\left|\begin{array}{ll}
a_{12} & a_{13} \\
a_{22} & a_{23}
\end{array}\right|
$$

Note: minus sign $(-1)^{(1+2)}$

$$
|A|=a_{11}\left[a_{22} a_{33}-a_{23} a_{32}\right]-a_{21}\left[a_{12} a_{33}-a_{13} a_{32}\right]+a_{31}\left[a_{12} a_{23}-a_{13} a_{22}\right]
$$

Laplace expansion can be used to expand along any row or any column.
Example
Third row

$$
|A|=a_{31}\left|\begin{array}{ll}
a_{12} & a_{13} \\
a_{22} & a_{23}
\end{array}\right|-a_{32}\left|\begin{array}{ll}
a_{11} & a_{13} \\
a_{21} & a_{23}
\end{array}\right|+a_{33}\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|
$$

Example
$\mathrm{A}=\left[\begin{array}{lll}8 & 1 & 3 \\ 4 & 0 & 1 \\ 6 & 0 & 3\end{array}\right]$
(1)Expand the first column

$$
\begin{gathered}
|A|=8\left|\begin{array}{ll}
0 & 1 \\
0 & 3
\end{array}\right|-4\left|\begin{array}{ll}
1 & 3 \\
0 & 3
\end{array}\right|+6\left|\begin{array}{cc}
1 & 3 \\
0 & 1
\end{array}\right| \\
|A|=(8 \times 0)-(4 \times 3)+(6 \times 1)=-6
\end{gathered}
$$

(2)Expand the second column

$$
\begin{gathered}
|A|=-1\left|\begin{array}{cc}
4 & 1 \\
6 & 3
\end{array}\right|+0\left|\begin{array}{cc}
8 & 3 \\
6 & 3
\end{array}\right|-0\left|\begin{array}{ll}
8 & 3 \\
4 & 1
\end{array}\right| \\
|A|=(-1 \times 6)+(0)-(0)=-6
\end{gathered}
$$

Suggestion: Try to choose an easy row or column to expand. (i.e. the ones with zero's in it.)

1.8 Rank of a Matrix

Definition

The rank of a matrix is the maximum number linearly independent rows in the matrix.
If A is an $m \times n$ matrix, then the rank of A is

$$
r(A) \leq \min [m, n]
$$

Read as: the rank of A is less than or equal to the minimum of m or n.
Using Determinants to Find the Rank
(1) If A is $\mathrm{n} \times \mathrm{m}$ and $|A|=0$
(2) Then delete one row and one column, and find the determinant of this new ($\mathrm{n}-1$) $\times(\mathrm{n}-1)$ matrix.
(3) Continue this process until you have a non-zero determinant.

1.9 Matrix Inversion

Given an $\mathrm{n} \times \mathrm{n}$ matrix, A , the inverse of A is

$$
A^{-1}=\frac{1}{|A|} \bullet \operatorname{Adj} A
$$

where $\operatorname{Adj} A$ is the adjoint matrix of $\mathrm{A} . \operatorname{AdjA}$ is the transpose of matrix A's cofactor matrix. It is also the adjoint, which is an $\mathrm{n} \times \mathrm{n}$ matrix

Cofactor Matrix (denoted C)
The cofactor matrix of A is a matrix who's elements are the cofactors of the elements of A

$$
\text { If } A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \text { then } C=\left[\begin{array}{cc}
\left|C_{11}\right| & \left|C_{12}\right| \\
\left|C_{21}\right| & \left|C_{22}\right|
\end{array}\right]=\left[\begin{array}{cc}
a_{22} & -a_{21} \\
-a_{12} & a_{11}
\end{array}\right]
$$

Example
Let $\mathrm{A}=\left[\begin{array}{ll}3 & 2 \\ 1 & 0\end{array}\right] \Rightarrow|A|=-2$
Step 1: Find the cofactor matrix

$$
C=\left[\begin{array}{ll}
\left|C_{11}\right| & \left|C_{12}\right| \\
\left|C_{21}\right| & \left|C_{22}\right|
\end{array}\right]=\left[\begin{array}{cc}
0 & -1 \\
-2 & 3
\end{array}\right]
$$

Step 2: Transpose the cofactor matrix

$$
C^{T}=\operatorname{Adj} A=\left[\begin{array}{cc}
0 & -2 \\
-1 & 3
\end{array}\right]
$$

Step 3: Multiply all the elements of AdjA by $\frac{1}{|A|}$ to find A^{-1}

$$
A^{-1}=\frac{1}{|A|} \bullet \operatorname{Adj} A=\left(-\frac{1}{2}\right)\left[\begin{array}{cc}
0 & -2 \\
-1 & 3
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
\frac{1}{2} & -\frac{3}{2}
\end{array}\right]
$$

Step 4: Check by $\mathrm{AA}^{-1}=I$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
3 & 2 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
0 & 1 \\
\frac{1}{2} & -\frac{3}{2}
\end{array}\right]=\left[\begin{array}{cc}
(3)(0)+(2)\left(\frac{1}{2}\right) & (3)(1)+(2)\left(-\frac{3}{2}\right) \\
(1)(0)+(0)\left(\frac{1}{2}\right) & (1)(1)+(0)\left(-\frac{3}{2}\right)
\end{array}\right]} \\
& =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

1.10 Cramer's Rule

Suppose:
Equation $1 a_{1} x_{1}+a_{2} x_{2}=d_{1}$

Equation $2 b_{1} x_{1}+b_{2} x_{2}=d_{2}$
or

$$
\begin{gathered}
A \\
{\left[\begin{array}{cc}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right]}
\end{gathered} \begin{gathered}
x \\
{\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]}
\end{gathered}=\begin{gathered}
d \\
= \\
{\left[\begin{array}{c}
d_{1} \\
d_{2}
\end{array}\right]}
\end{gathered}
$$

where

$$
A=a_{1} b_{2}-a_{2} b_{1} \neq 0
$$

Solve for x_{1} by substitution
From equation 1

$$
x_{2}=\frac{d_{1}-a_{1} x_{1}}{a_{2}}
$$

and equation 2

$$
x_{2}=\frac{d_{2}-b_{1} x_{1}}{b_{2}}
$$

therefore:

$$
\frac{d_{1}-a_{1} x_{1}}{a_{2}}=\frac{d_{2}-b_{1} x_{1}}{b_{2}}
$$

Cross multiply

$$
d_{1} b_{2}-a_{1} b_{2} x_{1}=d_{2} a_{2}-b_{1} a_{2} x_{1}
$$

Collect terms

$$
\begin{gathered}
d_{1} b_{2}-d_{2} a_{2}=\left(a_{1} b_{2}-b_{1} a_{2}\right) x_{1} \\
x_{1}=\frac{d_{1} b_{2}-d_{2} a_{2}}{a_{1} b_{2}-b_{1} a_{2}}
\end{gathered}
$$

The denominator is the determinant of $|A|$
The numerator is the same as the denominator except $d_{1} d_{2}$ replaces $a_{1} b_{1}$.
Cramer's Rule

$$
x_{1}=\frac{\left|\begin{array}{cc}
d_{1} & a_{2} \\
d_{2} & b_{2}
\end{array}\right|}{\left|\begin{array}{cc}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right|}=\frac{d_{1} b_{2}-d_{2} a_{2}}{a_{1} b_{2}-b_{1} a_{2}}
$$

Where the d vector replaces column 1 in the A matrix
To find x_{2} replace column 2 with the d vector

$$
x_{2}=\frac{\left|\begin{array}{ll}
a_{1} & d_{1} \\
b_{1} & d_{2}
\end{array}\right|}{\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right|}=\frac{a_{1} d_{2}-d_{1} b_{1}}{a_{1} b_{2}-b_{1} a_{2}}
$$

Generally: to find x_{i}, replace column i with vector d ; find the determinant.
$\mathrm{x}_{i}=$ the ratio of two determinants
$\mathrm{x}_{i}=\frac{\left|A_{i}\right|}{|A|}$

1.10.1 Example: The Market Model

$$
\begin{array}{llll}
\text { Equation } 1 & Q^{d}=10-P & \text { Or } & Q+P=10 \\
\text { Equation } 2 & Q^{s}=P-2 & \text { Or } & -Q+P=2
\end{array}
$$

Matrix form

$$
\begin{gathered}
A \\
{\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]}
\end{gathered} \begin{gathered}
x \\
{\left[\begin{array}{l}
Q \\
P
\end{array}\right]=}
\end{gathered} \begin{gathered}
d \\
{\left[\begin{array}{c}
10 \\
2
\end{array}\right]} \\
|A|=(1)(1)-(-1)(1)=2
\end{gathered}
$$

Find Q^{e}

$$
Q^{e}=\frac{\left|\begin{array}{cc}
10 & 1 \\
2 & 1
\end{array}\right|}{2}=\frac{10-2}{2}=4
$$

Find P^{e}

$$
P^{e}=\frac{\left|\begin{array}{cc}
1 & 10 \\
-1 & 2
\end{array}\right|}{2}=\frac{2-(-10)}{2}=6
$$

Substitute P and Q into either equation 1 or equation 2 to verify

$$
\begin{gathered}
Q^{d}=10-P \\
10-6=4
\end{gathered}
$$

1.10.2 Example: National Income Model

$$
\begin{gathered}
Y=C+I_{0}+G_{0} \quad \text { Or } \quad Y-C=I_{0}+G_{0} \\
C=a+b Y \quad \text { Or } \quad-b Y+c=a
\end{gathered}
$$

In matrix form $\left[\begin{array}{cc}1 & -1 \\ -b & 1\end{array}\right]\left[\begin{array}{l}Y \\ C\end{array}\right]=\left[\begin{array}{c}I_{0}+G_{0} \\ a\end{array}\right]$
Solve for Y^{e}

$$
Y^{e}=\frac{\left|\begin{array}{cc}
I_{0}+G_{0} & -1 \\
a & 1
\end{array}\right|}{\left|\begin{array}{cc}
1 & -1 \\
-b & 1
\end{array}\right|}=\frac{I_{0}+G_{0}+a}{1-b}
$$

Solve for C^{e}

$$
C^{e}=\frac{\left|\begin{array}{cc}
1 & I_{0}+G_{0} \\
-b & a
\end{array}\right|}{\left|\begin{array}{cc}
1 & -1 \\
-b & 1
\end{array}\right|}=\frac{a+b\left(I_{0}+G_{0}\right)}{1-b}
$$

