1 Derivatives: The Five Basic Rules

1.1 Nonlinear Functions

The term derivative means "slope" or rate of change. The five rules we are about to learn allow us to find the slope of about 90% of functions used in economics, business, and social sciences.

Suppose we have a function

$$
\begin{equation*}
y=f(x) \tag{1}
\end{equation*}
$$

where $f(x)$ is a non linear function. For example:

$$
\begin{array}{ll}
1 & y=x^{2} \\
2 & y=3 \sqrt{x}=3 x^{1 / 2} \tag{2}\\
3 & y=a x+b x^{2}+c
\end{array}
$$

Each equation is illustrated in Figure 1.

1.2 The Derivative

Given the general function

$$
y=f(x)
$$

the derivative of y is denoted as

$$
\frac{d y}{d x}=f^{\prime}(x) \quad\left(=y^{\prime}\right)
$$

The symbol $\frac{d y}{d x}$ is an abbreviation for "the change in $y(d y)$ FROM a change in $x(d x)$ "; or the "rise over the run". In other words, the slope.

1.3 The Five Rules

1.3.1 The Constant Rule

Given $y=f(x)=c$, where c is an arbitrary constant, then

$$
\begin{equation*}
\frac{d y}{d x}=f^{\prime}(x)=0 \tag{3}
\end{equation*}
$$

1.3.2 Power Function Rule

Suppose

$$
\begin{equation*}
y=a x^{n} \tag{4}
\end{equation*}
$$

where a and n are any two constants. The power function rule states that the slope of the function is given by

$$
\begin{equation*}
\frac{d y}{d x}=f^{\prime}(x)=a n x^{n-1} \tag{5}
\end{equation*}
$$

Figure 1:

This is probably the most commonly used rule in an introductory calculus course. Examples

$$
\begin{array}{ll}
y=x^{2} & \frac{d y}{d x}=y^{\prime}=2 x \\
y=4 x^{3} & \frac{d y}{d x}=y^{\prime}=12 x^{2} \\
y=5 x^{1 / 3} & \frac{d y}{d x}=y^{\prime}=(5)(1 / 3) x^{1 / 3-1}=\frac{5}{3} x^{-2 / 3} \\
y=x & \frac{d y}{d x}=y^{\prime}=(1) x^{1-1}=(1) x^{0}=1
\end{array}
$$

Some functions that do not appear to be "power functions" can be manipulated to take the form of equation 4 . For example, if

$$
y=\frac{1}{x}
$$

then it can also be written as

$$
y=x^{-1}
$$

thus

$$
\frac{d y}{d x}=(-1) x^{-2}
$$

Another example,

$$
y=\sqrt{x}
$$

which can also be written as

$$
y=x^{1 / 2}
$$

therefore, by equation 5 ,

$$
\frac{d y}{d x}=\frac{1}{2} x^{-1 / 2}
$$

1.3.3 Sum-difference Rule

If y is a function created by adding or subtracting multiple functions such written as

$$
y=f(x) \pm g(x)
$$

where $f(x)$ and $g(x)$ are each functions similar to equation 4 , then the derivative of $y\left(y^{\prime}\right)$ is given by

$$
y^{\prime}=f^{\prime}(x) \pm g^{\prime}(x)
$$

Example 1:

$$
y=4 x^{3}+5 x^{2}
$$

the derivative is

$$
y^{\prime}=12 x^{2}+10 x
$$

Example 2:

$$
\begin{aligned}
y & =x^{5}+3 x^{1 / 2}-4 x+7 \\
y^{\prime} & =5 x^{4}+\frac{3}{2} x^{-1 / 2}-4
\end{aligned}
$$

In each case we apply the power function rule (or constant rule) term-by-term

1.3.4 Product Rule

Suppose y is a composite function created by multiplying two functions together

$$
y=f(x) g(x)
$$

the derivative is given by

$$
\begin{equation*}
\frac{d y}{d x}=f^{\prime} g+f g^{\prime} \tag{6}
\end{equation*}
$$

Example:

$$
y=\left(3 x^{2}+4\right)\left(x^{3}-5 x\right)
$$

First, break this up into $f(x)$ and $g(x)$:

$$
f(x)=3 x^{2}+4 \quad g(x)=x^{3}-5 x
$$

then find the derivative for each

$$
f^{\prime}(x)=6 x \quad g^{\prime}(x)=3 x^{2}-5
$$

Now re-combine the parts according to equation 6

$$
\frac{d y}{d x}=f^{\prime} g+f g^{\prime}=[6 x]\left[x^{3}-5 x\right]+\left[3 x^{2}+4\right]\left[3 x^{2}-5\right]
$$

then you simply collect terms and simplify

1.3.5 Quotient Rule

Suppose

$$
y=\frac{f(x)}{g(x)}
$$

then

$$
\begin{equation*}
\frac{d y}{d x}=\frac{f^{\prime} g-f g^{\prime}}{[g]^{2}} \tag{7}
\end{equation*}
$$

Example

$$
y=\frac{x^{2}+3}{2 x-1}
$$

therefore $f=x^{2}+3$ and $g=2 x-1$. The derivatives are

$$
\begin{aligned}
& f^{\prime}=2 x \\
& g^{\prime}=2
\end{aligned}
$$

Subsitute the componants into equation 7

$$
\frac{d y}{d x}=\frac{f^{\prime} g-f g^{\prime}}{[g]^{2}}=\frac{(2 x)(2 x-1)-\left(x^{2}+3\right)(2)}{(2 x-1)^{2}}
$$

which (of course) can be further simplified

