
OPMT 5701
Applications of Lagrangian

Utility Maximization with a simple rationing constraint

Consider a familiar problem of utility maximization with a budget constraint:

Maximize U = U(x, y)

subject to B = Pxx+ Pyy
and x > x

But where a ration on x has been imposed equal to x. We now have two constraints. The Lagrange method
easily allows us to set up this problem by adding the second constraint in the same manner as the first. The
Lagrange becomes

Max
x,y

U(x, y) + λ1(B − Pxx− Pyy) + λ2(x− x)
However, in the case of more than one constraint, it is possible that one of the constraints is nonbinding.

In the example we are using here, we know that the budget constraint will be binding but it is not clear if
the ration constraint will be binding. It depends on the size of x.
The two possibilities are illustrated in figure one. In the top graph, we see the standard utility maximiza-

tion result with the solution at point E. In this case the ration constraint, x, is larger than the optimum
value x∗. In this case the second constraint could have been ignored.
In the bottom graph the ration constraint is binding. Without the constraint, the solution to the max-

imization problem would again be at point E. However, the solution for x violates the second constraint.
Therefore the solution is determined by the intersection of the two constraints at point E’

Procedure:

This type of problem requires us to vary the first order conditions slightly. Cases where constraints may or
not be binding are often referred to as Kuhn-Tucker conditions.
The Kuhn-Tucker conditions are

Lx = Ux − Pxλ1 − λ2 = 0 x ≥ 0
Ly = Uy − Pyλ1 = 0 y ≥ 0
and
Lλ1 = B − Pxx− Pyy ≥ 0 λ1 ≥ 0
Lλ2 = x− x ≥ 0 λ2 ≥ 0

Now let us interpret the Kuhn-Tucker conditions for this particular problem. Looking at the Lagrange

U(x, y) + λ1(B − Pxx− Pyy) + λ2(x− x)
We require that

λ1(B − Pxx− Pyy) = 0
therefore either

λ1 = 0
or

B − Pxx− Pyy = 0
If we interpret λ1as the marginal utility of the budget (Income), then if the budget constraint is not met

the marginal utility of additional B is zero (λ1 = 0).
(2) Similarly for the ration constraint, either

x− x = 0
or

λ2 = 0

λ2 can be interpreted as the marginal utility of relaxing the ration constraint.
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Figure 1:

Solving by Trial and Error

Solving these types of problems is a bit like detective work. Since there are more than one possible outcomes,
we need to try them all. But before you start, it is important to think about the problem and try to make
an educated guess as to which constraint is more likely to be nonbinding. In this example we can be sure
that the budget constraint will always be binding, therefore we only need to worry about the effects of the
ration constraint.

Step one: Assume λ2 = 0,λ1 > 0 (simply ignore the second constraint)
the first order conditions become

Lx = Ux − Pxλ1 − λ2 = 0
Ly = Uy − Pyλ1 = 0
Lλ1 = B − Pxx− Pyy = 0

Find a solution for x∗ and y∗ then check if you have violated the constraint you ignored. If you have, go to
step two.
Step two: Assume λ2 > 0,λ1 > 0 (use both constraints, assume they are binding)
The first order conditions become

Lx = Ux − Pxλ1 − λ2 = 0
Ly = Uy − Pyλ1 = 0
Lλ1 = B − Pxx− Pyy = 0
Lλ2 = x− x = 0

In this case, the solution will simply be where the two constraints intersect.
Step three: Assume λ2 > 0,λ1 = 0 (use the second constraint, but ignore the first constraint)

Numerical example
Maximize U = xy
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subject to:
100 ≥ x+ y

and
x ≤ 40

The Lagrange is
xy + λ1(100− x− y) + λ2(40− x)

and the Kuhn-Tucker conditions become

Lx = y − λ1 − λ2 = 0 x ≥ 0
Ly = x− λ1 = 0 y ≥ 0
Lλ1 = 100− x− y ≥ 0 λ1 ≥ 0
Lλ2 = 40− x ≥ 0 λ2 ≥ 0

Which gives us four equations and four unknowns: x, y,λ1 and λ2.
To solve, we typically approach the problem in a stepwise manner. First, ask if any λi could be zero Try

λ2 = 0 (λ1 = 0 does not make sense, given the form of the utility function), then

x− λ1 = y − λ1 or x = y

from the constraint 100−x−y we get x∗ = y∗ = 50 which violates our constraint x ≤ 40. Therefore x∗ = 40
and y∗ = 60, also λ∗1 = 40 and λ∗2 = 20

War-Time Rationing

Typically during times of war the civilian population is subject to some form of rationing of basic consumer
goods. Usually, the method of rationing is through the use of redeemable coupons used by the government.
The government will supply each consumer with an allotment of coupons each month. In turn, the consumer
will have to redeem a certain number of coupons at the time of purchase of a rationed good. This effectively
means the consumer ”pays” two ”prices” at the time of the purchase. He or she pays both the coupon price
and the monetary price of the rationed good. This requires the consumer to have both sufficient funds and
sufficient coupons in order to buy a unit of the rationed good.
Consider the case of a two-good world where both goods, x and y. are rationed. Let the consumer’s

utility function be U = U(x, y). The consumer has a fixed money budget of B and faces the money prices
Px and Py. Further, the consumer has an allotment of coupons, denoted C, which can be used to purchase
both x or y at a coupon price of cx and cy. Therefore the consumer’s maximization problem is
Maximize

U = U(x, y)

Subject to
B ≥ Pxx+ Pyy

and
C ≥ cxx+ cyy

in addition, the non-negativity constraint x ≥ 0 and y ≥ 0.
The Lagrangian for the problem is

Z = U(x, y) + λ(B − Pxx− Pyy) + λ2(C − cxx+ cyy)
where λ,λ2 are the Lagrange multiplier on the budget and coupon constraints respectively. The Kuhn-

Tucker conditions are
Zx = Ux − λ1Px − λ2cx = 0
Zy = Uy − λ1Py − λ2cy = 0
Zλ1 = B − Pxx− Pyy ≥ 0 λ1 ≥ 0
Zλ2 = C − cxx− cyy ≥ 0 λ2 ≥ 0

Numerical Example
Let’s suppose the utility function is of the form U = x · y2. Further, let B = 100, Px = Py = 1 while

C = 120 and cx = 2, cy = 1.
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The Lagrangian becomes

Z = xy2 + λ1(100− x− y) + λ2(120− 2x− y)
The Kuhn-Tucker conditions are now

Zx = y
2 − λ1 − 2λ2 ≤ 0 x ≥ 0 x · Zx = 0

Zy = 2xy − λ1 − λ2 ≤ 0 y ≥ 0 y · Zy = 0
Zλ1 = 100− x− y ≥ 0 λ1 ≥ 0 λ1 · Zλ1 = 0
Zλ2 = 120− 2x− y ≥ 0 λ2 ≥ 0 λ2 · Zλ2 = 0

Solving the problem:
Typically the solution involves a certain amount of trial and error. We first choose one of the constraints

to be non-binding and solve for the x and y. Once found, use these values to test if the constraint chosen to
be non-binding is violated. If it is, then redo the procedure choosing another constraint to be non-binding.
If violation of the non-binding constraint occurs again, then we can assume both constraints bind and the
solution is determined only by the constraints.
Step one: Assume λ2 = 0,λ1 > 0
By ignoring the coupon constraint, the first order conditions become

Zx = y
2 − λ1 = 0

Zy = 2xy − λ1 = 0
Zλ1 = 100− x− y = 0

Solving for x and y yields
x∗ = 33.33 y∗ = 66.67

However, when we substitute these solutions into the coupon constraint we find that

2(33.33) + 66.67 = 133.67 > 120

The solution violates the coupon constraints.
Step two: Assume λ1 = 0,λ2 > 0
Now the first order conditions become

Zx = y
2 − 2λ2 = 0

Zy = 2xy − λ2 = 0
Zλ1 = 120− 2x− y = 0

Solving this system of equations yields

x∗ = 20 y∗ = 80

When we check our solution against the budget constraint, we find that the budget constraint is just
met. In this case, we have the unusual result that the budget constraint is met but is not binding due to
the particular location of the coupon constraint. The student is encouraged to carefully graph the solution,
paying careful attention to the indifference curve, to understand how this result arose.

Peak Load Pricing

Peak and off-peak pricing and planning problems are common place for firms with capacity constrained
production processes. Usually the firm has invested in capacity in order to target a primary market. However
there may exist a secondary market in which the firm can often sell its product. Once the capital has been
purchased to service the firm’s primary market, the capital is freely available (up to capacity) to be used in
the secondary market. Typical examples include: schools and universities who build to meet day-time needs
(peak), but may offer night-school classes (off-peak); theatres who offer shows in the evening (peak) and
matinees (off-peak); or trucking companies who have dedicated routes but may choose to enter ”back-haul”
markets. Since the capacity price is a factor in the profit maximizing decision for the peak market and is
already paid, it normally, should not be a factor in calculating optimal price and quantity for the smaller,
off-peak market. However, if the secondary market’s demand is close to the same size as the primary market,
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capacity constraints may be an issue, especially given that it is common practice to price discriminate and
charge lower prices in off-peak periods. Even though the secondary market is smaller than the primary,
it is possible at the lower (profit maximizing) price that off-peak demand exceeds capacity. In such cases
capacity choices maust be made taking both markets into account, makeing the problem a classic application
of Kuhn-Tucker.
Consider a profit maximizing Company who faces two demand curves

P1 = D
1(Q1) in the day time (peak period)

P2 = D
2(Q2) in the night time (off-peak period)

to operate the firm must pay b per unit of output, whether it is day or night. Furthermore, the firm must
purchase capacity at a cost of c per unit of output. Let K denote total capacity measured in units of Q.
The firm must pay for capacity, regardless if it operates in the off peak period. Question: Who should be
charged for the capacity costs? Peak, off-peak, or both sets of customers? The firm’s maximization problem
becomes

Maximize
Q1,Q2,K

P1Q1 + P2Q2 − b(Q1 −Q2)− cK

Subject to
K ≥ Q1
K ≥ Q2

Where
P1 = D

1(Q1)
P2 = D

2(Q2)

The Lagrangian for this problem is:

Z = D1(Q1)Q1 +D
2(Q2)Q2 − b(Q1 +Q2)− cK + λ1(K −Q1) + λ2(K −Q2)

The Kuhn-Tucker conditions are

Z1 = D
1 +Q1

∂D1

∂Q1
− b− λ1 = 0 (MR1 − b− λ1 = 0)

Z2 = D
2 +Q2

∂D2

∂Q2
− b− λ2 = 0 (MR2 − b− λ2 = 0)

ZK = −c+ λ1 + λ2 = 0 (c = λ1 + λ2)
Zλ1 = K −Q1 ≥ 0 λ1 ≥ 0
Zλ2 = K −Q2 ≥ 0 λ2 ≥ 0

Assuming that Q1, Q2,K > 0 the first-order conditions become

MR1 = b+ λ1 = b+ c− λ2 (λ1 = c− λ2)
MR2 = b+ λ2

Finding a solution:
Step One: Since D2(Q2) is smaller than D1(Q1) try λ2 = 0
Therefore from the Kuhn-Tucker conditions

MR1 = b+ c− λ2 = b+ c
MR2 = b+ λ2 = b

which implies that K = Q1. Then we check to see if Q∗2 ≤ K. If true, then we have a valid solution.
Otherwise the second constraint is violated and the assumption that λ2 = 0 was false. Therefore we proceed
to the next step.
Step Two: if Q∗2 > K then Q∗1 = Q∗2 = K and

MR1 = b+ λ1
MR2 = b+ λ2

Since c = λ1 + λ2 then λ1 and λ2 represent the share of c each group pays. Both cases are illustrated in
figure 2

5



MR1MR2

Q1, Q2, K

b

b+c

$

Q1 =KQ2 < K

E1

E2

MR1MR2

Q1, Q2, K

b

b+c

$

Q1 = Q2 = K

E1

E2
λ2

λ1

Case 1: Off-peak constraint non-binding Case 2: Off-peak constraint binding

Figure 2:

Numerical Example Suppose the demand during peak hours is

P1 = 22− 10−5Q1
and during off-peak hours is

P2 = 18− 10−5Q2
To produce a unit of output per half-day requires a unit of capacity costing 8 cents per day. The cost

of a unit of capacity is the same whether it is used at peak times only or off-peak also. In addition to the
costs of capacity, it costs 6 cents in operating costs (labour and fuel) to produce 1 unit per half day (both
day and evening)
If we assume that the capacity constraint is binding (λ2 = 0), then the Kuhn-Tucker conditions (above)

become
λ1 = c = 8

MRz }| {
22− 2× 10−5Q1

MCz }| {
= b+ c = 14

18− 2× 10−5Q2 = b = 6

Solving this system gives us

Q1 = 40000

Q2 = 60000

which violates the assumption that the second constraint is non-binding (Q2 > Q1 = K).
Therefore, assuming that both constraints are binding, then Q1 = Q2 = Q and the Kuhn-Tucker condi-

tions become

λ1 + λ2 = 8

22− 2× 10−5Q = 6 + λ1

18− 2× 10−5Q = 6 + λ2

which yields the following solutions

Q = K = 50000

λ1 = 6 λ2 = 2

P1 = 17 P2 = 13

Since the capacity constraint is binding in both markets, market one pays λ1 = 6 of the capacity cost and
market two pays λ2 = 2.
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Problems

1. Suppose in the above example a unit of capacity cost only 3 cents per day.

(a) What would be the profit maximizing peak and off-peak prices and quantitites?

(b) What would be the values of the Lagrange multipliers? What interpretation do you put on their
values?

2. Skippy lives on an island where she produces two goods, x and y, according the the production possi-
bility frontier 200 ≥ x2 + y2, and she consumes all the goods herself. Her utility function is

u = x · y3

Skippy also faces and environmental constraint on her total output of both goods. The environmental
constraint is given by x+ y ≤ 20

(a) Write down the Kuhn Tucker first order conditions.

(b) Find Skippy’s optimal x and y. Identify which constaints are binding.

3. An electric company is setting up a power plant in a foreign country and it has to plan its capacity.
The peak period demand for power is given by p1 = 400−q1 and the off-peak is given by p2 = 380−q2.
The variable cost to is 20 per unit (paid in both markets) and capacity costs 10 per unit which is only
paid once and is used in both periods.

(a) write down the lagrangian and Kuhn-Tucker conditions for this problem

(b) Find the optimal outputs and capacity for this problem.

(c) How much of the capacity is paid for by each market (i.e. what are the values of λ1 and λ2)?

(d) Now suppose capacity cost is 30 per unit (paid only once). Find quantities, capacity and how
much of the capacity is paid for by each market (i.e. λ1 and λ2)?
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