OPMT 5701
 Multivariable Calculus

Partial Derivatives

Single variable calculus is really just a "special case" of multivariable calculus. For the function $y=f(x)$, we assumed that y was the endogenous variable, x was the exogenous variable and everything else was a parameter. For example, given the equations

$$
y=a+b x
$$

or

$$
y=a x^{n}
$$

we automatically treated a, b, and n as constants and took the derivative of y with respect to $\mathrm{x}(d y / d x)$. However, what if we decided to treat x as a constant and take the derivative with respect to one of the other variables? Nothing precludes us from doing this. Consider the equation

$$
y=a x
$$

where

$$
\frac{d y}{d x}=a
$$

Now suppose we find the derivative of y with respect to a, but TREAT x as the constant. Then

$$
\frac{d y}{d a}=x
$$

Here we just "reversed" the roles played by a and x in our equation.

Two Variable Case:

let $z=f(x, y)$, which means $" \mathbf{z}$ is a function of \mathbf{x} and $\mathbf{y} "$. In this case z is the endogenous (dependent) variable and both x and y are the exogenous (independent) variables. To measure the the effect of a change in a single independent variable (x or y) on the dependent variable (z) we use what is known as the PARTIAL DERIVATIVE. The partial derivative of z with respect to x measures the instantaneous change in the function as x changes while HOLDING y constant. Similarly, we would hold x constant if we wanted to evaluate the effect of a change in y on z. Formally:

- $\frac{\partial z}{\partial x}$ is the "partial derivative" of z with respect to x, treating y as a constant. Sometimes written as f_{x}.
- $\frac{\partial z}{\partial y}$ is the "partial derivative" of z with respect to y, treating x as a constant. Sometimes written as f_{y}.

The " ∂ " symbol ("bent over" lower case D) is called the "partial" symbol. It is interpreted in exactly the same way as $\frac{d y}{d x}$ from single variable calculus. The ∂ symbol simply serves to remind us that there are other variables in the equation, but for the purposes of the current exercise, these other variables are held constant.

EXAMPLES:

$$
\begin{aligned}
& z=x+y \quad \partial z / \partial x=1 \quad \partial z / \partial y=1 \\
& z=x y \quad \partial z / \partial x=y \quad \partial z / \partial y=x \\
& z=x^{2} y^{2} \quad \partial z / \partial x=2\left(y^{2}\right) x \quad \partial z / \partial y=2\left(x^{2}\right) y \\
& z=x^{2} y^{3}+2 x+4 y \quad \partial z / \partial x=2 x y^{3}+2 \quad \partial z / \partial y=3 x^{2} y^{2}+4
\end{aligned}
$$

- REMEMBER: When you are taking a partial derivative you treat the other variables in the equation as constants!

Rules of Partial Differentiation

Product Rule: given $z=g(x, y) \cdot h(x, y)$

$$
\begin{aligned}
& \frac{\partial z}{\partial x}=g(x, y) \cdot \frac{\partial h}{\partial x}+h(x, y) \cdot \frac{\partial g}{\partial x} \\
& \frac{\partial z}{\partial y}=g(x, y) \cdot \frac{\partial h}{\partial y}+h(x, y) \cdot \frac{\partial g}{\partial y}
\end{aligned}
$$

Quotient Rule: given $z=\frac{g(x, y)}{h(x, y)}$ and $h(x, y) \neq 0$

$$
\begin{aligned}
& \frac{\partial z}{\partial x}=\frac{h(x, y) \cdot \frac{\partial g}{\partial x}-g(x, y) \cdot \frac{\partial h}{\partial x}}{[h(x, y)]^{2}} \\
& \frac{\partial z}{\partial y}=\frac{h(x, y) \cdot \frac{\partial g}{\partial y}-g(x, y) \cdot \frac{\partial h}{\partial y}}{[h(x, y)]^{2}}
\end{aligned}
$$

Chain Rule: given $z=[g(x, y)]^{n}$

$$
\begin{aligned}
& \frac{\partial z}{\partial x}=n[g(x, y)]^{n-1} \cdot \frac{\partial g}{\partial x} \\
& \frac{\partial z}{\partial y}=n[g(x, y)]^{n-1} \cdot \frac{\partial g}{\partial y}
\end{aligned}
$$

Further Examples:

For the function $U=U(x, y)$ find the the partial derivates with respect to x and y for each of the following examples

Example 1

$$
U=-5 x^{3}-12 x y-6 y^{5}
$$

Answer:

$$
\begin{aligned}
& \frac{\partial U}{\partial x}=\quad U_{x}=15 x^{2}-12 y \\
& \frac{\partial U}{\partial y}=U_{y}=-12 x-30 y^{4}
\end{aligned}
$$

Example 2

$$
U=7 x^{2} y^{3}
$$

Answer:

$$
\begin{aligned}
& \frac{\partial U}{\partial x}=U_{x}=14 x y^{3} \\
& \frac{\partial U}{\partial y}=U_{y}=21 x^{2} y^{2}
\end{aligned}
$$

Example 3

$$
U=3 x^{2}(8 x-7 y)
$$

Answer:

$$
\begin{aligned}
& \frac{\partial U}{\partial x}=U_{x}=3 x^{2}(8)+(8 x-7 y)(6 x)=72 x^{2}-42 x y \\
& \frac{\partial U}{\partial y}=U_{y}=3 x^{2}(-7)+(8 x-7 y)(0)=-21 x^{2}
\end{aligned}
$$

Example 4

$$
U=\left(5 x^{2}+7 y\right)\left(2 x-4 y^{3}\right)
$$

Answer:

$$
\begin{aligned}
& \frac{\partial U}{\partial x}=U_{x}=\left(5 x^{2}+7 y\right)(2)+\left(2 x-4 y^{3}\right)(10 x) \\
& \frac{\partial U}{\partial y}=U_{y}=\left(5 x^{2}+7 y\right)\left(-12 y^{2}\right)+\left(2 x-4 y^{3}\right)(7)
\end{aligned}
$$

Example 5

$$
U=\frac{9 y^{3}}{x-y}
$$

Answer:

$$
\begin{aligned}
& \frac{\partial U}{\partial x}=U_{x}=\frac{(x-y)(0)-9 y^{3}(1)}{(x-y)^{2}}=\frac{-9 y^{3}}{(x-y)^{2}} \\
& \frac{\partial U}{\partial y}=U_{y}=\frac{(x-y)\left(27 y^{2}\right)-9 y^{3}(-1)}{(x-y)^{2}}=\frac{27 x y^{2}-18 y^{3}}{(x-y)^{2}}
\end{aligned}
$$

Example 6

$$
U=(x-3 y)^{3}
$$

Answer:

$$
\begin{aligned}
& \frac{\partial U}{\partial x}=U_{x}=3(x-3 y)^{2}(1)=3(x-3 y)^{2} \\
& \frac{\partial U}{\partial y}=U_{y}=3(x-3 y)^{2}(-3)=-9(x-3 y)^{2}
\end{aligned}
$$

A Special Function: Cobb-Douglas

The Cobb-douglas function is a mathematical function that is very popular in economic models. The general form is

$$
z=x^{a} y^{b}
$$

and its partial derivatives are

$$
\partial z / \partial x=a x^{a-1} y^{b} \quad \text { and } \quad \partial z / \partial y=b x^{a} y^{b-1}
$$

Furthermore, the slope of the level curve of a Cobb-douglas is given by

$$
\frac{\partial z / \partial x}{\partial z / \partial y}=M R S=\frac{a}{b} \frac{y}{x}
$$

Differentials

Given the function

$$
y=f(x)
$$

the derivative is

$$
\frac{d y}{d x}=f^{\prime}(x)
$$

However, we can treat $d y / d x$ as a fraction and factor out the $d x$

$$
d y=f^{\prime}(x) d x
$$

where $d y$ and $d x$ are called differentials. If $d y / d x$ can be interpreted as "the slope of a function", then $d y$ is the "rise" and $d x$ is the "run". Another way of looking at it is as follows:

- $d y=$ the change in y
- $d x=$ the change in x
- $f^{\prime}(x)=$ how the change in x causes a change in y

Example 7 if

$$
y=x^{2}
$$

then

$$
d y=2 x d x
$$

Lets suppose $x=2$ and $d x=0.01$. What is the change in $y(d y)$?

$$
d y=2(2)(0.01)=0.04
$$

Therefore, at $x=2$, if x is increased by 0.01 then y will increase by 0.04 .

The two variable case

If

$$
z=f(x, y)
$$

then the change in z is

$$
d z=\frac{\partial z}{\partial x} d x+\frac{\partial z}{\partial y} d y \quad \text { or } \quad d z=f_{x} d x+f_{y} d y
$$

which is read as "the change in $z \quad(d z)$ is due partially to a change in $x(d x)$ plus partially due to a change in $y(d y)$. For example, if

$$
z=x y
$$

then the total differential is

$$
d z=y d x+x d y
$$

and, if

$$
z=x^{2} y^{3}
$$

then

$$
d z=2 x y^{3} d x+3 x^{2} y^{2} d y
$$

REMEMBER: When you are taking the total differential, you are just taking all the partial derivatives and adding them up.

Example 8 Find the total differential for the following utility functions

1. $U\left(x_{1}, x_{2}\right)=a x_{1}+b x_{2} \quad(a, b>0)$
2. $U\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{3}+x_{1} x_{2}$
3. $U\left(x_{1}, x_{2}\right)=x_{1}^{a} x_{2}^{b}$

Answers:
$\begin{aligned} \frac{\partial U}{\partial x} & =U_{1}=a \\ \text { 1. } & \frac{\partial U}{\partial x}\end{aligned}=U_{2}=b$
$d U=U_{1} d x_{1}+U_{2} d x_{2}=a d x_{1}+b d x_{2}$
$\frac{\partial U}{\partial x_{1}}=U_{1}=2 x_{1}+x_{2}$
2. $\frac{\partial U}{\partial x_{2}}=U_{2}=3 x_{2}^{2}+x_{1}$
$d U=U_{1} d x_{1}+U_{2} d x_{2}=\left(2 x_{1}+x_{2}\right) d x_{1}+\left(3 x_{2}^{2}+x_{1}\right) d x_{2}$
$\frac{\partial U}{\partial x_{1}}=U_{1}=a x_{1}^{a-1} x_{2}^{b}=\frac{a x_{1}^{a} x_{2}^{b}}{x_{1}}$
3. $\frac{\partial U}{\partial x_{2}}=U_{2}=b x_{1}^{a} x_{2}^{b-1}=\frac{b x_{1}^{a} x_{2}^{b}}{x_{2}}$
$d U=\left(\frac{a x_{1}^{a} x_{2}^{b}}{x_{1}}\right) d x_{1}+\left(\frac{b x_{1}^{a} x_{2}^{b}}{x_{2}}\right) d x_{2}=\left[\frac{a d x_{1}}{x_{1}}+\frac{b d x_{2}}{x_{2}}\right] x_{1}^{a} x_{2}^{b}$

The Implicit Function Theorem

Suppose you have a function of the form

$$
F\left(y, x_{1}, x_{2}\right)=0
$$

where the partial derivatives are $\partial F / \partial x_{1}=F_{x_{1}}, \partial F / \partial x_{2}=F_{x_{2}}$ and $\partial F / \partial y=F_{y}$. This class of functions are known as implicit functions where $F\left(y, x_{1}, x_{2}\right)=0$ implicity define $y=y\left(x_{1}, x_{2}\right)$. What this means is that it is possible (theoretically) to rewrite to get y isolated and expressed as a function of x_{1} and x_{2}. While it may not be possible to explicitly solve for y as a function of x , we can still find the effect on y from a change in x_{1} or x_{2} by applying the implicit function theorem:

Theorem 9 If a function

$$
F\left(y, x_{1}, x_{2}\right)=0
$$

has well defined continuous partial derivatives

$$
\begin{aligned}
\frac{\partial F}{\partial y} & =F_{y} \\
\frac{\partial F}{\partial x_{1}} & =F_{x_{1}} \\
\frac{\partial F}{\partial x_{2}} & =F_{x_{2}}
\end{aligned}
$$

and if, at the values where F is being evaluated, the condition that

$$
\frac{\partial F}{\partial y}=F_{y} \neq 0
$$

holds, then y is implicitly defined as a function of x. The partial derivatives of y with respect to x_{1} and x_{2}, are given by the ratio of the partial derivatives of F, or

$$
\frac{\partial y}{\partial x_{i}}=-\frac{F_{x_{i}}}{F_{y}} \quad i=1,2
$$

To apply the implicit function theorem to find the partial derivative of y with respect to x_{1} (for example), first take the total differential of F

$$
d F=F_{y} d y+F_{x_{1}} d x_{1}+F_{x_{2}} d x_{2}=0
$$

then set all the differentials except the ones in question equal to zero (i.e. set $d x_{2}=0$) which leaves

$$
F_{y} d y+F_{x_{1}} d x_{1}=0
$$

or

$$
F_{y} d y=-F_{x_{1}} d x_{1}
$$

dividing both sides by F_{y} and $d x_{1}$ yields

$$
\frac{d y}{d x_{1}}=-\frac{F_{x_{1}}}{F_{y}}
$$

which is equal to $\frac{\partial y}{\partial x_{1}}$ from the implicit function theorem.

Example 10 For each $f(x, y)=0$, find $d y / d x$ for each of the following:
1.

$$
y-6 x+7=0
$$

Answer:

$$
\frac{d y}{d x}=-\frac{f_{x}}{f_{y}}=-\frac{(-6)}{1}=6
$$

2.

$$
3 y+12 x+17=0
$$

Answer:

$$
\frac{d y}{d x}=-\frac{f_{x}}{f_{y}}=-\frac{(-12)}{3}=4
$$

3.

$$
x^{2}+6 x-13-y=0
$$

Answer:

$$
\frac{d y}{d x}=-\frac{f_{x}}{f_{y}}=\frac{-(2 x+6)}{-1}=2 x+6
$$

4.

$$
f(x, y)=3 x^{2}+2 x y+4 y^{3}
$$

Answer:

$$
\frac{d y}{d x}=-\frac{f_{x}}{f_{y}}=-\frac{6 x+2 y}{12 y^{2}+2 x}
$$

5.

$$
f(x, y)=12 x^{5}-2 y
$$

Answer:

$$
\frac{d y}{d x}=-\frac{f_{x}}{f_{y}}=-\frac{60 x^{4}}{-2}=30 x^{4}
$$

6.

$$
f(x, y)=7 x^{2}+2 x y^{2}+9 y^{4}
$$

Answer:

$$
\frac{d y}{d x}=-\frac{f_{x}}{f_{y}}=-\frac{14 x+2 y^{2}}{36 y^{3}+4 x y}
$$

Example 11 For $f(x, y, z)$ use the implicit function theorem to find $d y / d x$ and $d y / d z$:
1.

$$
f(x, y, z)=x^{2} y^{3}+z^{2}+x y z
$$

Answer:

$$
\begin{aligned}
& \frac{d y}{d x}=-\frac{f x}{f y}=-\frac{2 x y^{3}+y z}{3 x^{2} y^{2}+x z} \\
& \frac{d y}{d z}=-\frac{f z}{f y}=-\frac{2 z+x y}{3 x^{2} y^{2}+x z}
\end{aligned}
$$

2.

$$
f(x, y, z)=x^{3} z^{2}+y^{3}+4 x y z
$$

Answer:

$$
\begin{aligned}
& \frac{d y}{d x}=-\frac{f x}{f y}=-\frac{3 x^{2} z^{2}+4 y z}{3 y^{2}+4 x z} \\
& \frac{d y}{d z}=-\frac{f z}{f y}=-\frac{2 x^{3} z+4 x y}{3 y^{2}+4 x z}
\end{aligned}
$$

3.

$$
f(x, y, z)=3 x^{2} y^{3}+x z^{2} y^{2}+y^{3} z x^{4}+y^{2} z
$$

Answer:

$$
\begin{aligned}
& \frac{d y}{d x}=-\frac{f x}{f y}=-\frac{6 x y^{3}+z^{2} y^{2}+4 y^{3} z x^{3}}{9 x^{2} y^{2}+2 x z^{2} y+3 y^{2} z x^{4}+2 y z} \\
& \frac{d y}{d z}=-\frac{f z}{f y}=-\frac{2 x y^{2}+y^{3} x^{4}+y^{2}}{9 x^{2} y^{2}+2 x z^{2} y+3 y^{2} z x^{4}+2 y z}
\end{aligned}
$$

