1 OPMT 5701 Lecture Notes

1.1 Natural Logarithm and the Exponential e

1. The Number e

$$
\begin{aligned}
& \text { if } y=e^{x} \text { then } \frac{d y}{d x}=e^{x} \\
& \text { if } y=e^{f(x)} \text { then } \frac{d y}{d x}=e^{f(x)} \cdot f^{\prime}(x)
\end{aligned}
$$

2. Examples
3. (a)

$$
\begin{aligned}
y & =e^{3 x} \\
\frac{d y}{d x} & =e^{3 x}(3)
\end{aligned}
$$

(b)

$$
\begin{aligned}
y & =e^{7 x^{3}} \\
\frac{d y}{d x} & =e^{7 x^{3}}\left(21 x^{2}\right)
\end{aligned}
$$

(c)

$$
\begin{aligned}
y & =e^{r t} \\
\frac{d y}{d t} & =r e^{r t}
\end{aligned}
$$

2. Logarithm (Natural \log) $\ln x$
(a) Rules of natural log

$$
\begin{array}{ll}
\text { If } & \text { Then } \\
y=A B & \ln y=\ln (A B)=\ln A+\ln B \\
y=A / B & \ln y=\ln A-\ln B \\
y=A^{b} & \ln y=\ln \left(A^{b}\right)=b \ln A \\
\text { NOTE: } \ln (A+B) \neq \ln A+\ln B \quad \text { EVER!!!! }
\end{array}
$$

(b) derivatives

$$
\begin{array}{ll}
I F & \text { THEN } \\
y=\ln x & \frac{d y}{d x}=\frac{1}{x} \\
y=\ln (f(x)) & \frac{d y}{d x}=\frac{1}{f(x)} \cdot f^{\prime}(x)
\end{array}
$$

(c) Examples
i.

$$
\begin{aligned}
y & =\ln \left(x^{2}-2 x\right) \\
d y / d x & =\frac{1}{\left(x^{2}-2 x\right)}(2 x-2)
\end{aligned}
$$

ii.

$$
\begin{aligned}
y & =\ln \left(x^{1 / 2}\right)=\frac{1}{2} \ln x \\
d y / d x & =\left(\frac{1}{2}\right)\left(\frac{1}{x}\right)=\frac{1}{2 x}
\end{aligned}
$$

1.2 Differentials

Given the function

$$
y=f(x)
$$

the derivative is

$$
\frac{d y}{d x}=f^{\prime}(x)
$$

However, we can treat $d y / d x$ as a fraction and factor out the $d x$

$$
d y=f^{\prime}(x) d x
$$

where $d y$ and $d x$ are called differentials. If $d y / d x$ can be interpreted as "the slope of a function", then $d y$ is the "rise" and $d x$ is the "run". Another way of looking at it is as follows:

- $d y=$ the change in y
- $d x=$ the change in x
- $f^{\prime}(x)=$ how the change in x causes a change in y

Example 1 if

$$
y=x^{2}
$$

then

$$
d y=2 x d x
$$

Lets suppose $x=2$ and $d x=0.01$. What is the change in $y(d y)$?

$$
d y=2(2)(0.01)=0.04
$$

Therefore, at $x=2$, if x is increased by 0.01 then y will increase by 0.04 .

1.3 Implicit Differentiation

Suppose we have the following:

$$
2 y+3 x=12
$$

we can rewrite it as

$$
\begin{aligned}
2 y & =12-3 x \\
y & =6-\frac{3}{2} x
\end{aligned}
$$

Now we have $y=f(x)$ and we can take the derivative

$$
\frac{d y}{d x}=-\frac{3}{2}
$$

Lets consider an alternative. We know that y is a function of x or, $y=y(x)$ and the derivative of y is $\frac{d y}{d x}$. If we return to our original equation, $2 y+3 x=12$, we can differentiate it IMPLICITLY in the following manner

$$
\begin{aligned}
2 y+3 x & =12 \\
2 d y+3 d x & =0 \quad\left(\frac{d(12)}{d x}=0\right) \\
2 \frac{d y}{d x}+3 \frac{d x}{d x} & =0 \\
2 \frac{d y}{d x}+3 & =0 \quad\left(\frac{d x}{d x}=1\right)
\end{aligned}
$$

rearrange to get $\frac{d y}{d x}$ by itself

$$
\begin{aligned}
2 \frac{d y}{d x} & =-3 \\
\frac{d y}{d x} & =-\frac{3}{2}
\end{aligned}
$$

which is what we got before!
Here is a few more examples:
1.

$$
\begin{aligned}
y^{2}+x^{2} & =36 \\
2 y d y+2 x d x & =d(36) \\
2 y \frac{d y}{d x}+2 x \frac{d x}{d x} & =0 \quad\left(\text { remember } \frac{d(36)}{d x}=0\right) \\
2 y \frac{d y}{d x}+2 x & =0 \\
\frac{d y}{d x} & =-\frac{2 x}{2 y}=-\frac{x}{y}
\end{aligned}
$$

2.

$$
\begin{aligned}
5 y^{3}+4 x^{5} & =250 \\
15 y^{2} \frac{d y}{d x}+20 x^{4} & =0 \\
15 y^{2} \frac{d y}{d x}+20 x^{4} & =0 \\
\frac{d y}{d x} & =-\frac{20 x^{4}}{15 y^{2}}=-\frac{4 x^{4}}{3 y^{2}}
\end{aligned}
$$

3.

$$
\begin{aligned}
y^{1 / 2}-2 x^{2}+5 y & =15 \\
\frac{1}{2} y^{-1 / 2} d y-4 x d x+5 d y & =0 \\
\left(\frac{1}{2} y^{-1 / 2}+5\right) \frac{d y}{d x}-4 x & =0 \quad(\div b y d x) \\
\frac{d y}{d x} & =\frac{4 x}{\left(\frac{1}{2} y^{-1 / 2}+5\right)}
\end{aligned}
$$

When you are using implicit differentiation, there are two things to remember:

- First: All the rules apply as before
- Second: you are ASSUMING that you can rewrite the equation in the form $y=f(x)$

Example: Special application of the product rule.
Suppose you want to implicitly differentiate

$$
x y=24
$$

what do we do here?
In this case we treat x and y as seperate functions and apply the product rule

$$
\begin{aligned}
x \frac{d y}{d x}+y \frac{d x}{d x} & =0 \\
x \frac{d y}{d x}+y & =0 \\
\frac{d y}{d x} & =-\frac{y}{x}
\end{aligned}
$$

Alternatively, we could first solve for y, then take the derivative

$$
\begin{aligned}
x y & =24 \\
y & =\frac{24}{x}=24 x^{-1} \\
\frac{d y}{d x} & =(-1) 24 x^{-2}=-\frac{24}{x^{2}}
\end{aligned}
$$

which does not look like what we got with implicit differentiation, but, if we use a substitution trick, remembering that originally $x y=24$, we will get

$$
\begin{aligned}
\frac{d y}{d x} & =-\frac{24}{x^{2}}=-\frac{x y}{x^{2}} \\
\frac{d y}{d x} & =-\frac{y}{x}
\end{aligned}
$$

Lets try it again

$$
\begin{aligned}
48 & =x^{2} y^{3} \\
0 & =3 x^{2} y^{2} \frac{d y}{d x}+2 x y^{3} \frac{d x}{d x} \quad \text { (Product rule and power-function rule) } \\
3 x^{2} y^{2} \frac{d y}{d x} & =-2 x y^{3} \quad\left(\text { again } \frac{d x}{d x}=1\right) \\
\frac{d y}{d x} & =-\frac{2 x y^{3}}{3 x^{2} y^{2}}=-\frac{2 y}{3 x}
\end{aligned}
$$

Figure 1:

Level Curves

If we have a function like $z=x y$ or $u=\ln x+\ln y$, then z and u are both functions of x and y. IF we fix z and u to be some particular values such as

$$
z=\bar{z} \text { and } u=\bar{u}
$$

then \bar{z} and \bar{u} are now treated as constants and we are evaluating the functions $\bar{z}=x y$ and $\bar{u}=\ln x+\ln y$ at a particular level. In other words, we are looking for values of x and y that keep z or u constant. This allows us to assume that y is an implicit function of x, i.e.

$$
\begin{aligned}
y x & =\bar{z} \\
y & =\frac{\bar{z}}{x}
\end{aligned}
$$

using implicit differentiation, we can find the slope of the level curve

$$
\begin{aligned}
y x & =\bar{z} \\
x \frac{d y}{d x}+y \frac{d x}{d x} & =\frac{d(\bar{z})}{d x}=0 \\
\frac{d y}{d x} & =-\frac{y}{x}
\end{aligned}
$$

The level curve is illustrated in figure 1
In figure 1 we have graphed y as a function of x and a constant, \bar{z}. This curve plots all combinations of x and y that keep z at a constant level. Common examples of level curves in economics are "indifference curves" (constant utility) and "isoquants" (constant levels of output).

Lets look at the utility function example

$$
u=\ln x+\ln y
$$

where $u=\bar{u}$. using implicit differentiation and the rule of logarithm derivatives

$$
\begin{aligned}
\frac{d(\bar{u})}{d x} & =\left(\frac{1}{x}\right)+\left(\frac{1}{y}\right) \frac{d y}{d x}=0 \\
\frac{d y}{d x} & =-\frac{\frac{1}{x}}{\frac{1}{y}}=-\frac{y}{x}
\end{aligned}
$$

Alternatively, we could try to first write this function such that we explicitly have y as a function of x. However, this would require us to "unlog" the function, i.e.

$$
\begin{aligned}
\bar{u} & =\ln x+\ln y \\
\bar{u} & =\ln (x y) \\
e^{\bar{u}} & =x y \quad \text { (unlogged) } \\
y & =\frac{e^{\bar{u}}}{x}
\end{aligned}
$$

The result does not look easier to work with than when we used implicit differentiation. This is an example of where implicit differentiation would be preferred.

