OPMT 5701: Calculus for Utility Problems

Kevin Wainwright

October 14, 2003

1 Using Calculus For Utility Maximization Problems

1.1 Review of Some Derivative Rules

1. Partial Derivative Rules:

$$\begin{array}{ll} U = xy & \partial U/\partial x = y & \partial U/\partial y = x \\ U = x^a y^b & \partial U/\partial x = a x^{a-1} y^b & \partial U/\partial y = b x^a y^{b-1} \\ U = x^a y^{-b} = \frac{x^a}{y^b} & \partial U/\partial x = a x^{a-1} y^{-b} & \partial U/\partial y = -b x^a y^{-b-1} \\ U = a x + b y & \partial U/\partial x = a & \partial U/\partial y = b \\ U = a x^{1/2} + b y^{1/2} & \partial U/\partial x = a \left(\frac{1}{2}\right) x^{-1/2} & \partial U/\partial y = b \left(\frac{1}{2}\right) y^{-1/2} \end{array}$$

2. Logarithm (Natural log) $\ln x$

(a) Rules of natural log

If	Then
y = AB	$\ln y = \ln(AB) = \ln A + \ln B$
y = A/B	$\ln y = \ln A - \ln B$
$y = A^b$	$\ln y = \ln(A^b) = b \ln A$
NOTE:	$\ln(A+B) \neq \ln A + \ln B$

(b) derivatives

$$IF THEN
y = \ln x \frac{dy}{dx} = \frac{1}{x}
y = \ln (f(x)) \frac{dy}{dx} = \frac{1}{f(x)} \cdot f'(x)$$

(c) Examples

$$\begin{array}{ll}
If & Then \\
y = \ln(x^2 - 2x) & dy/dx = \frac{1}{(x^2 - 2x)}(2x - 2) \\
y = \ln(x^{1/2}) = \frac{1}{2}\ln x & dy/dx = \left(\frac{1}{2}\right)\left(\frac{1}{x}\right) = \frac{1}{2x}
\end{array}$$

3. The Number \boldsymbol{e}

if
$$y = e^x$$
 then $\frac{dy}{dx} = e^x$
if $y = e^{f(x)}$ then $\frac{dy}{dx} = e^{f(x)} \cdot f'(x)$

(a) Examples

$$y = e^{3x} \qquad \frac{dy}{dx} = e^{3x}(3)$$

$$y = e^{7x^3} \qquad \frac{dy}{dx} = e^{7x^3}(21x^2)$$

$$y = e^{rt} \qquad \frac{dy}{dt} = re^{rt}$$

1.2 Finding the MRS from Utility functions

EXAMPLE: Find the total differential for the following utility functions

- 1. $U(x_1, x_2) = ax_1 + bx_2$ where (a, b > 0)
- 2. $U(x_1, x_2) = x_1^2 + x_2^3 + x_1 x_2$
- 3. $U(x_1, x_2) = x_1^a x_2^b$ where (a, b > 0)
- 4. $U(x_1, x_2) = \alpha \ln c_1 + \beta \ln c_2$ where $(\alpha, \beta > 0)$

Answers:
1.
$$\frac{\partial U}{\partial x_1} = U_1 = a$$
 $\frac{\partial U}{\partial x_2} = U_2 = b$
and
 $dU = U_1 dx_1 + U_2 dx_2 = a dx_1 + b dx_2 = 0$

If we rearrange to get dx_2/dx_1

$$\frac{dx_2}{dx_1} = -\frac{\frac{\partial U}{\partial x_1}}{\frac{\partial U}{\partial x_2}} = -\frac{U_1}{U_2} = -\frac{a}{b}$$

The MRS is the Absolute value of $\frac{dx_2}{dx_1}$:

$$MRS = \frac{a}{b}$$

2.
$$\frac{\partial U}{\partial x_1} = U_1 = 2x_1 + x_2$$
 $\frac{\partial U}{\partial x_2} = U_2 = 3x_2^2 + x_1$
and
 $dU = U_1 dx_1 + U_2 dx_2 = (2x_1 + x_2) dx_1 + (3x_2^2 + x_1) dx_2 = 0$

Find dx_2/dx_1

$$\frac{dx_2}{dx_1} = -\frac{U_1}{U_2} = -\frac{(2x_1 + x_2)}{(3x_2^2 + x_1)}$$

The MRS is the Absolute value of $\frac{dx_2}{dx_1}$:

$$MRS = \frac{(2x_1 + x_2)}{(3x_2^2 + x_1)}$$

iii) $\frac{\partial U}{\partial x_1} = U_1 = ax_1^{a-1}x_2^b$ $\frac{\partial U}{\partial x_2} = U_2 = bx_1^a x_2^{b-1}$ and $dU = \left(ax_1^{a-1}x_2^b\right) dx_1 + \left(bx_1^a x_2^{b-1}\right) dx_2 = 0$

Rearrange to get

$$\frac{dx_2}{dx_1} = -\frac{U_1}{U_2} = -\frac{ax_1^{a-1}x_2^b}{bx_1^a x_2^{b-1}} = -\frac{ax_2}{bx_1}$$

The MRS is the Absolute value of $\frac{dx_2}{dx_1}$:

$$MRS = \frac{ax_2}{bx_1}$$

iv)
$$\frac{\partial U}{\partial c_1} = U_1 = \alpha \left(\frac{1}{c_1}\right) dc_1 = \left(\frac{\alpha}{c_1}\right) dc_1$$
 $\frac{\partial U}{\partial x_2} = U_2 = \beta \left(\frac{1}{c_2}\right) dc_2 = \left(\frac{\beta}{c_2}\right) dc_2$
and $dU = \left(\frac{\alpha}{c_1}\right) dc_1 + \left(\frac{\beta}{c_2}\right) dc_2 = 0$

Rearrange to get

$$\frac{dc_2}{dc_1} = -\frac{U_1}{U_2} = \frac{\left(\frac{\alpha}{c_1}\right)}{\left(\frac{\beta}{c_2}\right)} = -\frac{\alpha c_2}{\beta c_1}$$

The MRS is the Absolute value of $\frac{dc_2}{dc_1}$:

$$MRS = \frac{\alpha c_2}{\beta c_1} = (1+r)$$

$$c_2 = \beta c_1(1+r) \quad and \quad c_1 = \frac{c_2}{\beta(1+r)}$$

1.3 Application: Intertemporal Utility Maximization

Consider a simple two period model where a consumer's utility is a function of consumption in both periods. Let the consumer's utility function be

$$U(c_1, c_2) = \ln c_1 + \beta \ln c_2$$

where c_1 is consumption in period one and c_2 is consumption in period two. The consumer is also endowments of y_1 in period one and y_2 in period two.

Let r denote a market interest rate with the consumer can choose to borrow or lend across the two periods. The consumer's intertemporal budget constraint is

$$c_1 + \frac{c_2}{1+r} = y_1 + \frac{y_2}{1+r}$$

1.3.1 Method One:Find MRS and Substitute

Differentiate the Utility function

$$dU = \left(\frac{1}{c_1}\right)dc_1 + \left(\frac{\beta}{c_2}\right)dc_2 = 0$$

Rearrange to get

$$\frac{dc_2}{dc_1} = -\frac{c_2}{\beta c_1}$$

The MRS is the Absolute value of $\frac{dc_2}{dc_1}$:

$$MRS = \frac{c_2}{\beta c_1}$$

substitute into the budget constraint

$$y_1 + \frac{y_2}{1+r} = c_1 + \frac{\beta c_1(1+r)}{1+r} = (1+\beta)c_1$$
$$c_1^* = \frac{y_1 + \frac{y_2}{1+r}}{(1+\beta)}$$

Similarly, solving for c_2^* using the first order conditions

$$y_1 + \frac{y_2}{1+r} = \frac{c_2}{\beta(1+r)} + \frac{c_2}{1+r}$$
$$(1+r)y_1 + y_2 = \left(\frac{1}{\beta} + 1\right)c_2$$
$$c_2^* = \frac{(1+r)y_1 + y_2}{\frac{1}{\beta} + 1}$$

1.3.2 Method Two: Use the Lagrange Multiplier Method

The Lagrangian for this utility maximization problem is

$$L = \ln c_1 + \beta \ln c_2 + \lambda \left(y_1 + \frac{y_2}{1+r} - c_1 - \frac{c_2}{1+r} \right)$$

The first order conditions are

$$\frac{\partial L}{\partial \lambda} = y_1 + \frac{y_2}{1+r} - c_1 - \frac{c_2}{1+r} = 0$$
$$\frac{\partial L}{\partial C_1} = \frac{1}{c_1} - \lambda = 0$$
$$\frac{\partial L}{\partial C_1} = \frac{\beta}{c_2} - \frac{\lambda}{1+r} = 0$$

Combining the last two first order equations to eliminate λ gives us

$$\frac{1/c_1}{\beta/c_2} = \frac{c_2}{\beta c_1} = \frac{\lambda}{\frac{\lambda}{1+r}} = 1+r$$

$$c_2 = \beta c_1(1+r) \quad and \quad c_1 = \frac{c_2}{\beta(1+r)}$$

sub into the Budget constraint

$$y_1 + \frac{y_2}{1+r} = c_1 + \frac{\beta c_1(1+r)}{1+r} = (1+\beta)c_1$$
$$c_1^* = \frac{y_1 + \frac{y_2}{1+r}}{(1+\beta)}$$

Similarly, solving for c_2^\ast using the first order conditions

$$y_1 + \frac{y_2}{1+r} = \frac{c_2}{\beta(1+r)} + \frac{c_2}{1+r}$$
$$(1+r)y_1 + y_2 = \left(\frac{1}{\beta} + 1\right)c_2$$
$$c_2^* = \frac{(1+r)y_1 + y_2}{\frac{1}{\beta} + 1}$$