OPMT 5701: Calculus for Utility Problems

Kevin Wainwright
October 14, 2003

1 Using Calculus For Utility Maximization Problems

1.1 Review of Some Derivative Rules

1. Partial Derivative Rules:

$$
\begin{array}{lll}
U=x y & \partial U / \partial x=y & \partial U / \partial y=x \\
U=x^{a} y^{b} & \partial U / \partial x=a x^{a-1} y^{b} & \partial U / \partial y=b x^{a} y^{b-1} \\
U=x^{a} y^{-b}=\frac{x^{a}}{y^{b}} & \partial U / \partial x=a x^{a-1} y^{-b} & \partial U / \partial y=-b x^{a} y^{-b-1} \\
U=a x+b y & \partial U / \partial x=a & \partial U / \partial y=b \\
U=a x^{1 / 2}+b y^{1 / 2} & \partial U / \partial x=a\left(\frac{1}{2}\right) x^{-1 / 2} & \partial U / \partial y=b\left(\frac{1}{2}\right) y^{-1 / 2}
\end{array}
$$

2. Logarithm (Natural log) $\ln x$
(a) Rules of natural log

$$
\begin{array}{ll}
\text { If } & \text { Then } \\
y=A B & \ln y=\ln (A B)=\ln A+\ln B \\
y=A / B & \ln y=\ln A-\ln B \\
y=A^{b} & \ln y=\ln \left(A^{b}\right)=b \ln A
\end{array}
$$

NOTE: $\ln (A+B) \neq \ln A+\ln B$
(b) derivatives

$$
\begin{array}{ll}
\text { IF } & \text { THEN } \\
y=\ln x & \frac{d y}{d x}=\frac{1}{x} \\
y=\ln (f(x)) & \frac{d y}{d x}=\frac{1}{f(x)} \cdot f^{\prime}(x)
\end{array}
$$

(c) Examples

$$
\begin{array}{ll}
\text { If } & \text { Then } \\
y=\ln \left(x^{2}-2 x\right) & d y / d x=\frac{1}{\left(x^{2}-2 x\right)}(2 x-2) \\
y=\ln \left(x^{1 / 2}\right)=\frac{1}{2} \ln x & d y / d x=\left(\frac{1}{2}\right)\left(\frac{1}{x}\right)=\frac{1}{2 x}
\end{array}
$$

3. The Number e

$$
\begin{aligned}
& \text { if } y=e^{x} \text { then } \frac{d y}{d x}=e^{x} \\
& \text { if } y=e^{f(x)} \text { then } \frac{d y}{d x}=e^{f(x)} \cdot f^{\prime}(x)
\end{aligned}
$$

(a) Examples

$$
\begin{array}{ll}
y=e^{3 x} & \frac{d y}{d x}=e^{3 x}(3) \\
y=e^{7 x^{3}} & \frac{d y}{d x}=e^{7 x^{3}}\left(21 x^{2}\right) \\
y=e^{r t} & \frac{d y}{d t}=r e^{r t}
\end{array}
$$

1.2 Finding the MRS from Utility functions

EXAMPLE: Find the total differential for the following utility functions

1. $U\left(x_{1}, x_{2}\right)=a x_{1}+b x_{2}$ where $(a, b>0)$
2. $U\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{3}+x_{1} x_{2}$
3. $U\left(x_{1}, x_{2}\right)=x_{1}^{a} x_{2}^{b}$ where $(a, b>0)$
4. $U\left(x_{1}, x_{2}\right)=\alpha \ln c_{1}+\beta \ln c_{2}$ where $(\alpha, \beta>0)$

Answers:

1. $\frac{\partial U}{\partial x_{1}}=U_{1}=a \quad \frac{\partial U}{\partial x_{2}}=U_{2}=b$
and

$$
d U=U_{1} d x_{1}+U_{2} d x_{2}=a d x_{1}+b d x_{2}=0
$$

If we rearrange to get $d x_{2} / d x_{1}$

$$
\frac{d x_{2}}{d x_{1}}=-\frac{\frac{\partial U}{\partial x_{1}}}{\frac{\partial U}{\partial x_{2}}}=-\frac{U_{1}}{U_{2}}=-\frac{a}{b}
$$

The MRS is the Absolute value of $\frac{d x_{2}}{d x_{1}}$:

$$
M R S=\frac{a}{b}
$$

2. $\frac{\partial U}{\partial x_{1}}=U_{1}=2 x_{1}+x_{2} \quad \frac{\partial U}{\partial x_{2}}=U_{2}=3 x_{2}^{2}+x_{1}$ and

$$
d U=U_{1} d x_{1}+U_{2} d x_{2}=\left(2 x_{1}+x_{2}\right) d x_{1}+\left(3 x_{2}^{2}+x_{1}\right) d x_{2}=0
$$

Find $d x_{2} / d x_{1}$

$$
\frac{d x_{2}}{d x_{1}}=-\frac{U_{1}}{U_{2}}=-\frac{\left(2 x_{1}+x_{2}\right)}{\left(3 x_{2}^{2}+x_{1}\right)}
$$

The MRS is the Absolute value of $\frac{d x_{2}}{d x_{1}}$:

$$
M R S=\frac{\left(2 x_{1}+x_{2}\right)}{\left(3 x_{2}^{2}+x_{1}\right)}
$$

iii) $\frac{\partial U}{\partial x_{1}}=U_{1}=a x_{1}^{a-1} x_{2}^{b} \quad \frac{\partial U}{\partial x_{2}}=U_{2}=b x_{1}^{a} x_{2}^{b-1}$
and

$$
d U=\left(a x_{1}^{a-1} x_{2}^{b}\right) d x_{1}+\left(b x_{1}^{a} x_{2}^{b-1}\right) d x_{2}=0
$$

Rearrange to get

$$
\frac{d x_{2}}{d x_{1}}=-\frac{U_{1}}{U_{2}}=-\frac{a x_{1}^{a-1} x_{2}^{b}}{b x_{1}^{a} x_{2}^{b-1}}=-\frac{a x_{2}}{b x_{1}}
$$

The MRS is the Absolute value of $\frac{d x_{2}}{d x_{1}}$:

$$
M R S=\frac{a x_{2}}{b x_{1}}
$$

iv) $\frac{\partial U}{\partial c_{1}}=U_{1}=\alpha\left(\frac{1}{c_{1}}\right) d c_{1}=\left(\frac{\alpha}{c_{1}}\right) d c_{1} \quad \frac{\partial U}{\partial x_{2}}=U_{2}=\beta\left(\frac{1}{c_{2}}\right) d c_{2}=\left(\frac{\beta}{c_{2}}\right) d c_{2}$ and

$$
d U=\left(\frac{\alpha}{c_{1}}\right) d c_{1}+\left(\frac{\beta}{c_{2}}\right) d c_{2}=0
$$

Rearrange to get

$$
\frac{d c_{2}}{d c_{1}}=-\frac{U_{1}}{U_{2}}=\frac{\left(\frac{\alpha}{c_{1}}\right)}{\left(\frac{\beta}{c_{2}}\right)}=-\frac{\alpha c_{2}}{\beta c_{1}}
$$

The MRS is the Absolute value of $\frac{d c_{2}}{d c_{1}}$:

$$
\begin{aligned}
M R S & =\frac{\alpha c_{2}}{\beta c_{1}}=(1+r) \\
c_{2} & =\beta c_{1}(1+r) \quad \text { and } \quad c_{1}=\frac{c_{2}}{\beta(1+r)}
\end{aligned}
$$

1.3 Application: Intertemporal Utility Maximization

Consider a simple two period model where a consumer's utility is a function of consumption in both periods. Let the consumer's utility function be

$$
U\left(c_{1}, c_{2}\right)=\ln c_{1}+\beta \ln c_{2}
$$

where c_{1} is consumption in period one and c_{2} is consumption in period two. The consumer is also endowments of y_{1} in period one and y_{2} in period two.

Let r denote a market interest rate with the consumer can choose to borrow or lend across the two periods. The consumer's intertemporal budget constraint is

$$
c_{1}+\frac{c_{2}}{1+r}=y_{1}+\frac{y_{2}}{1+r}
$$

1.3.1 Method One:Find MRS and Substitute

Differentiate the Utility function

$$
d U=\left(\frac{1}{c_{1}}\right) d c_{1}+\left(\frac{\beta}{c_{2}}\right) d c_{2}=0
$$

Rearrange to get

$$
\frac{d c_{2}}{d c_{1}}=-\frac{c_{2}}{\beta c_{1}}
$$

The MRS is the Absolute value of $\frac{d c_{2}}{d c_{1}}$:

$$
M R S=\frac{c_{2}}{\beta c_{1}}
$$

substitute into the budget constraint

$$
\begin{aligned}
y_{1}+\frac{y_{2}}{1+r} & =c_{1}+\frac{\beta c_{1}(1+r)}{1+r}=(1+\beta) c_{1} \\
c_{1}^{*} & =\frac{y_{1}+\frac{y_{2}}{1+r}}{(1+\beta)}
\end{aligned}
$$

Similarly, solving for c_{2}^{*} using the first order conditions

$$
\begin{aligned}
y_{1}+\frac{y_{2}}{1+r} & =\frac{c_{2}}{\beta(1+r)}+\frac{c_{2}}{1+r} \\
(1+r) y_{1}+y_{2} & =\left(\frac{1}{\beta}+1\right) c_{2} \\
c_{2}^{*} & =\frac{(1+r) y_{1}+y_{2}}{\frac{1}{\beta}+1}
\end{aligned}
$$

1.3.2 Method Two: Use the Lagrange Multiplier Method

The Lagrangian for this utility maximization problem is

$$
L=\ln c_{1}+\beta \ln c_{2}+\lambda\left(y_{1}+\frac{y_{2}}{1+r}-c_{1}-\frac{c_{2}}{1+r}\right)
$$

The first order conditions are

$$
\begin{aligned}
& \frac{\partial L}{\partial \lambda}=y_{1}+\frac{y_{2}}{1+r}-c_{1}-\frac{c_{2}}{1+r}=0 \\
& \frac{\partial L}{\partial C_{1}}=\frac{1}{c_{1}}-\lambda=0 \\
& \frac{\partial L}{\partial C_{1}}=\frac{\beta}{c_{2}}-\frac{\lambda}{1+r}=0
\end{aligned}
$$

Combining the last two first order equations to eliminate λ gives us

$$
\begin{aligned}
\frac{1 / c_{1}}{\beta / c_{2}} & =\frac{c_{2}}{\beta c_{1}}=\frac{\lambda}{\frac{\lambda}{1+r}}=1+r \\
c_{2} & =\beta c_{1}(1+r) \quad \text { and } \quad c_{1}=\frac{c_{2}}{\beta(1+r)}
\end{aligned}
$$

sub into the Budget constraint

$$
\begin{aligned}
y_{1}+\frac{y_{2}}{1+r} & =c_{1}+\frac{\beta c_{1}(1+r)}{1+r}=(1+\beta) c_{1} \\
c_{1}^{*} & =\frac{y_{1}+\frac{y_{2}}{1+r}}{(1+\beta)}
\end{aligned}
$$

Similarly, solving for c_{2}^{*} using the first order conditions

$$
\begin{aligned}
y_{1}+\frac{y_{2}}{1+r} & =\frac{c_{2}}{\beta(1+r)}+\frac{c_{2}}{1+r} \\
(1+r) y_{1}+y_{2} & =\left(\frac{1}{\beta}+1\right) c_{2} \\
c_{2}^{*} & =\frac{(1+r) y_{1}+y_{2}}{\frac{1}{\beta}+1}
\end{aligned}
$$

