

Chapter 3 Benefits and Costs, Supply and Demand

ECON 260 ENVIRONMENTAL ECONOMICS

Learning Objectives

- Derive the demand curve for an individual from his willingness to pay and show how to aggregate to a market demand curve
- 2. Derive the supply curve for a firm and show how to aggregate to a market supply curve
- 3. Illustrate the impact of technological progress on marginal cost curves

Demand, Value and Willingness to Pay (WTP)

- A Demand Curve represents all the different potential quantities of a good available and the WTP of consumers for each quantity
- A single Quantity Demanded (Q_d) is associated with each price level

WTP for Organic Apples

Law of Diminishing Marginal Utility

• A Demand Curve is downward sloping due to the Law of Diminishing Marginal Utility

- The more you have of something, the less you are willing to pay for an additional unit of the good
- Across groups of people (aggregate demand) WTP falls because different people hold different values for a good

Marginal Willingness to Pay

- MWTP = your willingness to pay for the next item (one more)
- The points on a demand curve show MWTP for a product
- Your MWTP is affected by:
 - How many of the same items you already have
 - Tastes and preferences
 - Time and situation

Total Willingness to Pay

- TWTP = the total amount you are willing to pay for a set of items
- It is calculated by summing the MWTP for each item
- TWTP represents the total value of a set of goods
- It can be calculated by <u>finding the area under</u> <u>the demand curve</u>

The Price of 1, 6, and 12 Cans of Sprite

Example of diminishing WTP and how we can sum MWTP to find TWTP

- If 1 Can of Sprite costs \$1.00
- And 6 cans cost \$3.00
- And 12 cans cost \$3.99

What is the MWTP for each can, TWTP, AWTP?

Number of Cans	Marginal Willingness to Pay (MWTP)	Total Willingness to Pay (TWTP)	Average Willingness to Pay (AWTP)
1	\$1	\$1	\$1
2	\$.60	\$1.60	\$.80
3	\$.50	\$2.10	\$.70
4	\$.40	\$2.50	\$.63
5	\$.30	\$2.80	\$.56
6	\$.20	\$3.00	\$.50
7	\$.19	\$3.19	\$.46
8	\$.18	\$3.37	\$.42
9	\$.17	\$3.54	\$.39
10	\$.16	\$3.70	\$.37
11	\$.15	\$3.85	\$.35
12	\$.14	\$3.99	\$.33

Sprite Demand Curve

Demand for Sprite

L01

Aggregate Demand

 We can aggregate the demand curves of individuals to find the "aggregate demand curve" for a group of people or society

D^A:
$$P = 5 - 1/2Q^A$$
 or $Q^A = 10 - 2P$
D^B: $P = 5 - Q^B$ or $Q^B = 5 - P$

Sum:
$$Q^{T} = Q^{A} + Q^{B} = (10 - 2P) + (5 - P) = 15 - 3P$$

Rewrite to graph

 $P = 5 - 1/3Q^T$ when $P = 5Q^T = 0$, when $P = 0, Q^T = 15$

Aggregate Demand

FIGURE 3-4 Aggregating Demand Curves for Organic Apples

Questions on Demand

- Why does Willingness to Pay (WTP) diminish as you get more and more items?
- What is an example of diminishing WTP for goods you buy?
- What is the relationship between WTP and the total value of a good? How is it found using a demand curve?
- Does a low price mean a good has little value?

Shifts in Demand Curves

- A <u>change in price</u> yields <u>movement along</u> a demand curve, but <u>not a shift</u> of the curve
 - If the price of oil rises, the demand for oil will stay the same (in the short run)
- <u>A demand curve might shift due to:</u>
 - Changes in Tastes and Preferences
 - Changes in Time
 - Changes in Income
 - <u>Ability to Pay</u> is an important factor in determining Demand, and therefore MWTP and TWTP for a good

Supply and Marginal Cost (MC)

- A Supply Curve represents the number of units a supplier is willing to produce at different price levels
- Supply curves are generally upward sloping, because the Marginal Cost (MC) of production rises as more units are produced
- Costs rise because of what are known as <u>Opportunity Costs</u> – resources used in production must be bid away from alternative uses

Opportunity Costs and Marginal Cost

- To produce goods, firms must hire workers (labor), rent buildings, buy raw materials and other inputs
- As production increases, the number of workers, amount of raw material required etc. increases
- To produce more units, more resources must be bid away from their alternatives uses. The <u>opportunity</u> <u>cost</u> of these resources rise as more and more are sought (Buy the cheap units first, then the more expensive)

Increasing Returns to Scale

- Some Supply curves indicate falling MC up to some level of production
 - This is known as <u>Economies of Scale</u> or <u>Increasing</u> <u>Returns to Scale</u>
 - The 100,000th car is cheaper to produce than the 1000th (due to specialization, scale)
 - At some point, however, MC must begin to rise as production continues to increase (normal, upward sloping supply curve)

Aggregate Supply Curves

 Aggregate supply curves are a horizontal summation of the individual supply curves of different individuals or firms

Shifts in a supply curve

A Supply Curve will shift due to:

Changes in the costs of the resources used to produce a good

- Changes in technology (productivity)
 - When technology improves, the supply curve shifts down, it gets cheaper to produce each unit of the good

Questions on Supply

- Why does Marginal Cost rise as you produce more and more items?
- What is the relationship between MC and the total cost of producing a good? How is it found using a supply curve?
- How do technological improvements change MC and the supply curve?

Chapter Overview

This chapter provided an overview of supply and demand curves.

- The concepts of diminishing Willingness to Pay (WTP)and Demand Curve were introduced
- Aggregate demand can be found by summing individual demand curves
- Total WTP was shown to be the area under the demand curve, the TWTP of all people for the good in question
- Supply and its relationship to Marginal Cost (MC) was introduced
- Supply curves slope up due to rising MC caused by Opportunity Costs
- An aggregate supply curve can be created by summing the supply curves of individual firms
- Technology can allow firms to produce goods more cheaply, shifting supply curves down