
ECON 301
Two Variable Optimization
(with- and without- constraints)

Review of Some Derivative Rules

1. Partial Derivative Rules:

U = xy ∂U/∂x = Ux = y ∂U/∂y = Uy = x
U = xayb ∂U/∂x = Ux = ax

a−1yb ∂U/∂y = Uy = bx
ayb−1

U = xay−b = xa

yb
∂U/∂x = Ux = ax

a−1y−b ∂U/∂y = Uy = −bxay−b−1
U = ax+ by ∂U/∂x = Ux = a ∂U/∂y = Uy = b
U = ax1/2 + by1/2 ∂U/∂x = Ux = a

¡
1
2

¢
x−1/2 ∂U/∂y = Uy = b

¡
1
2

¢
y−1/2

2. Logarithm (Natural log) lnx

(a) Rules of natural log

If Then
y = AB ln y = ln(AB) = lnA+ lnB
y = A/B ln y = lnA− lnB
y = Ab ln y = ln(Ab) = b lnA

NOTE: ln(A+B) 6= lnA+ lnB
(b) derivatives

IF THEN

y = lnx dy
dx
= 1

x

y = ln (f(x)) dy
dx
= 1

f(x)
· f 0(x)

(c) Examples

If Then
y = ln(x2 − 2x) dy/dx = 1

(x2−2x)(2x− 2)
y = ln(x1/2) = 1

2
lnx dy/dx =

¡
1
2

¢ ¡
1
x

¢
= 1

2x

3. The Number e

if y = ex then
dy

dx
= ex

if y = ef(x) then
dy

dx
= ef(x) · f 0(x)

(a) Examples

y = e3x dy
dx
= e3x(3)

y = e7x
3 dy

dx
= e7x

3
(21x2)

y = ert dy
dt
= rert
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Using Calculus For Maximization Problems

One Variable Case

If we have the following function
y = 10x− x2

we have an example of a dome shaped function. To find the maximum of the dome, we
simply need to find the point where the slope of the dome is zero, or

dy
dx
= 10− 2x = 0
10 = 2x
x = 5
and
y = 25

Two Variable Case

Suppose we want to maximize the following function

z = f(x, y) = 10x+ 10y + xy − x2 − y2

Note that there are two unknowns that must be solved for: x and y. This function is an
example of a three-dimensional dome. (i.e. the roof of BC Place)
To solve this maximization problem we use partial derivatives. We take a partial

derivative for each of the unknown choice variables and set them equal to zero

∂z
∂x
= fx = 10 + y − 2x = 0 The slope in the ”x” direction = 0

∂z
∂y
= fy = 10 + x− 2y = 0 The slope in the ”y” direction = 0

This gives us a set of equations, one equation for each of the unknown variables. When
you have the same number of independent equations as unknowns, you can solve for each of
the unknowns.
rewrite each equation as

y = 2x− 10
x = 2y − 10

substitute one into the other

x = 2(2x− 10)− 10
x = 4x− 30
3x = 30

x = 10

similarly,
y = 10
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REMEMBER: To maximize (minimize) a function of many variables you use the
technique of partial differentiation. This produces a set of equations, one equation for each
of the unknowns. You then solve the set of equations simulaneously to derive solutions for
each of the unknowns.
Second order Conditions (second derivative Test)
To test for a maximum or minimum we need to check the second partial derivatives. Since

we have two first partial derivative equations (fx,fy) and two variable in each equation, we
will get four second partials ( fxx, fyy, fxy, fyx)
Using our original first order equations and taking the partial derivatives for each of them

(a second time) yields:

fx = 10 + y − 2x = 0 fy = 10 + x− 2y = 0

fxx = −2 fyy = −2
fxy = 1 fyx = 1

The two partials,fxx, and fyy are the direct effects of of a small change in x and y on
the respective slopes in in the x and y direction. The partials, fxy and fyx are the indirect
effects, or the cross effects of one variable on the slope in the other variable’s direction. For
both Maximums and Minimums, the direct effects must outweigh the cross effects

Rules for two variable Maximums and Minimums1

1. Maximum

fxx < 0

fyy < 0

fyyfxx − fxyfyx > 0

2. Minimum

fxx > 0

fyy > 0

fyyfxx − fxyfyx > 0

3. Otherwise, we have a Saddle Point

From our second order conditions, above,

fxx = −2 < 0 fyy = −2 < 0
fxy = 1 fyx = 1

and
fyyfxx − fxyfyx = (−2)(−2)− (1)(1) = 3 > 0

therefore we have a maximum.
1Advanced Topic: This section is optional for ECON 301. For most applications, the structure of the

problem will make it clear that this is a max or min problem
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Example: Profit Max Capital and Labour

Suppose we have the following production function

q = Output
q = f(K,L) = L

1
2 +K

1
2 L = Labour

K = Capital

Then the profit function for a competitive firm is

π = Pq − wL− rK P = Market Price
or w = Wage Rate
π = PL

1
2 + PK

1
2 − wL− rK r = Rental Rate

First order conditions

General Form
1. ∂π

∂L
= P

2
L
−1
2 − w = 0 PfL − w = 0

2. ∂π
∂k
= P

2
K

−1
2 − r = 0 PfK − r = 0

Solving (1) and (2), we get

L∗ = (2w
P
)−2 K∗ = (2r

P
)−2

Example: If P = 1000, w = 20, and r = 10

1. Find the optimal K, L, and π

2. Check second order conditions

Example: Cobb-Douglas production function and a com-
petitive firm

Consider a competitive firm with the following profit function

π = TR− TC = PQ− wL− rK (1)

where P is price, Q is output, L is labour and K is capital, and w and r are the input prices
for L and K respectively. Since the firm operates in a competitive market, the exogenous
variables are P,w and r. There are three endogenous variables, K, L and Q. However output,
Q, is in turn a function of K and L via the production function

Q = f(K,L)

which in this case, is the Cobb-Douglas function

Q = LaKb (2)
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where a and b are positive parameters. If we further assume decreasing returns to scale,
then a + b < 1. For simplicity, let’s consider the symmetric case where a = b = 1

4

Q = L
1
4K

1
4 (3)

Substituting Equation 3 into Equation 1 gives us

π(K,L) = PL
1
4K

1
4 − wL− rK (4)

The first order conditions are
∂π
∂L
= P

¡
1
4

¢
L−

3
4K

1
4 − w = 0

∂π
∂K
= P

¡
1
4

¢
L

1
4K− 3

4 − r = 0 (5)

This system of equations define the optimal L and K for profit maximization. Rewriting
the first equation in Equation 5 to isolate K

P
¡
1
4

¢
L−

3
4K

1
4 = w

K = (4w
p
L

3
4 )4

Substituting into the second equation of Equation 5

P
4
L

1
4K−3

4 =
¡
P
4

¢
L

1
4

∙³
4w
p
L

3
4

´4¸− 3
4

= r

= P 4
¡
1
4

¢4
w−3L−2 = r

Re-arranging to get L by itself gives us

L∗ = (
P

4
w−

3
4 r−

1
4 )2

Taking advantage of the symmetry of the model, we can quickly find the optimal K

K∗ = (
P

4
r−

3
4w−

1
4 )2

L∗ and K∗ are the firm’s factor demand equations.

Optimization with Constraints

The Lagrange Multiplier Method

Sometimes we need to to maximize (minimize) a function that is subject to some sort of
constraint. For example

Maximize z = f(x, y)

subject to the constraint x+ y ≤ 100
For this kind of problem there is a technique, or trick, developed for this kind of problem

known as the Lagrange Multiplier method. This method involves adding an extra variable to
the problem called the lagrange multiplier, or λ.
We then set up the problem as follows:
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1. Create a new equation form the original information

L = f(x, y) + λ(100− x− y)
or

L = f(x, y) + λ [Zero]

2. Then follow the same steps as used in a regular maximization problem

∂L
∂x
= fx − λ = 0

∂L
∂y
= fy − λ = 0

∂L
∂λ
= 100− x− y = 0

3. In most cases the λ will drop out with substitution. Solving these 3 equations will give
you the constrained maximum solution

Example 1:

Suppose z = f(x, y) = xy. and the constraint is the one from above. The problem then
becomes

L = xy + λ(100− x− y)
Now take partial derivatives, one for each unknown, including λ

∂L
∂x
= y − λ = 0

∂L
∂y
= x− λ = 0

∂L
∂λ
= 100− x− y = 0

Starting with the first two equations, we see that x = y and λ drops out. From the third
equation we can easily find that x = y = 50 and the constrained maximum value for z is
z = xy = 2500.

Example 2:

Maximize
u = 4x2 + 3xy + 6y2

subject to
x+ y = 56

Set up the Lagrangian Equation:

L = 4x2 + 3xy + 6y2 + λ(56− x− y)

Take the first-order partials and set them to zero

Lx = 8x+ 3y − λ = 0

Ly = 3x+ 12y − λ = 0

Lλ = 56− x− y = 0
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From the first two equations we get

8x+ 3y = 3x+ 12y

x = 1.8y

Substitute this result into the third equation

56− 1.8y − y = 0

y = 20

therefore
x = 36 λ = 348

Example 3: Cost minimization

A firm produces two goods, x and y. Due to a government quota, the firm must produce
subject to the constraint x+ y = 42. The firm’s cost functions is

c(x, y) = 8x2 − xy + 12y2

The Lagrangian is
L = 8x2 − xy + 12y2 + λ(42− x− y)

The first order conditions are

Lx = 16x− y − λ = 0

Ly = −x+ 24y − λ = 0

Lλ = 42− x− y = 0 (6)

Solving these three equations simultaneously yields

x = 25 y = 17 λ = 383

Example of duality for the consumer choice problem

Example 4: Utility Maximization

Consider a consumer with the utility function U = xy, who faces a budget constraint of
B = Pxx+ Pyy, where B, Px and Py are the budget and prices, which are given.
The choice problem is
Maximize

U = xy (7)

Subject to
B = Pxx+ Pyy (8)

The Lagrangian for this problem is

Z = xy + λ(B − Pxx− Pyy) (9)
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The first order conditions are

Zx = y − λPx = 0
Zy = x− λPy = 0
Zλ = B − Pxx− Pyy = 0

(10)

Solving the first order conditions yield the following solutions

xM = B
2Px

yM = B
2Py

λ = B
2PxPy (11)

where xM and yM are the consumer’s Marshallian demand functions.

Example 5: Minimization Problem

Minimize
Pxx+ Pyy (12)

Subject to
U0 = xy (13)

The Lagrangian for the problem is

Z = Pxx+ Pyy + λ(U0 − xy) (14)

The first order conditions are

Zx = Px − λy = 0
Zy = Py − λx = 0
Zλ = U0 − xy = 0

(15)

Solving the system of equations for x, y and λ

xh =
³
PyU0
Px

´ 1
2

yh =
³
PxU0
Py

´ 1
2

λh =
³
PxPy
U0

´ 1
2

(16)

Application: Intertemporal Utility Maximization

Consider a simple two period model where a consumer’s utility is a function of consumption
in both periods. Let the consumer’s utility function be

U(c1, c2) = ln c1 + β ln c2

where c1 is consumption in period one and c2 is consumption in period two. The consumer
is also endowments of y1 in period one and y2 in period two.
Let r denote a market interest rate with the consumer can choose to borrow or lend

across the two periods. The consumer’s intertemporal budget constraint is

c1 +
c2
1 + r

= y1 +
y2
1 + r
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Method One:Find MRS and Substitute

Differentiate the Utility function

dU =

µ
1

c1

¶
dc1 +

µ
β

c2

¶
dc2 = 0

Rearrange to get
dc2
dc1

= − c2
βc1

The MRS is the Absolute value of dc2
dc1
:

MRS =
c2
βc1

substitute into the budget constraint

y1 +
y2
1 + r

= c1 +
βc1(1 + r)

1 + r
= (1 + β)c1

c∗1 =
y1 +

y2
1+r

(1 + β)

Similarly, solving for c∗2 using the first order conditions

y1 +
y2
1 + r

=
c2

β(1 + r)
+

c2
1 + r

(1 + r)y1 + y2 =

µ
1

β
+ 1

¶
c2

c∗2 =
(1 + r)y1 + y2

1
β
+ 1

Method Two: Use the Lagrange Multiplier Method

The Lagrangian for this utility maximization problem is

L = ln c1 + β ln c2 + λ

µ
y1 +

y2
1 + r

− c1 −
c2
1 + r

¶
The first order conditions are

∂L
∂λ
= y1 +

y2
1+r
− c1 − c2

1+r
= 0

∂L
∂C1

= 1
c1
− λ = 0

∂L
∂C1

= β
c2
− λ

1+r
= 0

Combining the last two first order equations to eliminate λ gives us

1/c1
β/c2

=
c2
βc1

=
λ
λ
1+r

= 1 + r

c2 = βc1(1 + r) and c1 =
c2

β(1 + r)
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sub into the Budget constraint

y1 +
y2
1 + r

= c1 +
βc1(1 + r)

1 + r
= (1 + β)c1

c∗1 =
y1 +

y2
1+r

(1 + β)

Similarly, solving for c∗2 using the first order conditions

y1 +
y2
1 + r

=
c2

β(1 + r)
+

c2
1 + r

(1 + r)y1 + y2 =

µ
1

β
+ 1

¶
c2

c∗2 =
(1 + r)y1 + y2

1
β
+ 1

Problems:

1. Maximize lnx+ y subject to 2x+ 3y = 12 using the lagrange method

2. Skippy lives on an island where she produces two goods, x and y, according the the
production possibility frontier 100 = x2 + y2, and she consumes all the goods herself.
Her utility function is

u = x · y
Find her utility maximizing x and y as well as the value of λ

3. A consumer has the following utility function: U(x, y) = xy2, where x and y are
quantities of two consumption goods whose prices are px and py respectively. The
consumer also has a budget of B. Therefore the consumer’s maximization problem is

xy2 + λ(B − pxx− pyy)

(a) From the first order conditions find expressions for x∗ and y∗. These are the
consumer’s demand functions.

4. This problem could be recast as the following dual problem

Minimize pxx+ pyy subject to U0 = xy2

Find the values of x and y that solve this minimization problem.

5. Skippy has the following utility function: u = x
1
2y

1
2 and faces the budget constraint:

M = pxx+ pyy.

(a) Suppose M = 120, Py = 1 and Px = 4. Find the optimal x and y
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Finding the MRS from Utility functions

EXAMPLE: Find the total differential for the following utility functions

1. U(x1, x2) = ax1 + bx2 where (a, b > 0)

2. U(x1, x2) = x21 + x
3
2 + x1x2

3. U(x1, x2) = xa1x
b
2 where (a, b > 0)

4. U(x1, x2) = α ln c1 + β ln c2 where (α, β > 0)

Answers:
1. ∂U

∂x1
= U1 = a

∂U
∂x2

= U2 = b
and

dU = U1dx1 + U2dx2 = adx1 + bdx2 = 0

If we rearrange to get dx2/dx1

dx2
dx1

= −
∂U
∂x1
∂U
∂x2

= −U1
U2
= −a

b

The MRS is the Absolute value of dx2
dx1
:

MRS =
a

b

2. ∂U
∂x1

= U1 = 2x1 + x2
∂U
∂x2

= U2 = 3x
2
2 + x1

and
dU = U1dx1 + U2dx2 = (2x1 + x2)dx1 + (3x

2
2 + x1)dx2 = 0

Find dx2/dx1
dx2
dx1

= −U1
U2
= −(2x1 + x2)

(3x22 + x1)

The MRS is the Absolute value of dx2
dx1
:

MRS =
(2x1 + x2)

(3x22 + x1)

iii) ∂U
∂x1

= U1 = ax
a−1
1 xb2

∂U
∂x2

= U2 = bx
a
1x
b−1
2

and
dU =

¡
axa−11 xb2

¢
dx1 +

¡
bxa1x

b−1
2

¢
dx2 = 0

Rearrange to get
dx2
dx1

= −U1
U2
= −ax

a−1
1 xb2

bxa1x
b−1
2

= −ax2
bx1
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The MRS is the Absolute value of dx2
dx1
:

MRS =
ax2
bx1

iv) ∂U
∂c1
= U1 = α

³
1
c1

´
dc1 =

³
α
c1

´
dc1

∂U
∂x2

= U2 = β
³
1
c2

´
dc2 =

³
β
c2

´
dc2

and

dU =

µ
α

c1

¶
dc1 +

µ
β

c2

¶
dc2 = 0

Rearrange to get

dc2
dc1

= −U1
U2
=

³
α
c1

´
³

β
c2

´ = −αc2
βc1

The MRS is the Absolute value of dc2
dc1
:

MRS =
αc2
βc1

= (1 + r)

c2 = βc1(1 + r) and c1 =
c2

β(1 + r)
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