Cost Minimization

Cost Minimization

- A firm is a cost-minimizer if it produces any given output level $\mathbf{q} \geq 0$ at smallest possible total cost.
>c(q) denotes the firm's smallest possible total cost for producing q units of output.
\bullet When the firm faces given input prices $\mathrm{w}=\left(\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{n}}\right)$ the total cost function will be written as

$$
c\left(w_{1}, \ldots, w_{n}, q\right) .
$$

The Cost-Minimization Problem

- Consider a firm using two inputs to make one output.
\bullet The production function is

$$
q=f\left(x_{1}, x_{2}\right) .
$$

- Take the output level $\mathrm{q} \geq 0$ as given.
\diamond Given the input prices w_{1} and w_{2}, the cost of an input bundle ($\mathrm{x}_{1}, \mathrm{x}_{2}$) is $\mathrm{w}_{1} \mathrm{X}_{1}+\mathrm{w}_{2} \mathrm{x}_{2}$.

The Cost-Minimization Problem

- For given w_{1}, w_{2} and q, the firm's cost-minimization problem is to solve $\min _{x_{1}, x_{2} \geq 0}$
subject to $\quad f\left(x_{1}, x_{2}\right)=q$.

The Cost-Minimization Problem

- The levels $\mathrm{x}_{1}{ }^{*}\left(\mathrm{w}_{1}, \mathrm{w}_{2}, \mathbf{q}\right)$ and $\mathrm{x}_{1}{ }^{*}\left(\mathrm{w}_{1}, \mathrm{w}_{2}, \mathbf{q}\right)$ in the least-costly input bundle are the firm's conditional demands for inputs 1 and 2.
- The (smallest possible) total cost for producing q output units is therefore

$$
\begin{aligned}
& c\left(w_{1}, w_{2}, q\right)=w_{1} x_{1}^{*}\left(w_{1}, w_{2}, q\right) \\
& \quad+w_{2} x_{2}^{*}\left(w_{1}, w_{2}, q\right) .
\end{aligned}
$$

Conditional Input Demands

- Given $\mathrm{w}_{1}, \mathrm{w}_{2}$ and q , how is the least costly input bundle located?
And how is the total cost function computed?

Iso-cost Lines

- A curve that contains all of the input bundles that cost the same amount is an iso-cost curve.
- E.g., given w_{1} and w_{2}, the $\$ 100$ isocost line has the equation

$$
\mathrm{w}_{1} \mathrm{x}_{1}+\mathrm{w}_{2} \mathrm{x}_{2}=100
$$

Iso-cost Lines

- Generally, given w_{1} and w_{2}, the equation of the $\$ \mathrm{c}$ iso-cost line is
i.e.

$$
\begin{aligned}
& w_{1} x_{1}+w_{2} x_{2}=c \\
& x_{2}=-\frac{w_{1}}{w_{2}} x_{1}+\frac{c}{w_{2}} .
\end{aligned}
$$

\bullet Slope is $-\mathrm{w}_{1} / \mathrm{w}_{2}$.

Iso-cost Lines

The Cost-Minimization Problem

The Cost-Minimization Problem

 At an interior cost-min input bundle:

A Cobb-Douglas Example of Cost Minimization

- A firm's Cobb-Douglas production function is

$$
q=f\left(x_{1}, x_{2}\right)=x_{1}^{1 / 3} x_{2}^{2 / 3} .
$$

\rightarrow Input prices are w_{1} and w_{2}.

- What are the firm's conditional input demand functions?

A Cobb-Douglas Example of Cost Minimization

At the input bundle $\left(\mathrm{x}_{1}{ }^{*}, \mathrm{x}_{2}{ }^{*}\right)$ which minimizes the cost of producing q output units:
(a)

$$
q=\left(x_{1}^{*}\right)^{1 / 3}\left(x_{2}^{*}\right)^{2 / 3} \quad \text { and }
$$

(b)

$$
\begin{aligned}
& -\frac{w_{1}}{w_{2}}=-\frac{\partial q / \partial x_{1}}{\partial q / \partial x_{2}}=-\frac{(1 / 3)\left(x_{1}^{*}\right)^{-2 / 3}\left(x_{2}^{*}\right)^{2 / 3}}{(2 / 3)\left(x_{1}^{*}\right)^{1 / 3}\left(x_{2}^{*}\right)^{-1 / 3}} \\
& \quad=-\frac{x_{2}^{*}}{2 x_{1}^{*}}
\end{aligned}
$$

A Cobb-Douglas Example of Cost Minimization
(a) $q=\left(x_{1}^{*}\right)^{1 / 3}\left(x_{2}^{*}\right)^{2 / 3}$

From (b), $\mathrm{x}_{2}=\frac{2 \mathrm{w}_{1}}{\mathrm{w}_{2}} \mathrm{x}_{1}^{*}$.

$$
\text { (b) } \frac{w_{1}}{w_{2}}=\frac{x_{2}^{*}}{2 x_{1}^{*}} .
$$

Now substitute into (a) to get

$$
q=\left(x_{1}^{*}\right)^{1 / 3}\left(\frac{2 w_{1}}{w_{2}} x_{1}^{*}\right)^{2 / 3}=\left(\frac{2 w_{1}}{w_{2}}\right)^{2 / 3} x_{1}^{*}
$$

So $x_{1}^{*}=\left(\frac{w_{2}}{2 w_{1}}\right)^{2 / 3} q$
is the firm's conditional demand for input 1.

A Cobb-Douglas Example of Cost Minimization

Since $\mathbf{x}_{\mathbf{2}}^{*}=\frac{\mathbf{2} \mathbf{w}_{\mathbf{1}}}{\mathbf{w}_{\mathbf{2}}} \mathbf{x}_{\mathbf{1}}^{*} \quad$ and $\quad x_{1}^{*}=\left(\frac{w_{2}}{2 w_{1}}\right)^{2 / 3} q$

$$
x_{2}^{*}=\frac{2 w_{1}}{w_{2}}\left(\frac{w_{2}}{2 w_{1}}\right)^{2 / 3} q=\left(\frac{2 w_{1}}{w_{2}}\right)^{1 / 3} q
$$

is the firm's conditional demand for input 2.

A Cobb-Douglas Example of Cost Minimization

For the production function

$$
q=f\left(x_{1}, x_{2}\right)=x_{1}^{1 / 3} x_{2}^{2 / 3}
$$

the cheapest input bundle yielding q output units is

$$
\begin{aligned}
& \left(x_{1}^{*}\left(w_{1}, w_{2}, q\right), x_{2}^{*}\left(w_{1}, w_{2}, q\right)\right) \\
& =\left(\left(\frac{w_{2}}{2 w_{1}}\right)^{2 / 3} q,\left(\frac{2 w_{1}}{w_{2}}\right)^{1 / 3} q\right) .
\end{aligned}
$$

Conditional Input Demand Curves

Fixed w_{1} and w_{2}.

A Cobb-Douglas Example of Cost Minimization

So the firm's total cost function is

$$
\begin{aligned}
c\left(w_{1}, w_{2}, q\right) & =w_{1} x_{1}^{*}\left(w_{1}, w_{2}, q\right)+w_{2} x_{2}^{*}\left(w_{1}, w_{2}, q\right) \\
& =w_{1}\left(\frac{w_{2}}{2 w_{1}}\right)^{2 / 3} q+w_{2}\left(\frac{2 w_{1}}{w_{2}}\right)^{1 / 3} q \\
& =\left(\frac{1}{2}\right)^{2 / 3} w_{1}^{1 / 3} w_{2}^{2 / 3} q+2^{1 / 3} w_{1}^{1 / 3} w_{2}^{2 / 3} q
\end{aligned}
$$

A Fixed Proportion Example of Cost Minimization

- The firm's production function is

$$
q=\min \left\{4 x_{1}, x_{2}\right\}
$$

- Input prices w_{1} and w_{2} are given.
- What are the firm's conditional demands for inputs 1 and 2?
- What is the firm's total cost function?

A Perfect Complements Example of Cost Minimization

A Perfect Complements Example of Cost Minimization

The firm's production function is

$$
q=\min \left\{4 x_{1}, x_{2}\right\}
$$

and the conditional input demands are

$$
x_{1}^{*}\left(w_{1}, w_{2}, q\right)=\frac{q}{4} \quad \text { and } \quad x_{2}^{*}\left(w_{1}, w_{2}, q\right)=q .
$$

So the firm's total cost function is

$$
\begin{aligned}
& c\left(w_{1}, w_{2}, q\right)=w_{1} x_{1}^{*}\left(w_{1}, w_{2}, q\right) \\
& \quad+w_{2} x_{2}^{*}\left(w_{1}, w_{2}, q\right) \\
& = \\
& w_{1} \frac{q}{4}+w_{2} q=\left(\frac{w_{1}}{4}+w_{2}\right) q .
\end{aligned}
$$

Average Total Production Costs

-For positive output levels q, a firm's average total cost of producing \mathbf{q} units is

$$
A C\left(w_{1}, w_{2}, q\right)=\frac{c\left(w_{1}, w_{2}, q\right)}{q} .
$$

Returns-to-Scale and Av. Total Costs

- The returns-to-scale properties of a firm's technology determine how average production costs change with output level.
- Our firm is presently producing q' output units.
- How does the firm's average production cost change if it instead produces $\mathbf{2 q}^{\prime}$ units of output? Total Costs
- If a firm's technology exhibits constant returns-to-scale then doubling its output level from q^{\prime} to 2q' requires doubling all input levels.
-Total production cost doubles.
- Average production cost does not change.

Decreasing Returns-to-Scale and Average Total Costs

- If a firm's technology exhibits decreasing returns-to-scale then doubling its output level from q^{\prime} to $2 q^{\prime}$ requires more than doubling all input levels.
- Total production cost more than doubles.
- Average production cost increases.

Increasing Returns-to-Scale and
Average Total Costs

- If a firm's technology exhibits increasing returns-to-scale then doubling its output level from q^{\prime} to 2q' requires less than doubling all input levels.
- Total production cost less than doubles.
- Average production cost decreases.

Returns-to-Scale and Av. Total Costs

\$/output unit

Returns-to-Scale and Total Costs Av. cost increases with q if the firm's

Returns-to-Scale and Total Costs

 Av. cost decreases with q if the firm's

Returns-to-Scale and Total Costs

 Av. cost is constant when the firm's

Short-Run \& Long-Run Total Costs

- In the long-run a firm can vary all of its input levels.
-Consider a firm that cannot change its input 2 level from X_{2} ' units.
- How does the short-run total cost of producing q output units compare to the long-run total cost of producing \mathbf{q} units of output?

Short-Run \& Long-Run Total Costs

- The long-run cost-minimization problem is $\min \mathrm{w}_{1} \mathrm{x}_{1}+\mathrm{w}_{2} \mathrm{x}_{\mathbf{2}}$

$$
x_{1}, x_{2} \geq 0
$$

subject to $f\left(x_{1}, x_{2}\right)=q$.

- The short-run cost-minimization problem is $\min _{\mathbf{x}_{1}} \mathrm{w}_{1} \mathrm{x}_{\mathbf{1}}+\mathrm{w}_{\mathbf{2}} \mathbf{x}_{\mathbf{2}}$ $\mathrm{x}_{1} \geq 0$
subject to

$$
f\left(x_{1}, x_{2}^{\prime}\right)=q .
$$

Short-Run \& Long-Run Total Costs

- The short-run cost-min. problem is the long-run problem subject to the extra constraint that $\mathrm{X}_{2}=\mathrm{X}_{2}$.
- If the long-run choice for x_{2} was x_{2}, then the extra constraint $x_{2}=x_{2}{ }^{\prime}$ is not really a constraint at all and so the long-run and short-run total costs of producing q output units are the same.

Short-Run \& Long-Run Total Costs

- The short-run cost-min. problem is therefore the long-run problem subject to the extra constraint that $x_{2}=X_{2}{ }^{\prime \prime}$.
\diamond But, if the long-run choice for $X_{2} \neq X_{2}{ }^{\prime \prime}$ then the extra constraint $\mathrm{X}_{2}=\mathrm{X}_{2}{ }^{\prime \prime}$ prevents the firm in this short-run from achieving its long-run production cost, causing the short-run total cost to exceed the long-run total cost of producing q output units.

Short-Run \& Long-Run Total Costs Long-run costs are:

Short-Run \& Long-Run Total Costs

Short-run

Short-Run \& Long-Run Total Costs

Short-run

Short-Run \& Long-Run Total Costs Long-run costs are:

Short-run

Short-Run \& Long-Run Total Costs Long-run costs are:

Short-run

Short-Run \& Long-Run Total Costs

Short-run

Short-Run \& Long-Run Total Costs

-Short-run total cost exceeds long-run total cost except for the output level where the short-run input level restriction is the long-run input level choice.

- This says that the long-run total cost curve always has one point in common with any particular shortrun total cost curve.

Short-Run \& Long-Run Total Costs

 A short-run total cost curve alwone point in common with the
total cost curve, and is elsewher
than the long-run total cost cur

