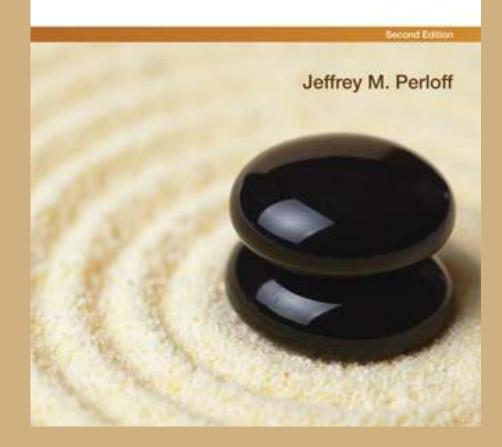
Chapter 2

Microeconomics

Theory and Applications with Calculus

Supply and Demand

Talk is cheap because supply exceeds demand.



Addison-Wesley is an imprint of

Copyright © 2011 Pearson Addison-Wesley. All rights reserved.

Chapter 2 Outline

- 2.1 Demand
- 2.2 Supply
- 2.3 Market Equilibrium
- 2.4 Shocking the Equilibrium: Comparative Statistics
- 2.5 Elasticities
- 2.6 Effects of a Sales Tax
- 2.7 Quantity Supplied Need Not Equal Quantity Demanded
- 2.8 When to Use the Supply-and-Demand Model

2.1 Demand

- The quantity of a good or service that consumers demand depends on price and other factors such as consumers' incomes and the prices of related goods.
- The *demand function* describes the mathematical relationship between quantity demanded (Q_d), price (p) and other factors that influence purchases:

$$Q = D(p, p_s, p_c, Y)$$

- p = per unit price of the good or service
- p_s = per unit price of a substitute good
- p_c = per unit price of a complementary good
- Y = consumers' income

2.1 Demand

- We often work with a linear demand function.
- Example: estimated demand function for pork in $CaQ^2 = 171 20p + 20p_b + 3p_c + 2Y$
 - Q_d = quantity of pork demanded (million kg per year)
 - p = price of pork (in Canadian dollars per kg)
 - *p_b* = price of beef, a substitute good (in Canadian dollars per kg)
 - *p_c* = price of chicken, another substitute (in Canadian dollars per kg)
 - Y = consumers' income (in Canadian dollars per year)
- Graphically, we can only depict the relationship between Q_d and p, so we hold the other factors constant.

2.1 Demand Example: Canadian Pork

Assumptions about p_b , p_c , and Y to by 14.30 Jad & simplify equation • $p_b = \frac{4}{\text{kg}}$ õ Demand curve for pork, D¹ • $p_c = \frac{3.33}{\text{kg}}$ Y = \$12.5 thousand 4.30 $Q = 171 - 20p + 20p_b + 3p_c + 2Y$ 3.30 $= 171 - 20p + (20 \times 4) + (3 \times 3\frac{1}{3}) + (2 \times 12.5)$ 2.30 = 286 - 20p = D(p)200 220 240 0 286 Q, Million kg of pork per year

$$\frac{dQ}{dp} = -20 \implies \text{slope} = \frac{\text{rise}}{\text{run}} = \frac{\Delta p}{\Delta Q} = \frac{\$1 \text{ per kg}}{-20 \text{ million kg per year}} = -\$0.05 \text{ per million kg per year}$$

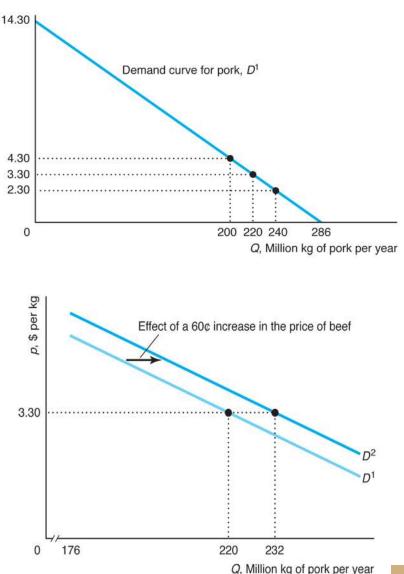
2.1 Demand Example: Canadian Pork

ó

 Changing the ownprice of pork simply moves us along an existing demand curve.

$$Q = 298 - 20 p$$

- Changing one of the things held constant (e.g. p_b, p_c, and Y) shifts the entire demand curve.
- p_b^{\uparrow} to \$4.60 /kg



2.2 Supply

- The quantity of a good or service that firms supply depends on price and other factors such as the cost of inputs that firms use to produce the good or service.
- The *supply function* describes the mathematical relationship between quantity supplied (*Q_s*), price (*p*) and other factors that influence the number of units offered for sale:

$$Q = S(p, p_b)$$

- p = per unit price of the good or service
- p_h = per unit price of other production factors

2.2 Supply

- We often work with a linear supply function.
- Example: estimated supply function for pork in Canada.

$$Q = 178 + 40p - 60p_{b}$$

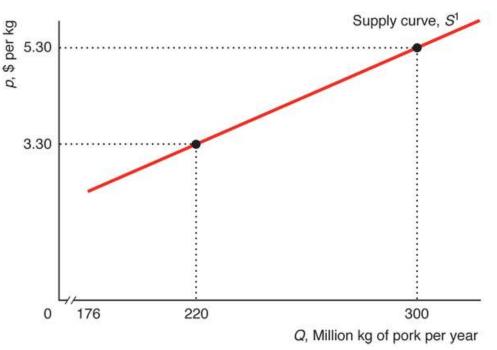
- Q_s = quantity of pork supplied (million kg per year)
- p = price of pork (in Canadian dollars per kg)
- p_h = price of hogs, an input (in Canadian dollars per kg)
- Graphically, we can only depict the relationship between Q_s and p, so we hold the other factors constant.

2.2 Supply Example: Canadian Pork

- Assumption about p_h to simplify equation
- $p_h = \$1.50/\text{kg}$

$$Q = 178 + 40p - 60p_b$$

$$Q = 88 + 40p$$

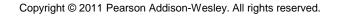


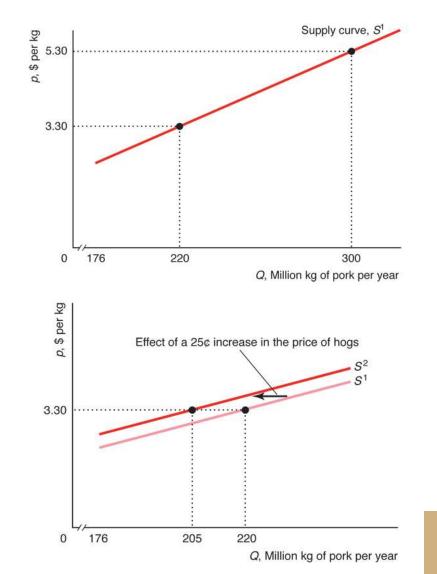
$$\frac{dQ_s}{dp} = 40 \implies \frac{dp}{dQ_s} = \frac{1}{40} = slope$$

2.2 Supply Example: Canadian Pork

 Changing the ownprice of pork simply moves us along an existing supply curve.

- Changing one of the things held constant (e.g. p_h) shifts the entire supply curve.
- *p_h* **↑**to \$4.60 /kg



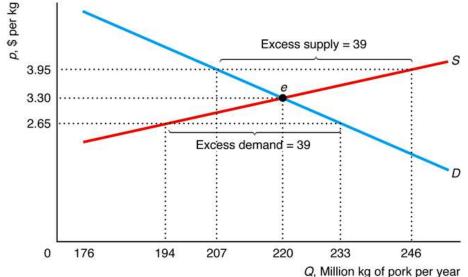


2.3 Market Equilibrium

- The interaction between consumers' demand curve and firms' supply curve determines the market price and quantity of a good or service that is bought and sold.
- Mathematically, we find the price that equates the quantity demanded, Q_d, and the quantity supplied, Q_s:
 - Given $Q_d = 286 20p$ and $Q_s = 88 + 40p$ find p such that $Q_d = Q_s$: 286 - 20p = 88 + 40p $Q_d = Q_s$ $p = $3.30 \implies 286 - (20 \times 3.30) = 88 + (40 \times 3.30)$ 220 = 220

2.3 Market Equilibrium

- Graphically, market equilibrium occurs where the demand and supply curves intersect.
 - At any other price, excess supply or excess demand results.
 - Natural market forces push toward equilibrium Q and p.

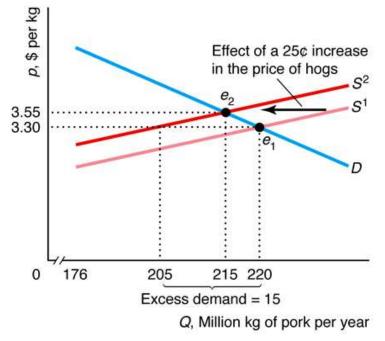


2.4 Shocking the Equilibrium: Comparative Statics

- Changes in a factor that affects demand, supply, or a new government policy alters the market price and quantity of a good or service.
- Changes in demand and supply factors can be analyzed graphically and/or mathematically.
 - Graphical analysis should be familiar from your introductory microeconomics course.
 - Mathematical analysis simply utilizes demand and supply functions to solve for a new market equilibrium.
- Changes in demand and supply factors can be large or small.
 - Small changes are analyzed with Calculus.

2.4 Shocking the Equilibrium: Comparative Statics with Discrete (large) Changes

- Graphically analyzing the effect of an increase in the price of hogs
 - When an input gets more expensive, producers supply less pork at every price.



2.4 Shocking the Equilibrium: Comparative Statics with Discrete (large) Changes

- Mathematically analyzing the effect of an increase in the price of hogs $Q_s = 73 + 40p$
 - If p_h increases by \$0.25, new $p_h = 1.75 and

$$Q_{d} = Q_{s}$$

$$286 - 20 p = 73 + 40 p$$

$$p = \$3.55$$

$$Q_{d} = 286 - 20(3.55) = 215$$

$$Q_{s} = 73 + 40(3.55) = 215$$

2.4 Shocking the Equilibrium: Comparative Statics with Small Changes

- Demand and supply functions are written as general functions of the price of the good, holding all else constant. Q = D(p)
 - Supply is also a function of some exogenous (not in firms' control) variable, a. Q = S(p, a)
- Because the intersection of demand and supply determines the price, p, we can write the price as an implicit function of the supplyshifter, a: Q = D(p(a)) $Q_s = S(p(a), a)$
- In equilibrium: D(p(a)) = S(p(a), a)

2.4 Shocking the Equilibrium: Comparative Statics with Small Changes

- Given the equilibrium condition
 - D(p(a)) = S(p(a), a), we differentiate with respect to a using the chain rule to determine how equilibrium is affected by a small change in a:

$$\frac{\mathrm{d}D(p(a))}{\mathrm{d}p}\frac{\mathrm{d}p}{\mathrm{d}a} = \frac{\partial S(p(a), a)}{\partial p}\frac{\mathrm{d}p}{\mathrm{d}a} + \frac{\partial S(p(a), a)}{\partial a}$$

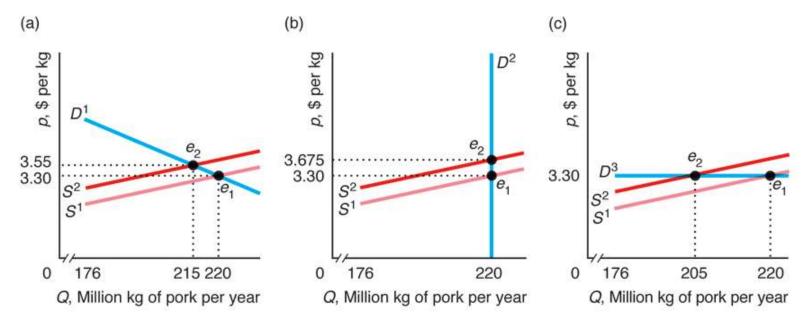
• Rearranging:

$$\frac{\mathrm{d}p}{\mathrm{d}a} = \frac{\frac{\partial S}{\partial a}}{\frac{\mathrm{d}D}{\mathrm{d}p} - \frac{\partial S}{\partial p}}$$

00

2.5 Elasticities

- The shape of demand and supply curves influence how much shifts in demand or supply affect market equilibrium.
 - Shape is best summarized by elasticity.



2.5 Elasticities

- Elasticity indicates how responsive one variable is to a change in another variable.
- The price elasticity of demand measures how sensitive the quantity demanded of a good, Q_d , is to changes in the price of that good, p.

$$\varepsilon = \frac{\text{percentage change in quantity demanded}}{\text{percentage change in price}} = \frac{\Delta Q/Q}{\Delta p/p} = \frac{\partial Q}{\partial p} \frac{p}{Q}$$

• If $Q_d = a - bp$, then $\varepsilon = \frac{dQ}{dp} \frac{p}{Q} = -b \frac{p}{Q}$ and elasticity can be evaluated at any point on the demand curve.

2.5 Example: Elasticity of Demand

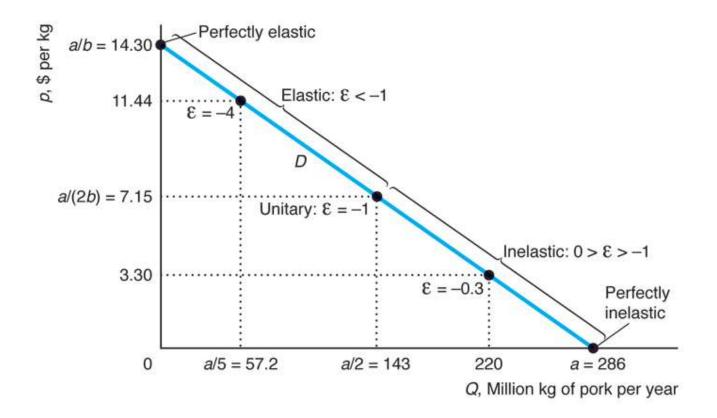
- Previous pork demand was $Q_d = 286 20p$
- Calculating price elasticity of demand at equilibrium (p=\$3.30 and Q=220):

$$\varepsilon = b \frac{p}{Q} = -20 \times \frac{3.30}{220} = -0.3$$

- Interpretation:
 - negative sign consistent with downward-sloping demand
 - a 1% increase in the price of pork leads to a 0.3% decrease in quantity of pork demanded

2.5 Elasticity of Demand

 Elasticity of demand varies along a linear demand curve



2.5 Elasticities

- There are other common elasticities that are used to gauge responsiveness.
 - income elasticity of demand

 $\xi = \frac{\text{percentage change in quantity demanded}}{\text{percentage change in income}} = \frac{\Delta Q/Q}{\Delta Y/Y} = \frac{\partial Q}{\partial Y}\frac{Y}{Q}$

cross-price elasticity of demand

 $\frac{\text{percentage change in quantity demanded}}{\text{percentage change in price of another good}} = \frac{\Delta Q/Q}{\Delta p_o/p_o} = \frac{\partial Q}{\partial p_o} \frac{p_o}{Q}$

elasticity of supply

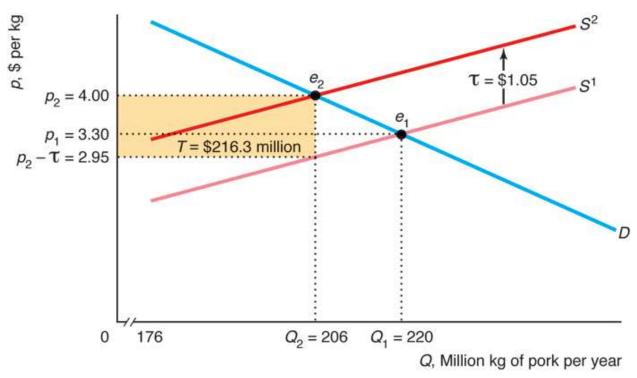
 $\eta = \frac{\text{percentage change in quantity supplied}}{\text{percentage change in price}} = \frac{\Delta Q/Q}{\Delta p/p} = \frac{\partial Q}{\partial p} \frac{p}{Q}$

2.6 Effects of a Sales Tax

- Two types of sales taxes:
 - Ad valorem tax is in percentage terms
 - California's state tax rate is 8.25%, so a \$100 purchase generates \$8.25 in tax revenue
 - Specific (or unit) tax is in dollar terms
 - U.S. gasoline tax is \$0.18 per gallon
 - Ad valorem taxes are much more common.
- The effect of a sales tax on equilibrium price and quantity depends on elasticities of demand and supply.

2.6 Equilibrium Effects of a Sales Tax

 Consider the effect of a \$1.05 per unit (specific) sales tax on the pork market that is collected from pork producers.



2.6 How Specific Tax Effects Depend on Elasticities

 If a unit tax, τ, is collected from pork producers, the price received by pork producers is reduced by this amount and our equilibrium condition becomes:

 $D(p(\tau) = S(p(\tau) - \tau)$

• Differentiating with respect to τ :

$$\frac{\mathrm{d}D}{\mathrm{d}p} \ \frac{\mathrm{d}p}{\mathrm{d}\tau} = \frac{\mathrm{d}S}{\mathrm{d}p} \frac{\mathrm{d}(p(\tau) - \tau)}{\mathrm{d}\tau} = \frac{\mathrm{d}S}{\mathrm{d}p} \left(\frac{\mathrm{d}p}{\mathrm{d}\tau} - 1\right)$$

 Rearranging indicates how the tax changes the price consumers pay:
 dS

$$\frac{\mathrm{d}p}{\mathrm{d}\tau} = \frac{\overline{\mathrm{d}p}}{\frac{\mathrm{d}S}{\mathrm{d}p} - \frac{\mathrm{d}D}{\mathrm{d}p}}$$

2.6 How Specific Tax Effects Depend on Elasticities

$$\frac{\mathrm{d}p}{\mathrm{d}\tau} = \frac{\frac{\mathrm{d}S}{\mathrm{d}p}}{\frac{\mathrm{d}S}{\mathrm{d}r} - \frac{\mathrm{d}D}{\mathrm{d}r}}$$

 The equation dp dp can be expressed in terms of elasticities by multiplying through by p/Q:

$$\frac{\mathrm{d}p}{\mathrm{d}\tau} = \frac{\frac{\mathrm{d}S}{\mathrm{d}p}\frac{p}{Q}}{\frac{\mathrm{d}S}{\mathrm{d}p}\frac{p}{Q} - \frac{\mathrm{d}D}{\mathrm{d}p}\frac{p}{Q}} = \frac{\eta}{\eta - \varepsilon}$$

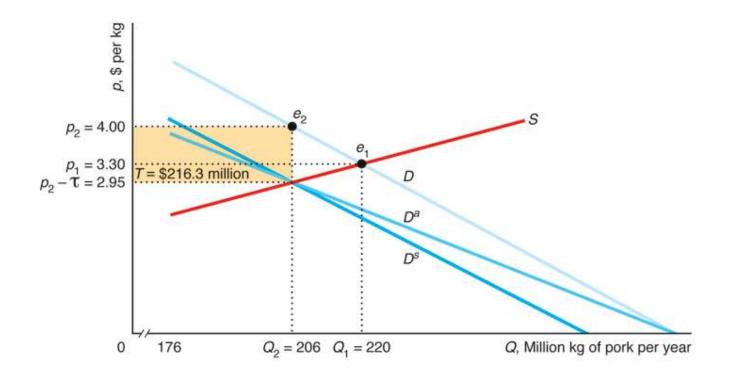
- Tax incidence on consumers, the amount by which the price to consumers rises as a fraction of the amount of the tax, is now easy to calculate given elasticities of demand and supply.
- Tax incidence on firms, the amount by which the price paid to firms rises, is simply $1 dp/d \tau$

2.6 Important Questions About Tax Effects

- Does it matter whether the tax is collected from producers or consumers?
 - Tax incidence is not sensitive to <u>who</u> is actually taxed.
 - A tax collected from producers shifts the supply curve back.
 - A tax collected from consumers shifts the demand curve back.
 - Under either scenario, a tax-sized wedge opens up between demand and supply and the incidence analysis is identical.
- Does it matter whether the tax is a unit tax or an ad valorem tax?
 - If the ad valorem tax rate is chosen to match the per unit tax divided by equilibrium price, the effects are the same.

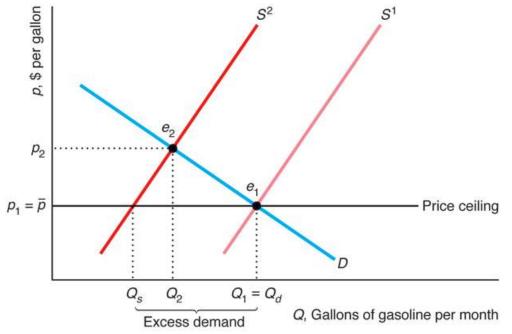
2.6 Important Questions About Tax Effects

• Does it matter whether the tax is a unit tax or an ad valorem tax?



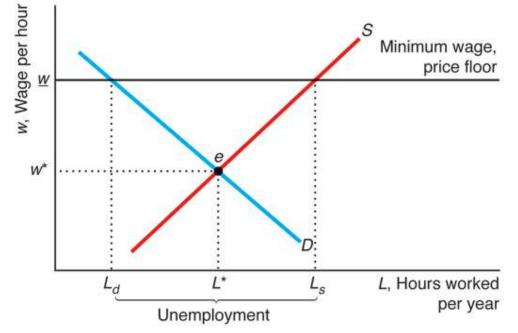
2.7 Quantity Supplied Need Not Equal Quantity Demanded

- Price determines whether $Q_s = Q_d$
- A *price ceiling* legally limits the amount that can be charged for a product.
 - Effective ceilings force the price below equilibrium price.



2.7 Quantity Supplied Need Not Equal Quantity Demanded

- Price determines whether $Q_s = Q_d$
- A *price floor* legally inflates the price of a product above some level.
 - Effective floor forces the price above equilibrium price.



2.8 When to Use the Supply-and-Demand Model

- This model is appropriate in markets that are perfectly competitive:
 - 1. There are a large number of buyers and sellers.
 - 2. All firms produce identical products.
 - 3. All market participants have full information about prices and product characteristics.
 - 4. Transaction costs are negligible.
 - 5. Firms can easily enter and exit the market.
- We will talk more about the perfectly competitive market in Chapter 8.

Figure 2.5 Total Supply: The Sum of Domestic and Foreign Supply

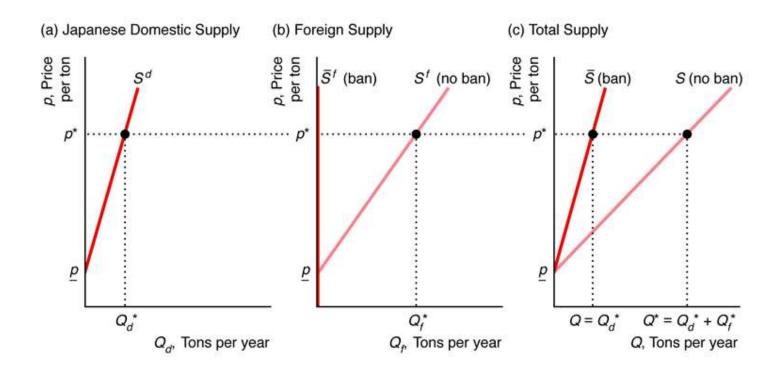


Figure 2.10 Constant-Elasticity Demand Curves

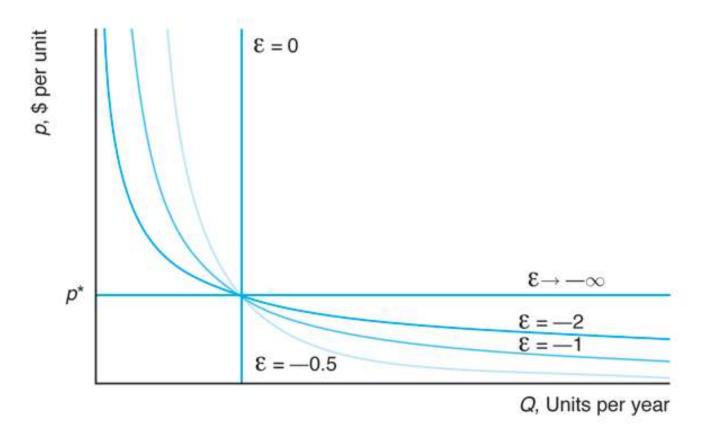


Figure 2.11 Constant-Elasticity Supply Curves

