Chapter 6

Firms and Production

Hard work never killed anybody, but why take a chance?

Charlie McCarthy

Chapter 6 Outline

6.1 The Ownership and Management of Firms
6.2 Production
6.3 Short Run Production: One Variable and One Fixed Input
6.4 Long Run Production: Two Variable Inputs
6.5 Returns to Scale
6.6 Productivity and Technical Change

6.1 Ownership \& Management of Firms

- A firm is an organization that converts inputs (labor, materials, and capital) into outputs.
- Firm types:

1. Private (for-profit) firms: owned by individuals or other non-governmental entities trying to earn a profit (e.g. Toyota, Walmart). Responsible for 77\% of GDP.
2. Public firms: owned by governments or government agencies (e.g. Amtrak, public schools). Responsible for 11% of GDP.
3. Not-for-profit firms: owned by organizations that are neither governments nor intended to earn a profit, but rather pursue social or public interest objectives (e.g. Salvation Army, Greenpeace). Responsible for 12% of GDP.

6.1 Ownership \& Management of Firms

- Legal forms of organization:

1. Sole proprietorship: firms owned by a single individual who is personal liable for the firm's debts.

- 72% of firms, but responsible for 4% of sales.

2. General partnership: businesses jointly owned and controlled by two or more people who are personally liable for the firm's debts.

- 9% of firms, but responsible for 13% of sales.

3. Corporation: firms owned by shareholders in proportion to the number of shares or amount of stock they hold.

- 19\% of firms, but responsible for 83% of sales.
- Corporation owners have limited liability; they are not personally liable for the firm's debts even if the firm goes into bankruptcy.

6.1 What Owners Want

- We focus on for-profit firms in the private sector in this course.
- We assume these firms' owners are driven to maximize profit.
- Profit is the difference between revenue (R), what it earns from selling its product, and cost (C), what it pays for labor, materials, and other inputs.

$$
\pi=R-C \quad \text { where } R=p q
$$

- To maximize profits, a firm must produce as efficiently as possible, where efficient production means it cannot produce its current level of output with fewer inputs.

6.2 Production and Variability of Inputs

- The various ways that a firm can transform inputs into the maximum amount of output are summarized in the production function.
- Assuming labor (L) and capital (K) are the only inputs, the production function is $q=f(L, K)$.
- A firm can more easily adjust its inputs in the long run than in the short run.
- The short run is a period of time so brief that at least one factor of production cannot be varied (the fixed input).
- The long run is a long enough period of time that all inputs can be varied.

6.3 Short Run Production

- In the short run (SR), we assume that capital is a fixed input and labor is a variable input.
- SR Production Function:

$$
q=f(L, \bar{K})
$$

- q is output, but also called total product; the short run production function is also called the total product of labor
- The marginal product of labor is the additional output produced by an additional unit of labor, holding all other factors constant. ${ }_{M P_{L}}=\frac{\partial q}{\partial L}=\frac{\partial f(L, K)}{\partial L}$
- The average product of labor is the ratio of output to the amount of labor employed.

$$
A P_{L}=\frac{q}{L}
$$

6.3 SR Production with Variable Labor

6.3 SR Production with Variable Labor

- Interpretations of the graphs:
- Total product of labor curve shows output rises with labor until $L=20$.
- $A P_{L}$ and $M P_{L}$ both first rise and then fall as L increases.
- Initial increases due to specialization of activities; more workers are a good thing
- Eventual declines result when workers begin to get in each other's way as they struggle with having a fixed capital stock
- $M P_{L}$ curve first pulls $A P_{L}$ curve up and then pulls it down, thus, $M P_{L}$ intersects $A P_{L}$ at its maximum.

6.3 Law of Diminishing Marginal Returns (LDMR)

- The law holds that, if a firm keeps increasing an input, holding all other inputs and technology constant, the corresponding increases in output will eventually becomes smaller.
- Occurs at $\mathrm{L}=10$ in previous graph
- Mathematically:

$$
\begin{aligned}
& \partial M P_{L} / \partial L=\partial(\partial q / \partial L) / \partial L= \\
& \partial^{2} q / \partial L^{2}=\partial^{2} f(L, K) / \partial L^{2}<0
\end{aligned}
$$

- Note that when $M P_{L}$ begins to fall, $T P$ is still increasing.
- LDMR is really an empirical regularity more than a law.
- Application: Malthus and the Green Revolution.

6.4 Long Run Production

- In the long run (LR), we assume that both labor and capital are variable inputs.
- The freedom to vary both inputs provides firms with many choices of how to produce (labor-intensive vs. capital-intensive methods).
- Consider a Cobb-Douglas production function where A, a, and b are constants:

$$
q=A L^{a} K^{b}
$$

- Hsieh (1995) estimated such a production function for a U.S. electronics firm:

$$
q=L^{0.5} K^{0.5}
$$

6.4 LR Production Isoquants

- A production isoquant graphically summarizes the efficient combinations of inputs (labor and capital) that will produce a specific level of output.

6.4 LR Production Isoquants

- Properties of isoquants:

1. The farther an isoquant is from the origin, the greater the level of output.
2. Isoquants do not cross.
3. Isoquants slope downward.
4. Isoquants must be thin.

- The shape of isoquants (curvature) indicates how readily a firm can substitute between inputs in the production process.

6.4 LR Production Isoquants

- Types of isoquants:
1.Perfect substitutes (e.g. $q=x+y$)

6.4 LR Production Isoquants

- Types of isoquants:
2.Fixed-proportions (e.g. $q=\min \{g, b\}$)

6.4 LR Production Isoquants

- Types of isoquants:
3.Convex (e.g. $q=L^{0.5} K^{0.5}$)

6.4 Substituting Inputs

- The slope of an isoquant shows the ability of a firm to replace one input with another (holding output constant).
- Marginal rate of technical substitution (MRTS) is the slope of an isoquant at a single point.

$$
M R T S=\frac{\text { change in capital }}{\text { change in labor }}=\frac{\Delta K}{\Delta L}=\frac{\mathrm{d} K}{\mathrm{~d} L}
$$

- MRTS tells us how many units of K the firm can replace with an extra unit of L (q constant)

$$
\frac{\mathrm{d} \bar{q}}{\mathrm{~d} L}=0=\frac{\partial f}{\partial L}+\frac{\partial f}{\partial K} \frac{\mathrm{~d} K}{\mathrm{~d} L}=M P_{L}+M P_{K} \frac{\mathrm{~d} K}{\mathrm{~d} L}
$$

- $M P_{L}=$ marginal product of labor; $M P_{K}=$ marginal product of capital
- Thus, $\quad M R T S=\frac{\mathrm{d} K}{\mathrm{~d} L}=-\frac{M P_{L}}{M P_{K}}$

6.4 Substituting Inputs

- MRTS diminishes along a convex isoquant
- The more L the firm has, the harder it is to replace K with L.

6.4 Elasticity of Substitution

- Elasticity of substitution measures
the ease with which a firm can substitute capital for labor.

$$
\sigma=\frac{\frac{\mathrm{d}(K / L)}{K / L}}{\frac{\mathrm{~d} M R T S}{M R T S}}=\frac{\mathrm{d}(K / L)}{\mathrm{d} M R T S} \frac{M R T S}{K / L}
$$

- Can also be expressed as a logarithmic derivative:

$$
\sigma=\frac{\mathrm{d} \ln (K / L)}{\mathrm{d} \ln |M R T S|}
$$

- Example: CES production function, $q=\left(a L^{\rho}+b K^{\rho}\right)^{\frac{d}{p}}$

$$
q=\left(L^{\rho}+K^{\rho}\right)^{\frac{1}{p}} \quad M R T S=-\left(\frac{L}{K}\right)^{\rho-1}
$$

Constant elasticity: $\sigma=\frac{1}{1-\rho}$

6.5 Returns to Scale

- How much does output change if a firm increases all its inputs proportionately?
- Production function exhibits constant returns to scale when a percentage increase in inputs is followed by the same percentage increase in output.
- Doubling inputs, doubles output $\rightarrow f(2 L, 2 K)=2 f(L, K)$
- More generally, a production function is homogeneous of
 constant.

6.5 Returns to Scale

- Production function exhibits increasing returns to scale when a percentage increase in inputs is followed by a larger percentage increase in output.
- $f(2 L, 2 K)>2 f(L, K)$
- Occurs with greater specialization of L and K; one large plant more productive than two small plants
- Production function exhibits decreasing returns to scale when a percentage increase in inputs is followed by a smaller percentage increase in output.
- $f(2 L, 2 K)<2 f(L, K)$
- Occurs because of difficulty organizing and coordinating activities as firm size increases.

6.5 Varying Returns to Scale

6.6 Productivity and Technical Change

- Even if all firms are producing efficiently (an assumption we make in this chapter), firms may not be equally productive.
- Relative productivity of a firm is the firm's output as a percentage of the output that the most productive firm in the industry could have produced with the same inputs.
- Relative productivity depends upon:
1.Management skill/organization
2.Technical innovation
3.Union-mandated work rules
4.Work place discrimination
5.Government regulations or other industry restrictions

6. Degree of competition in the market

6.6 Productivity and Technical Change

- An advance in firm knowledge that allows more output to be produced with the same level of inputs is called technical progress.
- Example: Nano by Tata Motors
- Neutral technical change involves more output using the same ratio of inputs.
- Non-neutral technical change involves altering the proportion in which inputs are used to produce more output.
- Organizational change may also alter the production function and increase output.
- Examples: automated production of Gillette razor blades, mass production of Ford automobiles

