## Chapter 13

## Microeconomics

Theory and Applications with Calculus

## Game Theory

A camper awakens to the growl of a hungry bear and sees his friend putting on a pair of running shoes. "You can't outrun a bear," scoffs the camper. His friend coolly replies, "I don't have to. I only have to outrun you!".

## Chapter 13 Outline

13.1 An Overview of Game Theory
13.2 Static Games
13.3 Dynamic Games
13.4 Auctions

### 13.1 An Overview of Game Theory

- Game theory is a set of tools used by economists and many others to analyze players' strategic decision making.
- Games are competitions between players (individuals, firms, countries) in which each player is aware that the outcome depends on the actions of all players.
- Game theory is particularly useful for examining how a small group of firms in a market with substantial barriers to entry, an oligopoly, interact.
- Examples: soft drink industry, chain hotel industry, smart phones


### 13.1 An Overview of Game Theory

- Useful definitions:
- The payoffs of a game are the players' valuation of the outcome of the game (e.g. profits for firms, utilities for individuals).
- The rules of the game determine the timing of players' moves and the actions players can make at each move.
- An action is a move that a player makes at a specified stage of a game.
- A strategy is a battle plan that specifies the action that a player will make condition on the information available at each move and for any possible contingency.
- Strategic interdependence occurs when a player's optimal strategy depends on the actions of others.


### 13.1 An Overview of Game Theory

- Assumptions:
- All players are interested in maximizing their payoffs.
- All players have common knowledge about the rules of the game
- Each player's payoff depends on actions taken by all players
- Complete information (payoff function is common knowledge among all players) is different from perfect information (player knows full history of game up to the point he is about to move)
- We will examine both static and dynamic games in this chapter.


### 13.2 Static Games

- In a static game each player acts simultaneously, only once and has complete information about the payoff functions but imperfect information about rivals' moves.
- Examples: employer negotiations with a potential new employee, teenagers playing "chicken" in cars, street vendors' choice of locations and prices
- Consider a normal-form static game of complete information which specifies the players, their strategies, and the payoffs for each combination of strategies.
- Competition between United and American Airlines on the LA-Chicago route.


### 13.2 Quantity-Setting Game

- Quantities, $q$, are in thousands of passengers per quarter; profits are in millions of dollars per quarter


## American Airlines



Note: Quantities are in thousands of passengers per quarter; (rounded) profits are in millions of dollars per quarter.

### 13.2 Predicting a Game's Outcome

- Rational players will avoid strategies that are dominated by other strategies.
- In fact, we can precisely predict the outcome of any game in which every player has a dominant strategy.
- A strategy that produces a higher payoff than any other strategy for every possible combination of its rivals' strategies
- Airline Game:
- If United chooses high-output, American's high-output strategy maximizes its profits.
- If United chooses low-output, American's high-output strategy still maximizes its profits.
- For American, high-output is a dominant strategy.


### 13.2 Quantity-Setting Game

- The high-output strategy is dominant for American and for United. This is a dominant strategy equilibrium.


Note: Quantities are in thousands of passengers per quarter; (rounded) profits are in millions of dollars per quarter.

- Players choose strategies that don't maximize joint profits.
- Called a prisoners' dilemma game; all players have dominant strategies that lead to a profit that is less than if they cooperated.


### 13.2 Iterated Elimination of Strictly Dominated Strategies

- In games where not all players have a dominant strategy, we need a different means of predicting the outcome.


[^0]
### 13.2 Static Games

- When iterative elimination fails to predict a unique outcome, we can use a related approach.
- The best response is a strategy that maximizes a player's payoff given its beliefs about its rivals' strategies.
- A set of strategies is a Nash equilibrium if, when all other players use these strategies, no player can obtain a higher playoff by choosing a different strategy.
- No player has an incentive to deviate from a Nash equilibrium.


### 13.2 Nash Equilibrium

- Every game has at least one Nash equilibrium and every dominant strategy equilibrium is a Nash equilibrium, too.


Note: Quantities are in thousands of passengers per quarter; (rounded) profits are in millions of dollars per quarter.

### 13.2 Mixed Strategies

- So far, the firms have used pure strategies, which means that each player chooses a single action.
- A mixed strategy is when a player chooses among possible actions according to probabilities the player assigns.
- A pure strategy assigns a probability of 1 to a single action.
- A mixed strategy is a probability distribution over actions.
- When a game has multiple pure-strategy Nash equilibria, a mixed-strategy Nash equilibrium can help to predict the outcome of the game.


### 13.2 Simultaneous Entry Game

- This game has two Nash equilibria in pure strategies and one mixed-strategy Nash equilibrium.

Firm 1


### 13.2 Advertising Game

- Firms don't cooperate in this game and the sum of firms' profits is not maximized in the Nash equilibrium

Firm 1


### 13.2 Advertising Game

- If advertising by either firm attracts new customers to the market, then Nash equilibrium does maximize joint profit.
(b) Advertising Attracts New Customers to the Market

Firm 1


### 13.3 Dynamic Games

- In dynamic games:
- players move either sequentially or repeatedly
- players have complete information about payoff functions
- at each move, players have perfect information about previous moves of all players
- Dynamic games are analyzed in their extensive form, which specifies
- the $n$ players
- the sequence of their moves
- the actions they can take at each move
- the information each player has about players' previous moves
- the payoff function over all possible strategies.


### 13.3 Dynamic Games

- Consider a single period two-stage game:
- First stage: player 1 moves
- Second stage: player 2 moves
- In games where players move sequentially, we distinguish between an action and a strategy.
- An action is a move that a player makes a specified point.
- A strategy is a battle plan that specifies the action a player will make condition on information available at each move.
- Return to the Airline Game to demonstrate these concepts.
- Assume American chooses its output before United does.


### 13.3 Dynamic Games

- This Stackelberg game tree shows
- decision nodes: indicates which player's turn it is
- branches: indicates all possible actions available
- subgames: subsequent decisions available given previous actions



### 13.3 Dynamic Games

- To predict the outcome of the Stackelberg game, we use a strong version of Nash equilibrium.
- A set of strategies forms a subgame perfect Nash equilibrium if the players' strategies are a Nash equilibrium in every subgame.
- This game has four subgames; three subgames at second stage where United makes a decision and an additional subgame at the time of the first-stage decision.
- We can solve for the subgame perfect Nash equilibrium using backward induction.


### 13.3 Dynamic Games

- Backward induction is where we determine:
- the best response by the last player to move
- the best response for the player who made the next-to-last move
- repeat the process until we reach the beginning of the game
- Airline Game
- If American chooses 48, United selects 64, American's profit=3.8
- If American chooses 64, United selects 64, American's profit=4.1
- If American chooses 96, United selects 48, American's profit=4.6
- Thus, American chooses 96 in the first stage.


### 13.3 Dynamic Entry Games

- Entry occurs unless the incumbent acts to deter entry by paying for exclusive rights to be the only firm in the market.



### 13.4 Auctions

- What if the players in a game don't have complete information about payoffs?
- Players have to devise bidding strategies without this knowledge.
- An auction is a sale in which a good or service is sold to the highest bidder.
- Examples of things that are exchanged via auction:
- Airwaves for radio stations, mobile phones, and wireless internet access
- Houses, cars, horses, antiques, art


### 13.4 Elements of Auctions

- Rules of the Game:

1. Number of units

- Focus on auctions of a single, indivisible item

2. Format

- English auction: ascending-bid auction; last bid wins
- Dutch auction: descending-bid auction; first bid wins
- Sealed-bid auction: private, simultaneous bids submitted

3. Value

- Private value: each potential bidder values item differently
- Common value: good has same fundamental value to all


### 13.4 Bidding Strategies in PrivateValue Auctions

- In a first-price sealed-bid auction, the winner pays his/her own, highest bid.
- In a second-price sealed-bid auction, the winner pays the amount bid by the second-highest bidder.
- In a second-price auction, should you bid the maximum amount you are willing to spend?
- If you bid more, you may receive negative consumer surplus.
- If you bid less, you only lower the odds of winning without affecting the price that you pay if you do win.
- So, yes, you should bid your true maximum amount.


### 13.4 Bidding Strategies in PrivateValue Auctions

- English Auction Strategy
- Strategy is to raise your bid by smallest permitted amount until you reach the value you place on the good being auctioned.
- The winner pays slightly more than the value of the second-highest bidder.
- Dutch Auction Strategy
- Strategy is to bid an amount that is equal to or slightly greater than what you expect will be the second-highest bid.
- Reducing your bid reduces probability of winning but increases consumer surplus if you win.


### 13.4 Auctions

- The winner's curse is that the auction winner's bid exceeds the common-value item's value.
- Overbidding occurs when there is uncertainty about the true value of the good
- Occurs in common-value but not private-value auctions
- Example:
- Government auctions of timber on a plot of land
- Bidders may differ on their estimates of how many board feet of lumber are on the plot
- If average bid is accurate, then high bid is probably excessive
- Winner's curse is paying too much


[^0]:    Note: Quantities are in thousands of passengers per quarter; (rounded) profits are in millions of dollars per quarter.

