Chapter 16

Uncertainty

We must believe in luck. For how else can we explain the success of those we don't like?

Jean Cocteau

Chapter 16 Outline

16.1 Degree of Risk
16.2 Decision Making Under Uncertainty
16.3 Avoiding Risk
16.4 Investing Under Uncertainty
16.5 Behavioral Economics of Risk

16.1 Degree of Risk

- We incorporate risk and uncertainty into our models of decision making because they can cause consumers and firms to modify decisions about consumption and investment choices.
- Risk is the when the likelihood of each possible outcome is known or can be estimated, and no single possible outcome is certain to occur.
- Estimates of how risky each outcome is allows us to estimate the most likely outcome.

16.1 Degree of Risk

- A probability is a number between 0 and 1 that indicates the likelihood that a particular outcome will occur.
- We can estimate probability with frequency, the number of times that one particular outcome occurred (n) out of the total number of times an event occurred (N).

$$
\theta=\frac{n}{N}
$$

- If we don't have a history of the event that allows us to calculate frequency, we can use our best estimate or subjective probability.

16.1 Degree of Risk

- A probability distribution relates the probability of occurrence to each possible outcome.
(a) Less Certain

(b) More Certain

16.1 Degree of Risk

- Expected value is the value of each possible outcome $\left(V_{i}\right)$ times the probability of that outcome $\left(\theta_{i}\right)$, summed over all n possible outcomes:

$$
\mathrm{E} V=\sum_{i=1}^{n} \theta_{i} V_{i}
$$

- How is expected value used to measure risk?
- Variance measures the spread of the probability distribution or how much variation there is between the actual value and the expected value.

$$
\text { Variance }=\sum_{i=1}^{n} \theta_{i}\left(V_{i}-\mathrm{E} V\right)^{2}
$$

- Standard deviation (σ) is the square root of the variance and is a more commonly reported measure of risk.

16.2 Decision Making Under Uncertainty

- Example: Greg schedules an outdoor event
- If it doesn't rain, he'll make $\$ 15$ in profit (e.g. $\$ 150,000$)
- If it does rain, he'll make -\$5 in profit (loss) (e.g. -\$5,000)
- There is a 50% chance of rain.
- Greg's expected value (outdoor event):

$$
\begin{aligned}
\mathrm{E} V & =[\operatorname{Pr}(\text { no rain }) \times \text { Value }(\text { no rain })]+[\operatorname{Pr}(\text { rain }) \times \text { Value }(\text { rain })] \\
& =\left(\frac{1}{2} \times \$ 15\right)+\left[\frac{1}{2} \times(-\$ 5)\right]=\$ 5
\end{aligned}
$$

- Variance (outdoor event): $\sigma^{2}=\left[\theta_{1} \times\left(V_{1}-E V\right)^{2}\right]+\left[\theta_{2} \times\left(V_{2}-E V\right)^{2}\right]$

$$
\begin{aligned}
& =\left[\frac{1}{2} \times(\$ 15-\$ 5)^{2}\right]+\left[\frac{1}{2} \times(-\$ 5-\$ 5)^{2}\right] \\
& =\left[\frac{1}{2} \times(\$ 10)^{2}\right]+\left[\frac{1}{2} \times(-\$ 10)^{2}\right]=\$ 100 .
\end{aligned}
$$

- Standard deviation $=\$ 10$

16.2 Decision Making Under Uncertainty

- Example, continued: Greg schedules an indoor event
- If it doesn't rain, he'll make $\$ 10$ in profit (e.g. $\$ 100,000$)
- If it does rain, he'll make $\$ 0$ in profit
- There is still a 50% chance of rain.
- Greg's expected value (indoor event)... is the same!

$$
E V=\left(\frac{1}{2} \times \$ 10\right)+\left(\frac{1}{2} \times \$ 0\right)=\$ 5
$$

- Variance (indoor event)... is much smaller:

$$
\begin{aligned}
\sigma^{2} & =\left[\frac{1}{2} \times(\$ 10-\$ 5)^{2}\right]+\left[\frac{1}{2} \times(\$ 0-\$ 5)^{2}\right] \\
& =\left[\frac{1}{2} \times(\$ 5)^{2}\right]+\left[\frac{1}{2} \times(-\$ 5)^{2}\right]=\$ 25
\end{aligned}
$$

- Standard deviation = \$5
- Much less risky to schedule event indoors!

16.2 Decision Making Under Uncertainty

- Although indoor and outdoor events have the same expected value, the outdoor event involves more risk.
- He'll schedule the event outdoors only if he likes to gamble.
- People can be classified according to attitudes toward risk.
- A fair bet is a wager with an expected value of zero.
- Example: You receive $\$ 1$ if a flipped coin comes up heads and you pay $\$ 1$ if a flipped coin comes up tails.
- Someone who is unwilling to make a fair bet is risk averse.
- Someone who is indifferent about a fair bet is risk neutral.
- Someone who is risk preferring will make a fair bet.

16.2 Decision Making Under Uncertainty

- We can alter our model of utility maximization to include risk by assuming that people maximize expected utility.
- Expected utility, $E U$, is the probability-weighted average of the utility, $U(\bullet)$ from each possible outcome:

$$
\mathrm{E} U=\sum_{i=1}^{n} \theta_{i} U\left(V_{i}\right)
$$

- The weights are the probabilities that each state of nature will occur, just as in expected value.
- A person whose utility function is concave picks the lessrisky choice if both choices have the same expected value.

16.2 Attitudes Toward Risk

- Example: Risk-averse Irma and wealth
- Irma has initial wealth of $\$ 40$
- Option 1: keep the $\$ 40$ and do nothing $\rightarrow U(\$ 40)=120$
- Option 2: buy a vase that she thinks is a genuine Ming vase with probability of 50%
- If she is correct, wealth $=\$ 70 \rightarrow U(\$ 70)=140$
- If she is wrong, wealth $=\$ 10 \rightarrow U(\$ 10)=70$
- Expected value of wealth remains $\$ 40=(1 / 2 \cdot \$ 10)+(1 / 2 \cdot \$ 70)$
- Expected value of utility is $105=(1 / 2 \cdot 70)+(1 / 2 \cdot 140)$
- Although both options have the same expected value of wealth, the option with risk has lower expected utility.

16.2 Attitudes Toward Risk

- Irma is riskaverse and would pay a risk premium to avoid risk.

16.2 Attitudes Toward Risk

- Risk-neutral and risk-preferring utilities.

(a) Risk-Neutral Individual

(b) Risk-Preferring Individual

16.2 Attitudes Toward Risk

- The degree of risk aversion is judged by the shape of the utility function over wealth, $U(W)$.
- One common measure is the Arrow-Pratt measure of risk aversion:

$$
\rho(W)=-\frac{\mathrm{d}^{2} U(W) / \mathrm{d} W^{2}}{\mathrm{~d} U(W) / \mathrm{d} W}
$$

- This measure is positive for risk-averse individuals, zero for risk-neutral individuals, and negative for those who prefer risk.
- The larger the Arrow-Pratt measure, the more small gambles that an individual will take.

16.3 Avoiding Risk

- There are four primary ways for individuals to avoid risk:

1. Just say no

- Abstaining from risky activities is the simplest way to avoid risk.

2. Obtain information

- Armed with information, people may avoid making a risky choice or take actions to reduce probability of a disaster.

3. Diversify

- "Don't put all your eggs in one basket."

4. Insure

- Insurance is like paying a risk premium to avoid risk.

16.3 Avoiding Risk Via Diversification

- Diversification can eliminate risk if two events are perfectly negatively correlated.
- If one event occurs, then the other won't occur.
- Diversification does not reduce risk if two events are perfectly positively correlated.
- If one even occurs, then the other will occur, too.
- Example: investors reduce risk by buying shares in a mutual fund, which is comprised of shares of many companies.

16.3 Avoiding Risk Via Insurance

- A risk-averse individual will fully insure by buying enough insurance to eliminate risk if the insurance company offers a fair bet, or fair insurance.
- In this scenario, the expected value of the insurance is zero; the policyholder's expected value with and without the insurance is the same.
- Insurance companies never offer fair insurance, because they would not stay in business, so most people do not fully insure.

16.4 Investing Under Uncertainty

- Risk-neutral
- Owner invests if the expected value of the return from investment is positive
- Risk-averse
- Owner invests if the expected value of the investment exceeds the expected value of not investing
(a) Risk-Neutral Owner

16.4 Investing with Uncertainty and Discounting

- A risk-neutral owner invests if the expected net present value of the return from investment is positive

16.4 Investing with Altered Probabilities

- A risk-neutral owner can incur an additional cost through advertising to alter the probability of high demand.

16.5 Behavioral Economics of Risk

- Why do many individuals make choices under uncertainty that are inconsistent with the predictions of expected utility theory?

1. Difficulty assessing probabilities

- Gambler's fallacy
- Overconfidence
2.Behavior varies with circumstances
- Low-probability gambles
- Certainty effect

3. Prospect theory

- We briefly discuss each of these explanations.

16.5 Behavioral Economics of Risk

- People often have mistaken beliefs about the probability that an event will occur.
- The gambler's fallacy arises from the false belief that past events affect current, independent outcomes.
- Example: flipping 'heads' 10 times in a row does not change the probability of getting 'heads' on the next flip from 50\%.
- Some people engage in risky gambles because they are overconfident.
- Surveys of gamblers reveal big gap between estimated chance of winning a bet and objective probability of winning.

16.5 Behavioral Economics of Risk

- Some people's choices vary with circumstances.
- Otherwise risk-averse people (who buy insurance!) will buy a lottery ticket, despite the fact that it is an unfair bet.
- Utility function is risk averse in some regions, risk preferring in others.
- Many people put excessive weight on outcomes they consider to be certain relative to risky outcomes (certainty effect).
- Many people reverse their preferences when a problem is framed in a different but equivalent way.
- Attitudes toward risk are reversed for gains versus losses.

16.5 Behavioral Economics of Risk

- Prospect theory is an alternative theory (to expected utility theory) of decision making under uncertainty.
- People are concerned about gains and losses in wealth (rather than the level of wealth as in expected utility theory)
- The prospect theory value function is S-shaped and has three properties:

1. Passes through origin: gains/losses determined relative to initial situation
2. Concave to horizontal axis: less sensitivity to changes in large gains than small ones
3. Curve is asymmetric: people treat gains and losses differently.

16.5 Behavioral Economics of Risk

- Prospect Theory Value Function

