

Figure 1: Graph for Question 3

## ECON 6500

## Assignment 2: Partial Answer Key

3 Myrtle has $\$ 200$ per month to spend on Transit (X) and all other goods (Y). She currently buys a bus pass for $\$ 50$ and rides 40 times per month.If she didn't buy the pass, bus rides would cost $\$ 2 /$ ride. Myrtle is offered to join a Transit program that would allow her to pay a membership fee and then could ride the bus for $\$ 1$ per trip. The most Myrtle would pay for the membership is $\$ 20$. and then she would ride 15 times a month. If she were given the membership for free, she would ride the bus 18 times per month. Myrtle also reveals that she would be indifferent between a free membership (and $\$ 1$ per ride) versus simply having the traditional bus pass reduced to $\$ 25$ per month (flat rate), where she would again choose to ride the bus 40 times a month.
(a) Using all the information provided, draw all the relevant budget constraints and indifference curves. Be sure to label all equilibrium points and have a legend that explains each point (in one or two sentences).
(b) Calculate her CV (compensating variation) Two answers acceptable $\$ 20$ fee; or $\$ 30$ difference between the Pass ( $\$ 50$ ), and the most she would pay for $\$ 1$ rides $(\$ 20)$
(c) Calculate her EV (equivalent variation)-25\$

4 Skippy has the following utility function: $u=x y$ and faces the budget constraint: $M=p_{x} x+p_{y} y$. Her associated marginal rate of substitution is $M R S=\frac{y}{x}$
(a) Use the $M R S=p_{x} / p_{y}$ and the budget constraint to find Skippy's demand functions.

$$
x=\frac{M}{2 p_{x}}, y=\frac{M}{2 p_{y}}
$$

indirect utility function is

$$
v=\left(\frac{M}{2 p_{x}}\right)\left(\frac{M}{2 p_{y}}\right)=\frac{M^{2}}{4 p_{x} p_{y}}
$$

$v$ tells you the utility number for any given budget and prices
(b) Suppose $M=120, P_{y}=1$ and $P_{x}=4$. What is Skippy's optimal $x, y$ and utility number? If the price of x was lowered to 2 what would be her $x, y$ and utility number

$$
\begin{aligned}
x_{\text {old }} & =15, y_{\text {old }}=60, u_{\text {old }}=900 \\
x_{\text {new }} & =30, y_{\text {new }}=60, u_{\text {old }}=1800
\end{aligned}
$$

(c) What is the most Skippy would pay to have $P_{x}$ lowered to 2? USE INDIRECT UTILITY

$$
\begin{aligned}
v & =\frac{M^{2}}{4 p_{x} p_{y}} \\
900 & =\frac{(M-F)^{2}}{4(2)(1)} \\
7200 & =(120-F)^{2} \\
120-F & =\sqrt{7200}=84.9 \\
F & =120-84.9=35.1
\end{aligned}
$$

(d) Suppose $M=120, P_{y}=1$ and $P_{x}=4$. How much additional income would Skippy need to be as well off as if the price of $x$ had fallen to 2 ? USE INDIRECT UTILITY

$$
\begin{aligned}
v & =\frac{M^{2}}{4 p_{x} p_{y}}=1800 \\
1800 & =\frac{(M+S)^{2}}{4(4)(1)} \\
28800 & =(120+S)^{2} \\
120+S & =\sqrt{28800}=169.7 \\
S & =169.7-120=49.7
\end{aligned}
$$

