ECON 6500
 Utility Maximization Homework

Instructions:

For next week's class, read your notes on calculus and the illustrations found here. In the last section of this document you will find a set of utility maximization problems. Attempt each of them and bring your results to next class.

REVIEW:Partial Derivative Rules:

$$
\begin{array}{lll}
U=x y & \partial U / \partial x=y & \partial U / \partial y=x \\
U=x^{a} y^{b} & \partial U / \partial x=a x^{a-1} y^{b} & \partial U / \partial y=b x^{a} y^{b-1} \\
U=x^{a} y^{-b}=\frac{x^{a}}{y^{b}} & \partial U / \partial x=a x^{a-1} y^{-b} & \partial U / \partial y=-b x^{a} y^{-b-1} \\
U=a x+b y & \partial U / \partial x=a & \partial U / \partial y=b \\
U=a x^{1 / 2}+b y^{1 / 2} & \partial U / \partial x=a\left(\frac{1}{2}\right) x^{-1 / 2} & \partial U / \partial y=b\left(\frac{1}{2}\right) y^{-1 / 2}
\end{array}
$$

The Lagrange Multiplier Method

Sometimes we need to to maximize a function that is subject to some sort of constraint. For example

$$
\begin{aligned}
& \text { Maximize } \quad z=f(x, y) \\
& \text { subject to the constraint } \quad x+y \leq 100
\end{aligned}
$$

For this kind of problem there is a technique, or trick, developed for this kind of problem known as the Lagrange Multiplier method. This method involves adding an extra variable to the problem called the lagrange multiplier, or λ.

We then set up the problem as follows:

1. Create a new equation form the original information

$$
\begin{gathered}
L=f(x, y)+\lambda(100-x-y) \\
\text { or } \\
L=f(x, y)+\lambda[\text { Zero }]
\end{gathered}
$$

2. Then follow the same steps as used in a regular maximization problem

$$
\begin{gathered}
\frac{\partial L}{\partial x}=f_{x}-\lambda=0 \\
\frac{\partial L}{\partial y}=f_{y}-\lambda=0 \\
\frac{\partial L}{\partial \lambda}=100-x-y=0
\end{gathered}
$$

3. In most cases the λ will drop out with substitution. Solving these 3 equations will give you the constrained maximum solution

Example 1:

Suppose $z=f(x, y)=x y$. and the constraint is the one from above. The problem then becomes

$$
L=x y+\lambda(100-x-y)
$$

Now take partial derivatives, one for each unknown, including λ

$$
\begin{gathered}
\frac{\partial L}{\partial x}=y-\lambda=0 \\
\frac{\partial L}{\partial y}=x-\lambda=0 \\
\frac{\partial L}{\partial \lambda} \stackrel{100-x-y=0}{=} 100
\end{gathered}
$$

Starting with the first two equations, we see that $x=y$ and λ drops out. From the third equation we can easily find that $x=y=50$ and the constrained maximum value for z is $z=x y=2500$.

Example 2:

Maximize

$$
u=x^{2} y
$$

subject to

$$
x+y=60
$$

Set up the Lagrangian Equation:

$$
L=x^{2} y+\lambda(60-x-y)
$$

Take the first-order partials and set them to zero

$$
\begin{aligned}
L_{x} & =2 x y-\lambda=0 \\
L_{y} & =x^{2}-\lambda=0 \\
L_{\lambda} & =60-x-y=0
\end{aligned}
$$

From the first two equations we get

$$
\begin{aligned}
2 x y & =x^{2} \\
2 y & =x
\end{aligned}
$$

Substitute this result into the third equation

$$
\begin{aligned}
60-2 y-y & =0 \\
60 & =3 y \\
y & =20
\end{aligned}
$$

therefore

$$
x=2 y=40
$$

Example 3: Utility Maximization

Consider a consumer with the utility function $U=x y$, who faces a budget constraint of $B=P_{x} x+P_{y} y$, where B, P_{x} and P_{y} are the budget and prices, which are given.

The choice problem is
Maximize

$$
\begin{equation*}
U=x y \tag{1}
\end{equation*}
$$

Subject to

$$
\begin{equation*}
B=P_{x} x+P_{y} y \tag{2}
\end{equation*}
$$

The Lagrangian for this problem is

$$
\begin{equation*}
Z=x y+\lambda\left(B-P_{x} x-P_{y} y\right) \tag{3}
\end{equation*}
$$

The first order conditions are

$$
\begin{align*}
& Z_{x}=y-\lambda P_{x}=0 \\
& Z_{y}=x-\lambda P_{y}=0 \tag{4}\\
& Z_{\lambda}=B-P_{x} x-P_{y} y=0
\end{align*}
$$

Solving the first order conditions yield the following solutions

$$
\begin{equation*}
x=\frac{B}{2 P_{x}} \quad y=\frac{B}{2 P_{y}} \tag{5}
\end{equation*}
$$

Problems:

1. Skippy lives on an island where she produces two goods, x and y, according the the production possibility frontier $200=x+y$, and she consumes all the goods herself. Her utility function is

$$
u=x \cdot y^{3}
$$

Find her utility maximizing x and y .
2. Re-do problem 1 with $u=x^{2} y^{3}$
3. Skippy has the following utility function: $u=x^{\frac{1}{2}} y^{\frac{1}{2}}$ and faces the budget constraint: $M=p_{x} x+p_{y} y$.
(a) Suppose $M=120, P_{y}=1$ and $P_{x}=4$. Find the optimal x and y
(b) Suppose both prices change such that $P_{x}=3$ and $P_{y}=2$ and $M=120$ (as before). Find the new optimal x and y
4. A consumer has the following utility function: $U(x, y)=x(y+1)$, where x and y are quantities of two consumption goods whose prices are p_{x} and p_{y} respectively. The consumer also has a budget of B. Therefore the consumer's maximization problem is

$$
x(y+1)+\lambda\left(B-p_{x} x-p_{y} y\right)
$$

find expressions for x^{*} and y^{*}. These are the consumer's demand functions. What kind of good is y ? In particular what happens when $p_{y}>B / 2$?

