Utility Maximization Steps
 ECON 6500

The MRS and the Cobb-Douglas

Consider a two-good world, x and y. Our consumer, Skippy, wishes to maximize utility, denoted $U(x, y)$. Her problem is then to Maximize:

$$
U=U(x, y)
$$

subject to the constraint

$$
B=p_{x} x+p_{y} y
$$

Unless there is a Corner Solution, the solution will occur where the highest indifference curve is tangent to the budget constraint. Equivalent to that is the statement: The Marginal Rate of Substitution equals the price ratio, or

$$
M R S=\frac{p_{x}}{p_{y}}
$$

This rule, combined with the budget constraint, give us a two-step procedure for finding the solution to the utility maximization problem.

First, in order to solve the problem, we need more information about the $M R S$. As it turns out, every utility function has its own $M R S$, which can easily be found using calculus. However, if we restrict ourselves to some of the more common utility functions, we can adopt some short-cuts to arrive at the $M R S$ without calculus.

For example, if the utility function is

$$
U=x y
$$

then

$$
M R S=\frac{y}{x}
$$

This is a special case of the "Cobb-Douglas" utility function, which has the form:

$$
U=x^{a} y^{b}
$$

where a and b are two constants. In this case the marginal rate of substitution for the Cobb-Douglas utility function is

$$
M R S=\left(\frac{a}{b}\right)\left(\frac{y}{x}\right)
$$

regardless of the values of a and b.

Solving the utility max problem

Consider our earlier example of "Skippy" where

$$
\begin{aligned}
U & =x y \\
M R S & =\frac{y}{x}
\end{aligned}
$$

Suppose Skippy's budget information is as follows: $B=100, p_{x}=1, p_{y}=1$. Her budget constraint is

$$
\begin{aligned}
B & =p_{x} x+p_{y} y \\
100 & =x+y
\end{aligned}
$$

Step 1 Set MRS equal to price ratio

$$
\begin{aligned}
M R S & =\frac{p_{x}}{p_{y}} \\
\frac{y}{x} & =\frac{1}{1} \\
y & =x
\end{aligned}
$$

this relationship must hold at the utility maximizing point.

Step 2 Substitute step 1 into budget constraint

Since $y=x$, the budget constraint becomes

$$
\begin{aligned}
100 & =x+y \\
& =x+x \\
& =2 x
\end{aligned}
$$

Solving for x yields

$$
x=\frac{100}{2}=50
$$

Therefore

$$
y=50
$$

and

$$
u=(50)(50)=2500
$$

Change the price of \mathbf{x}

Now suppose the price of x falls to 0.5 or $1 / 2$. Re-do steps 1 and 2 ,

$$
\begin{aligned}
M R S & =\frac{p_{x}}{p_{y}} \\
\frac{y}{x} & =\frac{0.5}{1}=\frac{1}{2} \\
y & =\frac{1}{2} x
\end{aligned}
$$

Substitute this new relationship into the budget constraint

$$
\begin{aligned}
100 & =x+y \\
100 & =x+\frac{1}{2} x \\
100 & =1.5 x \\
x & =\frac{100}{1.5}=66.7 \\
y & =33.3
\end{aligned}
$$

General Solution to Cobb-Douglas Utility

Using the general form of the Cobb-Douglas

$$
U=x^{a} y^{b}
$$

where

$$
M R S=\frac{a y}{b x}
$$

and the budget constraint in the form

$$
B=p_{x} x+p_{y} y
$$

where the price ratio is p_{x} / p_{y}, the first rule of utility maximization yields

$$
\begin{aligned}
M R S & =\frac{p_{x}}{p_{y}} \\
\frac{a y}{b x} & =\frac{p_{x}}{p_{y}} \\
y & =\frac{b}{a} \frac{p_{x}}{p_{y}} x
\end{aligned}
$$

Substituting into the budget constraint yields

$$
\begin{aligned}
B & =p_{x} x+p_{y}\left(\frac{b}{a} \frac{p_{x}}{p_{y}} x\right) \\
B & =p_{x} x+\frac{b}{a} p_{x} x \\
B & =\left(\frac{a+b}{a}\right) p_{x} x \quad \text { (see footnote for algebra) } \\
x^{*} & =\left(\frac{a}{a+b}\right) \frac{B}{p_{x}}
\end{aligned}
$$

Similarly, we can find y by the same method, which gives us

$$
y^{*}=\left(\frac{b}{a+b}\right) \frac{B}{p_{y}}
$$

The solutions for x and y are called the consumer's DEMAND FUNCTIONS.
Note that in our first example where $U=x y$, the values of a and b are $a=b=1$ substituting into x^{*} and y^{*} we get

$$
\begin{aligned}
x^{*} & =\left(\frac{1}{1+1}\right) \frac{B}{p_{x}} \\
x^{*} & =\frac{B}{2 p_{x}}
\end{aligned}
$$

and

$$
y^{*}=\frac{B}{2 p_{y}}
$$

Use the values of p_{x}, p_{y}, and B to test to see if these equations give you the solutions in example One.
If we substitute the answers back into the utility function, we get

$$
\begin{aligned}
U & =x y=\left(\frac{B}{2 p_{x}}\right)\left(\frac{B}{2 p_{y}}\right) \\
U & =\frac{B^{2}}{4 p_{x} p_{y}}
\end{aligned}
$$

This gives you the utility number directly from the budget and prices. If you re-arrange this expression to get B by itself, you get

$$
B=\sqrt{4 p_{x} p_{y} U}
$$

You can use this equation to calculate the amount of budget is needed if you know prices AND the desired utility number (Helpful for CV and EV)

$$
\begin{aligned}
& { }^{0} \text { The trick used here is as follows: } \\
& \qquad \begin{aligned}
x+\frac{b}{a} x & =\frac{a}{a} x+\frac{b}{a} x \\
& =\left(\frac{a}{a}+\frac{b}{a}\right) x \\
& =\frac{a+b}{a} x
\end{aligned}
\end{aligned}
$$

