Make Sure to check second order conditions for all solutions
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

1) A monopolist produces two products, A, and B. The joint-cost function is $c=5 q_{A}+3 q_{B}+5000$ \qquad where c is the total cost of producing q_{A} units of A and q_{B} units of B. the demand functions for these products are given by $p_{A}=205-2 q_{A}-q_{B}$ and $p_{B}=153-q_{A}-q_{B}$, where p_{A} and p_{B} are the prices of A and B, respectively. The number of units of A and the number of units B that should be sold to maximize the monopolist's profit is
A) 75 units of A and 100 units of B.
B) 15 units of A and 25 units of B.
C) 50 units of A and 75 units of B.
D) 10 units of A and 15 units of B.
E) 25 units of A and 50 units of B.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

2) Determine the critical points of $f(x, y)=3 x^{2}+4 y^{2}-2 x+8 y$ and also determine by the second-derivative test whether each point corresponds to a relative maximum, to a relative minimum, to neither, or whether the test gives no information.
3) Determine the critical points of $f(x, y)=4 x^{2}+2 x-y^{2}+2 y$ and also determine by the second-derivative test whether each point corresponds to a relative maximum, to a relative minimum, to neither, or whether the test gives no information.
4) Determine the critical points of $f(x, y)=2 x y-3 x-y-x^{2}-3 y^{2}$ and also determine by the second-derivative test whether each point corresponds to a relative maximum, to a relative minimum, to neither, or whether the test gives no information.
5) Determine the critical points of $f(x, y)=x^{2}+2 x y+2 y^{2}-4 y$ and also determine by the second-derivative test whether each point corresponds to a relative maximum, to a relative minimum, to neither, or whether the test gives no information.
6) Determine the critical points of $f(x, y)=x^{3}+\frac{1}{2} y^{2}-3 x y-4 y+2$ and also determine by the second-derivative test whether each point corresponds to a relative maximum, to a relative minimum, to neither, or whether the test gives no information.
7) A manufacturer produces products A and B for which the average costs of production are constant at 3 and 5 (dollars per unit), respectively. The quantities $q_{A^{\prime}} q_{B}$ of A and B that can be sold each week are given by the joint-demand functions $\begin{gathered}q_{A}=10-p_{A}+p_{B}{ }^{\prime} \\ q_{B}=12+p_{A}-3 p_{B}{ }^{\prime \prime}\end{gathered}$ where p_{A} and p_{B} are the prices (in dollars per unit) of A and B, respectively. Determine the prices of A and B at which the manufacturer can maximize profit.
8) Determine all of the critical points of $f(x, y)=x^{3}+3 x^{2}-9 x+y^{3}-12 y$. Also use the second derivative test to determine, if possible, whether a maximum, minimum or saddle point occurs at each of these critical points.
9) Determine all of the critical points of $f(x, y)=\frac{1}{3} x^{3}+x^{2}-3 x+\frac{1}{3} y^{3}-4 y$. Also use the second derivative test to determine, if possible, whether a maximum, minimum or saddle point occurs at each of these critical points.
10) A television manufacturing company makes two types of TV's. The cost of producing x
11) \qquad
12) \qquad units of type A and y units of type B is given by the function $C(x, y)=100+x^{3}+64 y^{3}-$ $96 x y$. How many units of type A and type B televisions should the company produce to minimize its cost?
