SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

1) The profit equation for a taco stand is given by $P(x)=-0.4 x^{2}+100 x-100$, where x is the number of tacos sold, and $P(x)$ is the profit in dollars. Use the first-derivative test to find when relative extrema occur.
2) The cost equation for a bakery is given by $C(x)=10(x-2)^{2}-120(x-2)+450$, where x is the number of doughnuts made (in dozens), and $C(x)$ is the cost in dollars. Use the first-derivative test to find when relative extrema occur.
3) The cost equation for a cookie store is given by $C(x)=x^{3}-6 x^{2}+250$, where x is the number of cookies made (in dozens) and $C(x)$ is the cost in dollars. Use the first-derivative test to find when relative extrema occur.
4) A new book has its monthly revenue given by $R(x)=\frac{40 x}{x^{2}+25}$ where x is the number of months after its release and R is in thousands of dollars. Find the relative extrema and use this information to determine which month will bring the greatest revenue.
5) Let $y=x^{3}-3 x^{2}-9 x+10$.
(a) Determine y^{\prime} and $y^{\prime \prime}$.
(b) Determine intervals on which the function is increasing; determine intervals on which the function is decreasing.
(c) Determine the coordinates of all relative maximum and relative minimum points
(d) Determine intervals on which the function is concave up; determine intervals on which the function is concave down;
(e) Determine the coordinates of all inflection points.
(f) With the aid of the information obtained in parts (a)-(e), give a reasonable sketch of the curve.
6) Let $y=x^{4}-4 x^{3}$.
(a) Determine y^{\prime} and $y^{\prime \prime}$.
(b) Determine intervals on which the function is increasing; determine intervals on which the function is decreasing.
(c) Determine the coordinates of all relative maximum and relative minimum points.
(d) Determine intervals on which the function is concave up; determine intervals on which the function is concave down;
(e) Determine the coordinates of all inflection points.
(f) With the aid of the information obtained in parts (a)-(e), give a reasonable sketch of the curve.
7) If $y=3 x^{4}-6 x^{2}$, use the second-derivative test to find all values of x for which (a) relative maxima occur (b) relative minima occur.
8) Use the second derivative test to find the points of relative maxima and relative minima for the function $y=\frac{x^{4}}{2}-2 x^{3}+5$.
9) The cost equation for a company is $C(x)=2 x^{3}-39 x^{2}+180 x+21,200$. Use the second-derivative test, if applicable, to find the relative maxima and the relative minima.
10) The revenue equation for a company is given by $R(x)=1296 x-0.12 x^{3}$. Determine when relative extrema occur on the interval $(0, \infty)$.
11) The demand equation for a monopolist's product is $p=2700-q^{2}$, where p is the price per unit (in dollars) when q units are demanded.
(a) Find the value of q for which revenue is maximum.
(b) What is the maximum revenue?
12) The demand equation for a monopolist's product is $p=\frac{10,000}{q^{2}+25}$, where p is the price per unit (in dollars) when q units are demanded.
(a) Determine the value of q for which revenue is maximum.
(b) What is the maximum revenue?
13) A manufacturer found that the total cost c of producing q units of a product is given by $c=$ $0.02 q^{2}+2 q+800$. At what level of production will average cost be a minimum?
14) The demand equation for a monopolist's product is $p=200-0.98 q$, where p is the price per unit (in dollars) of producing q units. If the total cost c (in dollars) of producing 8 units is given by $c=0.02 q^{2}+2 q+8000$, find the level of production at which profit is maximized.
15) The demand function for a monopolist's product is $p=100-3 q$, where p is the price per unit (in dollars) for q units. If the average $\operatorname{cost} \bar{c}$ (in dollars) per unit for q units is $\bar{c}=4+$ $\frac{100}{q}$, find the output q at which profit is maximized.
