SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

1) The profit equation for a taco stand is given by $P(x) = -0.4x^2 + 100x - 100$, where <i>x</i> is the number of tacos sold, and $P(x)$ is the profit in dollars. Use the first-derivative test to find when relative extrema occur.	1)
2) The cost equation for a bakery is given by $C(x) = 10(x - 2)^2 - 120(x - 2) + 450$, where x is the number of doughnuts made (in dozens), and $C(x)$ is the cost in dollars. Use the first-derivative test to find when relative extrema occur.	2)
3) The cost equation for a cookie store is given by $C(x) = x^3 - 6x^2 + 250$, where <i>x</i> is the number of cookies made (in dozens) and $C(x)$ is the cost in dollars. Use the first-derivative test to find when relative extrema occur.	3)
4) A new book has its monthly revenue given by $R(x) = \frac{40x}{x^2 + 25}$ where <i>x</i> is the number of	4)
months after its release and R is in thousands of dollars. Find the relative extrema and use this information to determine which month will bring the greatest revenue.	
 5) Let y = x³ - 3x² - 9x + 10. (a) Determine y' and y''. (b) Determine intervals on which the function is increasing; determine intervals on which the function is decreasing. (c) Determine the coordinates of all relative maximum and relative minimum points (d) Determine intervals on which the function is concave up; determine intervals on which the function is concave down; (e) Determine the coordinates of all inflection points. (f) With the aid of the information obtained in parts (a)-(e), give a reasonable sketch of the curve. 	5)
 6) Let y = x⁴ - 4x³. (a) Determine y' and y''. (b) Determine intervals on which the function is increasing; determine intervals on which the function is decreasing. (c) Determine the coordinates of all relative maximum and relative minimum points. (d) Determine intervals on which the function is concave up; determine intervals on which the function is concave down; (e) Determine the coordinates of all inflection points. (f) With the aid of the information obtained in parts (a)-(e), give a reasonable sketch of the curve. 	6)
7) If $y = 3x^4 - 6x^2$, use the second–derivative test to find all values of <i>x</i> for which (a) relative maxima occur (b) relative minima occur.	7)
8) Use the second derivative test to find the points of relative maxima and relative minima for the function $y = \frac{x^4}{2} - 2x^3 + 5$.	8)
9) The cost equation for a company is $C(x) = 2x^3 - 39x^2 + 180x + 21,200$. Use the second–derivative test, if applicable, to find the relative maxima and the relative minima.	9)

10)	The revenue equation for a company is given by $R(x) = 1296x - 0.12x^3$. Determine when relative extrema occur on the interval $(0, \infty)$.	10)
11)	The demand equation for a monopolist's product is $p = 2700 - q^2$, where <i>p</i> is the price per unit (in dollars) when <i>q</i> units are demanded.	11)
	(a) Find the value of <i>q</i> for which revenue is maximum.(b) What is the maximum revenue?	
12)	The demand equation for a monopolist's product is $p = \frac{10,000}{q^2 + 25}$, where <i>p</i> is the price per	12)
	unit (in dollars) when <i>q</i> units are demanded.	
	(a) Determine the value of <i>q</i> for which revenue is maximum.(b) What is the maximum revenue?	
13)	A manufacturer found that the total cost <i>c</i> of producing <i>q</i> units of a product is given by $c =$	13)
	$0.02q^2 + 2q + 800$. At what level of production will average cost be a minimum?	
14)	The demand equation for a monopolist's product is $p = 200 - 0.98q$, where p is the price per	14)
	unit (in dollars) of producing <i>q</i> units. If the total cost <i>c</i> (in dollars) of producing 8 units is given by $c = 0.02q^2 + 2q + 8000$, find the level of production at which profit is maximized.	
	given by $t = 0.02q^{-1} + 2q^{-1} + 3000$, find the level of production at which profit is maximized.	
15)	The demand function for a monopolist's product is $p = 100 - 3q$, where p is the price per unit (in dollars) for q units. If the average cost \overline{c} (in dollars) per unit for q units is $\overline{c} = 4 + 100$	15)
	$\frac{100}{q}$, find the output q at which profit is maximized.	
	q , i _	