Assignment 6

Kevin Wainwright

From Chapter 20, exercise 20.2 questions 2, 3, 4

2 The Hamiltonian is $H = 6y + \lambda y + \lambda u$ (linear in u). Thus to maximize H, we have u = 2 (if λ is positive) and u = 0 (if λ is negative)

From $\lambda' = -\partial H/\partial y = -6 - \lambda$, we find that $\lambda(t) = ke^{-t} - 6$, but since $\lambda(4) = 0$ from the transversality condition, we have $k = 6e^4$, and

$$\lambda^*(t) = 6e^{4-t} - 6$$

which is positive for all t in the interval [0,4]. Hence the optimal control is $u^*(t) = 2$. From y' = y + u = y + 2, we obtain $y(t) = ce^t - 2$. Since y(0) = 10, then c = 12, and

$$y^*(t) = 12e^t - 2$$

The optimal terminal state is

$$y^*(4) = 12e^4 - 2$$

3 From the maximum principle, the system of differential equations are

$$\lambda' = -\lambda$$
$$y' = y + \frac{a+\lambda}{2b}$$

solving first for λ , we get $\lambda(t) = c_0 e^{-t}$. Using $\lambda(T) = 0$ yields $c_0 = 0$. Therefore,

$$u(t) = \frac{-a}{2b}$$

and

$$y(t) = \left(y_0 + \frac{a}{2b}\right)e^t - \frac{a}{2b}$$

4 The maximum principle yields $u=(y+\lambda)/2$, and the following system of differential equations

$$\lambda' = -(u - 2y)$$
$$y' = u$$

with the boundary conditions $y(0) = y_0$ and $\lambda(T) = 0$.

There are a couple of approaches one may use to arrive at the solutions for λ^* , y^* , and u^* . For the method described below, the reader may wish to review **Sec. 19.2.**

Substituting for u in the system of equations yields

$$\left[\begin{array}{c} \lambda' \\ y' \end{array}\right] = \left[\begin{array}{cc} -\frac{1}{2} & \frac{3}{2} \\ \frac{1}{2} & \frac{1}{2} \end{array}\right] \left[\begin{array}{c} \lambda \\ y \end{array}\right]$$

The coefficient matrix has a determinant of -1, the roots are ± 1 . For $r_1 = 1$, the eigenvector is

$$\begin{bmatrix} -\frac{1}{2} - 1 & \frac{3}{2} \\ \frac{1}{2} & \frac{1}{2} - 1 \end{bmatrix} \begin{bmatrix} m \\ n \end{bmatrix} = 0$$

which yields m = 1 and n = 1. For $r_2 = -1$, the eigenvector is m = 1 and n = -1/3. The complete solutions are the homogeneous solutions,

$$\begin{bmatrix} \lambda(t) \\ y(t) \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} c_1 e^t + \begin{bmatrix} 1 \\ -\frac{1}{3} \end{bmatrix} c_2 e^t$$

From the transversality conditions we get

$$c_1 = \frac{y_0 e^{-2T}}{1/3 + e^{-2T}}$$

$$c_2 = \frac{-y_0}{1/3 + e^{-2T}}$$

The final solution is

$$\lambda^* = \frac{y_0}{1/3 + e^{-2T}} \left(e^{t-2T} - e^{-t} \right)$$

$$y^* = \frac{y_0}{1/3 + e^{-2T}} \left(e^{t-2T} + \frac{1}{3} e^{-t} \right)$$

$$u^* = \frac{y_0}{1/3 + e^{-2T}} \left(e^{t-2T} - \frac{1}{3} e^{-t} \right)$$