ECON 431

Linear, First-Order Differential Equations

1 Autonomous Equations

Definition 1 The general form of a linear, automomous, first-order differential equation is

$$\frac{dy}{dt} + ay = b \tag{1}$$

where a, b are known constants

1.1 Homogeneous solution

Definition 2 The homogeneous form of a linear, automomous, first-order differential equation is

$$\frac{dy}{dt} + ay = 0 \qquad a \neq 0 \tag{2}$$

where a, b are known constants

To solve the homogeneous case, re-write eq 2 as

$$\frac{dy}{dt} = -ay$$

$$\frac{1}{y}\frac{dy}{dt} = -a$$

multiply by dt and integrate both sides

$$\frac{1}{y}dy = -adt$$

$$\int \frac{1}{y}dy = \int -adt$$

$$\ln y = -at + c$$
(3)

and take the anti-log

$$y(t) = e^{-at+c}$$

$$= e^{-at}e^{c}$$

$$y(t) = Ae^{-at} A \equiv e^{c}$$

$$(4)$$

Theorem 3 The general solution to equation 2 is

$$y(t) = Ae^{-at}$$

1.2 Particular Solution

Definition 4 A steady-state value of a differential equation is defined by the condition $\frac{dy}{dt} = 0$ thus making the value of y stationary. Let D be the stationary value of y.

Letting $\frac{dy}{dt} = 0$, then equation 1 becomes

$$0 + aD = b (5)$$

and solving for D yields

$$D = \frac{b}{a} \qquad a \neq 0$$

For autonomous, linear, first-order differential equations, the steady state, D, will be the particular solution

1.3 The General Solution

The solution to The general form of a linear, automomous, first-order differential equation is made up of the sum of two parts: the complementary function y_c (or CF) and the particular solution (or particular integral), y_p (or PS) such that

$$y(t) = y_c + y_p = CF + PS \tag{6}$$

Definition 5 The complementary function is the solution to the homogeneous form

$$y_c = CF = Ae^{-at}$$

Definition 6 The particular integral (solution) y_p is ANY solution that completes equation 1. In the case of the linear, automomous, first-order differential equation, this will be the steady-state solution $(\frac{dy}{dt} = 0)$.

The general solution for linear, automomous, first-order differential equations is given by

$$y(t) = Ae^{-at} + \frac{b}{a} \tag{7}$$

To solve for A we need the an initial condition, y(0). In this case the solution can be expressed as

$$y(t) = \left[y(0) - \frac{b}{a} \right] e^{-at} + \frac{b}{a} \tag{8}$$

Example 7 Solve the differential equation

$$\frac{dy}{dt} = 0.1y - 1$$

with the initial condition y(0) = 5

Solution:

$$y_c = Ae^{0.1t}$$

$$y_p = 10$$

$$y(t) = \left[5 - \frac{1}{.1}\right]e^{0.1t} + \frac{1}{.1}$$

$$y(t) = -5e^{0.1t} + 10$$

Example 8 Let K(t) be the capital stock at time t. Let δ be the rate of depreciation ($\delta > 0$) and I_0 is a constant level of investment.

$$\frac{dK}{dt} = I_0 - \delta K$$

and the initial condition $K(0) = K_0$. Find the solution to K(t). Does K(t) converge to a steady-state?

Solution:

$$K(t) = ([K_0 - (I_0/\delta)] e^{-\delta t} + I_0/\delta)$$

$$K(t \rightarrow \infty) = I_0/\delta$$

Example 9 Dynamics of national debt accumulation.

Let D(t) represent the dollar value of debt and let Y(t) be the value of GDP at time t. Suppose that debt is a constant proportion of GDP, denoted by θ such that

$$\frac{dD}{dt} = \theta Y \qquad \theta > 0$$

Further assume that national income grows according to the following differential equation

$$\frac{dY}{dt} = \mu Y \qquad \mu > 0$$

Finally, assume that, at time t = 0, the initial values of debt and income are D_0 and Y_0 Show the following

(a) the solution to Y(t) is

$$Y(t) = Y_0 e^{\mu t}$$

(b) the general solution to D(t) is

$$D(t) = \theta Y_0 \frac{e^{\mu t}}{\mu} + c_0$$

where c_0 is an arbitrary constant of integration.

(c) Using the initial condition, show that the specific solution for D(t) is

$$D(t) = D_0 + \frac{\theta}{\mu} Y_0 \left(e^{\mu t} - 1 \right)$$

Let the interest payments on the debt be rD, where r is the rate of interest. The ratio

$$z(t) = \frac{rD(t)}{Y(t)}$$

is the share of national income used to service the interest on the national debt. By substituting in your previous solutions, show that

$$\lim_{t \to \infty} z(t) = r \frac{\theta}{\mu}$$

2 Variable Coefficient and Variable Term

The general form of a linear, first-order differential equation is

$$\frac{dy}{dt} + u(t)y = w(t)$$

where u(t), w(t) are the variable coefficient and variable term respectively.

2.1 Homogeneous case

For this case, where w(t) = 0, the solution is still easy

$$\frac{dy}{dt} + u(t)y = 0$$

$$\frac{1}{y}\frac{dy}{dt} = -u(t)$$

just integrate both sides; the left side

$$\int \frac{1}{u} \frac{dy}{dt} dt = \int \frac{dy}{y} = \ln y + c$$

the right side

$$\int -u(t)dt = -\int u(t)dt$$

equate both sides

$$ln y = -c - \int u(t)dt \tag{9}$$

solving for y(t)

$$y(t) = e^{-c}e^{-\int u(t)dt} = Ae^{-\int u(t)dt}$$
(10)

Note that this is the general solution. When u(t) = a then $\int adt = at + c$ which is our earlier solution

2.2 Nonhomogeneous Case

For the nonhomogeneous case, where $w(t) \neq 0$, the general solution is

$$y(t) = e^{-\int u(t)dt} \left(A + \int we^{\int u(t)dt} \right)$$
(11)

Where A is an arbitrary constant found by the appropriate initial conditions Example

Find the general solution of the equation

$$\frac{dy}{dt} + 2ty = t$$

Here we have

$$u = 2t$$
 $w = t$ and $\int u dt = t^2 + k$

thus by equation 11 we have

$$y(t) = e^{-(t^2+k)} \left(A + \int t e^{(t^2+k)} dt \right)$$

$$= e^{-t^2} e^{-k} \left(A + e^k \int t e^{t^2} dt \right)$$

$$= A e^{-t^2} e^{-k} + e^{-t^2} \left(\frac{1}{2} e^{t^2} + c \right) \qquad (e^k e^{-k} = 1)$$

$$= (A e^{-k} + c) e^{-t^2} + \frac{1}{2}$$

$$= B e^{-t^2} + \frac{1}{2}$$

3 Phase Diagrams

Given a differential equation (linear or nonlinear) of the form

$$\frac{dy}{dt} = f(y)$$

it is feasible to plot $\frac{dy}{dt}$ against y whenever dy/dt is a function of y alone. Such a geometric representation is called a phase diagram and the line representing the function f(y) is called a phase line.

Once a phase line is known, its configuration will impart significant information regarding the time path of y(t).

Consider the case where

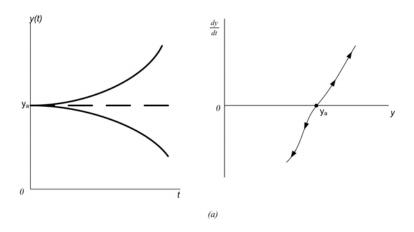
$$\frac{dy}{dt} + ay = b$$

or

$$\frac{dy}{dt} = -ay + b$$

where -a is the slope of the phase diagram. We may infer that

$$a \gtrless \iff y(t) \begin{cases} \text{converges to} \\ \text{diverges from} \end{cases}$$
 equilibrium



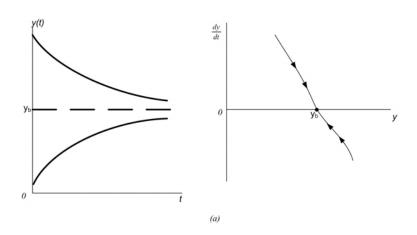


Figure 1:

4 Solow Growth Model

Domar's model had capital and labour in fixed proportions. Solow's model looks at the case where capital and labour can be combined in variable proportions.

Consider

$$Q = f(K, L)$$

where f_L, f_K are positive and f_{LL}, f_{KK} are negative. Furthermore, f is linearly homogeneous. Therefore

$$Q = Lf(\frac{K}{L}, 1) = L\phi(k) \tag{12}$$

where $\phi'(k) > 0$, $\phi''(k) < 0$

Solow's assumption

$$\dot{K} = \frac{dK}{dt} = sQ \tag{13}$$

a constant proportion of output is invested (where s is a constant MPS). and

$$\frac{\dot{L}}{L} = \frac{dL/dt}{L} = \lambda \tag{14}$$

Labour force grows exponentially

Combining equations 12,13 and 14 yields

$$\dot{K} = sL\phi(k) \tag{15}$$

Since k = K/L and K = kL we can obtain another expression for \dot{K} by differentiating K = kL

$$\dot{K} = L\dot{k} + k\dot{L}
\dot{K} = L\dot{k} + k\lambda L$$
(16)

equations 15 and 16 can combine to give us

$$\dot{k} = s\phi(k) - \lambda K \tag{17}$$

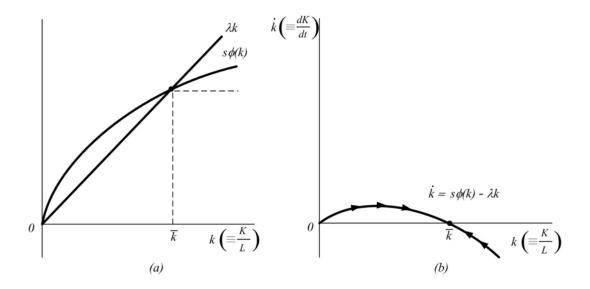


Figure 15.5

Figure 2: