ECON 331 Sample Midterm Exam

Spring 1998

Selected Answers and Hints:

1. Given the matrix

$$
A=\left[\begin{array}{ccccc}
1 & 0 & 4 & 3 & 3 \\
0 & 1 & 0 & 6 & 9 \\
0 & 0 & 1 & -1 & 2 \\
0 & 0 & 2 & 1 & 1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

The determinant:

$$
|A|=3
$$

2. Consider the following two market model

$$
\begin{array}{cr}
Q_{1}^{d}=20-P_{1}+2 P_{2} & Q_{1}^{s}=2 P_{1}-2 \\
Q_{2}^{d}=18-2 P_{2}+3 P_{1} & Q_{2}^{s}=2+4 P_{2}
\end{array}
$$

(a) HINT: Look at the signs of the cross partials $\partial Q_{i} / \partial P_{j}$
(b) Use Cramer's rule to find the inverse demand functions

$$
P_{1}=P_{1}\left(Q_{1}, Q_{2}\right) \quad P_{2}=P_{2}\left(Q_{1}, Q_{2}\right)
$$

Solution

$$
\left[\begin{array}{c}
P_{1} \\
P_{2}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} Q_{1}+\frac{1}{2} Q_{2}-19 \\
\frac{3}{4} Q_{1}+\frac{1}{4} Q_{2}-\frac{39}{2}
\end{array}\right]
$$

3. Consider the following:
(a) Let $q=f(L)$ be the short run production function where L represents labour, the only input. use calculus to show that when $M P_{L}>A P_{L}, A P_{L}$ is rising and $M P_{L}<A P_{L}, A P_{L}$ is falling. HINT: See Chapter 7
(b) When $M P_{L}=A P_{L}, A P_{L}$ is assumed to be at a maximum and not a minimum. What assumption about the second derivative of $f(L)$ ensures this result? What is the economic expression for this result? HINT: Look at a graph of $M P$ and $A P$ and read the explanation regarding their shapes.
4. To produce one unit good one $\left(x_{1}\right)$ you need 0.4 units of x_{1} and 0.2 units of x_{2}. To produce one unit of good two $\left(x_{2}\right)$, you need 0.6 units of x_{1} and 0.1 units of x_{2}. The final market demands for both goods are 100 each. USE MATRIX INVERSION to find the correct
amounts of x_{1} and x_{2}

$$
\begin{aligned}
x & =(I-A)^{-1} d \\
{\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] } & =\left[\begin{array}{cc}
2.1429 & 1.4286 \\
0.47619 & 1.4286
\end{array}\right]\left[\begin{array}{l}
100 \\
100
\end{array}\right] \\
{\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] } & =\left[\begin{array}{l}
357.15 \\
190.48
\end{array}\right]
\end{aligned}
$$

5. Consider a closed economy where equilibrium in the goods market is characterized by

$$
I(Y, i)+G_{0}=S(Y, i)+T(Y)
$$

and in the money market

$$
L(Y, i)=M_{0}^{S}
$$

(a) What are the normally assumed signs of the partial derivatives of I, S, T, and L with respect to Y and i?
(b) In particular, what do we often assume about the partial derivative $\partial I / \partial Y$? Do any of the partial deriatives have restrictions on the range of values they may take on?
(c) In equilibrium this system implicitly defines Y and i as functions of G_{0} and M_{0}^{s}. Write down the Jacobian of this system. Find the sign of the Jacobian. (assume: $\partial I / \partial Y-\partial S / \partial Y-T^{\prime}<0$)
(d) Find an expression for $\partial Y / \partial M_{0}^{s}$ and $\partial i / \partial M_{0}^{s}$. What are their signs?

HINT: SEE CHAPTER 8

