SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

1) Find y^{\prime} if $y=\left(x^{3}-10 x+2\right)\left(x^{2}+7 x+1\right)$.
2) Find y^{\prime} if $y=\frac{2 x+3}{7-5 x}$.
3) Find y^{\prime} if $y=\frac{x^{2}+1}{2 x^{3}-1}$.
4) Find the slope of the curve $y=\frac{2 x+5}{x-3}$ at the point $(4,13)$.
5) The average cost \bar{c} of producing q units of a product is given by $\bar{c}=\frac{4 q}{q+2}+\frac{10,000}{q}$. Find the marginal cost function.
6) For the consumption function $C=10+\frac{5}{8} I-\frac{\sqrt{I}}{2}$,
(a) find the marginal propensity to consume when $I=16$;
(b) find the marginal propensity to save with $I=16$.
7) If $y=4 u^{2}-13 u+3$ and $u=7 x^{3}+5 x^{2}+4 x-14$, then by direct use of the chain rule find $\frac{d y}{d x}$ and evaluate when $x=1$.
8) If $y=\left(6 u^{2}-7\right)^{3}$ and $u=(9-2 x)^{5}$, then by direct use of the chain rule find $\frac{d y}{d x}$ and evaluate when $x=5$.
9) Find y^{\prime} if $y=5\left(2 x^{2}-3 x+4\right)^{8}$.
10)

Find y^{\prime} if $y=\left(\frac{x+2}{x-3}\right)^{4}$.
11) The demand function for a manufacturer's product is given by $p=300-q^{2}$, where p is the price per unit when q units are demanded.
(a) Determine the point elasticity of demand when $q=5$.
(b) For $q=5$, is demand elastic, inelastic, or does it have unit elasticity?
(c) For what value of q does demand have unit elasticity?
12) The demand function for a manufacturer's product is given by $p=\frac{400}{q+2}$, where p is the
11)
10) \qquad price per unit when q units are demanded.
(a) Find the point elasticity of demand when $q=100$.
(b) For $q=100$, is demand elastic, inelastic, or does it have unit elasticity?
13) Determine the point elasticity η of the demand equation $(p+1) \sqrt{q+3}=1000$, when $p=24$.
14) If $f(x, y)=4 x^{3} y^{2}+3 x^{2} y^{4}-7 x y^{2}+4 x-3 y+2$, find (a) $f_{x}(x, y)$ and (b) $f_{y}(x, y)$.
15) If $z=\frac{x^{2}+1}{y}$, find (a) $\frac{\partial z}{\partial x}$ and (b) $\frac{\partial z}{\partial y}$.
16) Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ where $f(x, y)=\frac{5 x y^{2}}{\left(x^{3}+y^{3}\right)}$.
17) Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ where $f(x, y, z)=\frac{4 y^{3}}{x^{3}+y^{2}}$.
18) A sporting goods store determines that the optimal quantity of athletic shoes (in pairs) to order each month is given by the Wilson lot size formula: $Q(C, M, s)=\sqrt{\frac{2 C M}{s}}$, where C is the cost (in dollars) of placing an order, M is the number of pairs sold each month, and s is the monthly storage cost (in dollars) per pair of shoes. Find $\frac{\partial Q}{\partial C}$. Then find and interpret $\left.\frac{\partial Q}{\partial C}\right|_{(100,500,3)}$.

