SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

1)	Find y' if $y = (x^3 - 10x + 2)(x^2 + 7x + 1)$.	1)
2)	Find <i>y</i> ' if $y = \frac{2x+3}{7-5x}$.	2)
3)	Find y' if $y = \frac{x^2 + 1}{2x^3 - 1}$.	3)
4)	Find the slope of the curve $y = \frac{2x+5}{x-3}$ at the point (4, 13).	4)
5)	The average cost \overline{c} of producing q units of a product is given by $\overline{c} = \frac{4q}{q+2} + \frac{10,000}{q}$. Find the marginal cost function.	5)
6)	For the consumption function $C = 10 + \frac{5}{8}I - \frac{\sqrt{I}}{2}$, (a) find the marginal propensity to consume when $I = 16$;	6)
7)	(b) find the marginal propensity to save with $I = 16$. If $y = 4u^2 - 13u + 3$ and $u = 7x^3 + 5x^2 + 4x - 14$, then by direct use of the chain rule find $\frac{dy}{dx}$ and evaluate when $x = 1$.	7)
8)	If $y = (6u^2 - 7)^3$ and $u = (9 - 2x)^5$, then by direct use of the chain rule find $\frac{dy}{dx}$ and evaluate when $x = 5$.	8)
9)	Find y' if $y = 5(2x^2 - 3x + 4)^8$.	9)
10)	Find y' if $y = \left(\frac{x+2}{x-3}\right)^4$.	10)
11)	The demand function for a manufacturer's product is given by $p = 300 - q^2$, where p is the price per unit when q units are demanded. (a) Determine the point elasticity of demand when $q = 5$. (b) For $q = 5$, is demand elastic, inelastic, or does it have unit elasticity? (c) For what value of q does demand have unit elasticity?	11)
12)	The demand function for a manufacturer's product is given by $p = \frac{400}{q+2}$, where <i>p</i> is the price per unit when <i>q</i> units are demanded. (a) Find the point elasticity of demand when $q = 100$. (b) For $q = 100$, is demand elastic, inelastic, or does it have unit elasticity?	12)

- 13) Determine the point elasticity η of the demand equation $(p + 1)\sqrt{q + 3} = 1000$, when p = 24. 13)
- 14) If $f(x, y) = 4x^3y^2 + 3x^2y^4 7xy^2 + 4x 3y + 2$, find (a) $f_x(x, y)$ and (b) $f_y(x, y)$.

15) If
$$z = \frac{x^2 + 1}{y}$$
, find (a) $\frac{\partial z}{\partial x}$ and (b) $\frac{\partial z}{\partial y}$.

16) Find
$$\frac{\partial f}{\partial x}$$
 and $\frac{\partial f}{\partial y}$ where $f(x, y) = \frac{5xy^2}{(x^3 + y^3)}$.

17) Find
$$\frac{\partial f}{\partial x}$$
 and $\frac{\partial f}{\partial y}$ where $f(x, y, z) = \frac{4y^3}{x^3 + y^2}$. 17)

18) A sporting goods store determines that the optimal quantity of athletic shoes (in pairs) to order each month is given by the Wilson lot size formula: $Q(C, M, s) = \sqrt{\frac{2CM}{s}}$, where *C* is the cost (in dollars) of placing an order, *M* is the number of pairs sold each month, and *s* is the monthly storage cost (in dollars) per pair of shoes. Find $\frac{\partial Q}{\partial C}$. Then find and interpret

 $\frac{\partial Q}{\partial C} \bigg|_{(100, 500, 3)}.$

15)

16)

14)

18)