ECON 460 Winter 2012

Assignment 2: CV-EV handout KEY

1. Myrtle has $\$ 200$ per month to spend on Transit (X) and all other goods (Y). She currently buys a bus pass for $\$ 50$ and rides 75 times per month.If she didn't buy the pass, bus rides would cost $\$ 2 /$ ride. Myrtle is offered to join a Transit program that would allow her to pay a membership fee and then could ride the bus for $\$ 1$ per trip. The most Myrtle would pay for the membership is $\$ 20$. and then she would ride 15 times a month. If she were given the membership for free, she would ride the bus 18 times per month. Myrtle also reveals that she would be indifferent between a free membership (and $\$ 1$ per ride) versus simply having the traditional bus pass reduced to $\$ 25$ per month (flat rate), where she would again choose to ride the bus 75 times a month.
(a) Using all the information provided, draw all the relevant budget constraints and indifference curves. Be sure to label all equilibrium points and have a legend that explains each point (in one or two sentences).
(b) Calculate her CV
(c) Calculate her EV Graph for CV-EV

2. Skippy has the following utility function: $u=x^{1 / 3} y^{2 / 3}$ and faces the budget constraint: $M=p_{x} x+p_{y} y$.
(a) Find Skippy's demand functions, indirect utility and expenditure.

$$
x=\frac{M}{3 p_{x}}, y=\frac{2 M}{3 p_{y}}
$$

indirect utility function is

$$
U_{i}=\left(\frac{M}{3 p_{x}}\right)^{1 / 3}\left(\frac{2 M}{3 p_{y}}\right)^{2 / 3}=\frac{2^{2 / 3} M}{4 p_{x}^{1 / 3} p_{y}^{2 / 3}}
$$

U_{i} tells you the utility number for any given budget and prices. The Expenditure Function is

$$
\begin{aligned}
& E=\frac{3 p_{x}^{1 / 3} p_{y}^{2 / 3}}{2^{2 / 3}} \cdot U_{i} \quad i=\text { old }, \text { new } \\
& E=1.89 p_{x}^{1 / 3} p_{y}^{2 / 3} U_{i}
\end{aligned}
$$

(b) Suppose $M=120, P_{y}=1$ and $P_{x}=4$. What is Skippy's optimal x, y and utility number? If the price of x was lowered to 2 what would be her x, y and utility number

$$
\begin{aligned}
x_{\text {old }} & =10, y_{\text {old }}=80, u_{\text {old }}=40 \\
x_{\text {new }} & =20, y_{\text {new }}=80, u_{\text {new }}=50.4
\end{aligned}
$$

(c) What is the most Skippy would pay to have P_{x} lowered to 2? USE EXPENDITURE FUNCTION with new p_{x} and old utility

$$
\begin{aligned}
E & =1.89 p_{x}^{1 / 3} p_{y}^{2 / 3} U_{i} \\
E & =1.89 p_{x}^{1 / 3} U_{i} \quad\left(p_{y}=1\right) \\
U_{i=o l d} & =40, \quad p_{x}=2 \\
C V & =120-E \\
C V & =120-1.89(2)^{1 / 3}(40)=24.74
\end{aligned}
$$

(d) Suppose $M=120, P_{y}=1$ and $P_{x}=4$. How much additional income would Skippy need to be as well off as if the price of x had fallen to 2? USE EXPENDITURE FUNCTION with old p_{x} and new utility

$$
\begin{aligned}
E & =1.89 p_{x}^{1 / 3} p_{y}^{2 / 3} U_{i} \\
E & =1.89 p_{x}^{1 / 3} U_{i} \quad\left(p_{y}=1\right) \\
U_{i=n e w} & =50.4, \quad p_{x}=4 \\
E V & =E-120 \\
E V & =1.89(4)^{1 / 3}(50.4)-120=31.2
\end{aligned}
$$

Comparison	5yr	10yr
Ban minus Plant	\$8.23	-\$13.68
Cells C5-J17 or J22		

Option 1 Pesticide Ban

Option 2 Treatment Plant

