ECON 460 Winter 2012 Assignment 2: CV-EV handout KEY

- 1. Myrtle has \$200 per month to spend on Transit (X) and all other goods (Y). She currently buys a bus pass for \$50 and rides 75 times per month. If she didn't buy the pass, bus rides would cost \$2/ride. Myrtle is offered to join a Transit program that would allow her to pay a membership fee and then could ride the bus for \$1 per trip. The most Myrtle would pay for the membership is \$20. and then she would ride 15 times a month. If she were given the membership for free, she would ride the bus 18 times per month. Myrtle also reveals that she would be indifferent between a free membership (and \$1 per ride) versus simply having the traditional bus pass reduced to \$25 per month (flat rate), where she would again choose to ride the bus 75 times a month.
 - (a) Using all the information provided, draw all the relevant budget constraints and indifference curves. Be sure to label all equilibrium points and have a legend that explains each point (in one or two sentences).
 - (b) Calculate her CV
 - (c) Calculate her EV Graph for CV-EV

- 2. Skippy has the following utility function: $u = x^{1/3}y^{2/3}$ and faces the budget constraint: $M = p_x x + p_y y$.
 - (a) Find Skippy's demand functions, indirect utility and expenditure.

$$x = \frac{M}{3p_x}, y = \frac{2M}{3p_y}$$

indirect utility function is

$$U_i = \left(\frac{M}{3p_x}\right)^{1/3} \left(\frac{2M}{3p_y}\right)^{2/3} = \frac{2^{2/3}M}{4p_x^{1/3}p_y^{2/3}}$$

 U_i tells you the utility number for any given budget and prices. The Expenditure Function is

$$E = \frac{3p_x^{1/3}p_y^{2/3}}{2^{2/3}} \cdot U_i \qquad i = old, new$$
$$E = 1.89p_x^{1/3}p_y^{2/3}U_i$$

(b) Suppose M = 120, $P_y = 1$ and $P_x = 4$. What is Skippy's optimal x, y and utility number? If the price of x was lowered to 2 what would be her x, y and utility number

$$\begin{aligned} x_{old} &= 10, y_{old} = 80, u_{old} = 40 \\ x_{new} &= 20, y_{new} = 80, u_{new} = 50.4 \end{aligned}$$

(c) What is the most Skippy would pay to have P_x lowered to 2? USE EXPENDITURE FUNC-TION with new p_x and old utility

$$E = 1.89 p_x^{1/3} p_y^{2/3} U_i$$

$$E = 1.89 p_x^{1/3} U_i \quad (p_y = 1)$$

$$U_{i=old} = 40, \quad p_x = 2$$

$$CV = 120 - E$$

$$CV = 120 - 1.89(2)^{1/3}(40) = 24.74$$

(d) Suppose M = 120, $P_y = 1$ and $P_x = 4$. How much additional income would Skippy need to be as well off as if the price of x had fallen to 2? **USE EXPENDITURE FUNCTION** with old p_x and new utility

$$E = 1.89 p_x^{1/3} p_y^{2/3} U_i$$

$$E = 1.89 p_x^{1/3} U_i \quad (p_y = 1)$$

$$U_{i=new} = 50.4, \quad p_x = 4$$

$$EV = E - 120$$

$$EV = 1.89(4)^{1/3}(50.4) - 120 = 31.2$$

Millions Compari		son	5yr	10yr	
CS (Benefit)	\$8.16 Benefit		Ban minus Plant	\$8.23	-\$13.68
VC Plant	\$1.70		Cells C5 - J17 or J22		
FC Plant	\$13.00				
interest	5%	Option 1	Pesticide Ban		
Ban costs/yr	\$7.00		(CS-Ban)/r =	<mark>\$ 23.20</mark>	

Option 2 Treatment Plant

From CS page	\$8,160,000	
or, in millions:	\$8.16	

Question 2 Ban > 5 yr plant by	\$8.23 million			
Question 3 10 yr Plant > Ban	\$13.68 million			
Question 4 Ban = 5 yr plant if r = 10.21%				
Question 5 Ban = 10 yr plant if r = 38.90%				

Year	Benefit	Cost	Net Benefit	Disc NB	SUM NPV
0	\$0.00	\$13.00	-\$13.00	-\$13.00	-\$13.00
1	\$8.16	\$1.70	\$6.46	\$6.15	-\$6.85
2	\$8.16	\$1.70	\$6.46	\$5.86	-\$0.99
3	\$8.16	\$1.70	\$6.46	\$5.58	\$4.59
4	\$8.16	\$1.70	\$6.46	\$5.31	\$9.91
5	\$8.16	\$1.70	\$6.46	\$5.06	\$14.97
6	\$8.16	\$1.70	\$6.46	\$4.82	\$19.79
7	\$8.16	\$1.70	\$6.46	\$4.59	\$24.38
8	\$8.16	\$1.70	\$6.46	\$4.37	\$28.75
9	\$8.16	\$1.70	\$6.46	\$4.16	\$32.92
10	\$8.16	\$1.70	\$6.46	\$3.97	\$36.88
11	\$8.16	\$1.70	\$6.46	\$3.78	\$40.66
12	\$8.16	\$1.70	\$6.46	\$3.60	\$44.26
13	\$8.16	\$1.70	\$6.46	\$3.43	\$47.68
14	\$8.16	\$1.70	\$6.46	\$3.26	\$50.95
15	\$8.16	\$1.70	\$6.46	\$3.11	\$54.05