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A theory of market structure with sequential entry

B. Curtis Eaton*
and

Roger Ware*

This article sets out a theory of market structure with sequential entry. We characterize the
perfect Nash equilibrium to the entry game in several propositions. First, equilibria never
involve excess capacity. Second, a sufficient statistic for the entry of any firm is that its profits
are positive when computed myopically, i.e., with no further entry. Third, the equilibrium
number of firms is the smallest number that can deter entry. Fourth, aggregate output in
equilibrium is no smaller than the limit output. We calculate some explicit solutions to the
model and examine comparative static properties.

1. Introduction

B Beginning with the limit-pricing models of Bain (1956), Modigliani (1958), and Sylos-
Labini (1962), the modern theory of strategic entry deterrence has grown increasingly so-
phisticated, but has not achieved its purpose (at least as intended by Bain): the endogenization
of market structure. Although today’s students of industrial organization are told that conduct
feeds back on to structure, and that the two are determined simultaneously, there are few,
if any, formal models describing how this determination occurs. The early models of limit
pricing cited above restricted attention to a monopolist incumbent’s (or collusive oligopoly’s)
trying to deter a single entrant. This one incumbent-one entrant framework has dominated
the theoretical literature. Recent work within this framework has concentrated on refining
the concept of strategic investment to deter entry, for example, by the introduction of the

. concept of perfectness, or credibility into the entry game (Dixit, 1980; Eaton and Lipsey,
1981; Spence, 1977; Fudenberg and Tirole, 1983; Gilbert, 1986; Ware, 1984). Gilbert (1986)
provides an enlightening synthesis of this literature. The next step on the theoretical agenda
is to use this strategic framework to develop a model in which tastes and technology, but
not market structure, are exogenous.

This article accomplishes that task for a restrictive, but not uninteresting, set of demand
and cost conditions. The number of firms, aggregate output, and the size distribution of
producing firms are determined as the solution to a sequential entry game of perfect infor-
mation. Although firms enter in sequence, all firms have perfect foresight about the pattern
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of future entry and the equilibrium price (the equilibrium is subgame perfect). The equilib-
rium is entry deterring in that the next firm in sequence after the last successful entrant
cannot enter and earn positive profits.

Some attempts have been made to extend the modern theory of entry deterrence beyond
the one incumbent-one entrant framework. An early and important article that pioneered
the ideas of sequential entry and endogenous market structure is Prescott and Visscher
(1977). Bernheim (1984) considers a sequence of potential entrants and shows that making
entry conditions easier may, perversely, lower the scope for entry, because any potential
entrant anticipates greater subsequent entry, and hence lower available rents in the final
equilibrium. Gilbert and Vives (1984) examine a model with several incumbents and entrants,
in which firms incur a sunk entry fee but no sunk production costs. Incumbents move
simultaneously in making strategic production decisions toward a sequence of potential
entrants. McLean and Riordan (1985), in a paper with a motivation similar to ours, consider
the perfect equilibrium to a sequential entry game in which firms choose irreversibly a
production technology at the time of entry, and market structure is determined endogenously.

We have been careful to match the strategic structure of the game to the technology,
in a way that many previous articles in the area have failed to do. The strategic advantage
of earlier movers is conferred only by sunk investments; the later movers use the same
technology and are able, in fact obliged, to make sunk investments in the same way to enter
the industry. Thus, games of this type are properly modelled in two phases—first, a phase
in which all strategic (sunk) investments are committed, and second, a production phase
that is nonstrategic and in which a quantity equilibrium (in our case Cournot) is realized,
conditioned on the vector of strategic investments made in phase one. The recognition that
later movers also incur sunk investment costs gives the earlier movers less strategic power
than in models in which this point is ignored. Ware (1984) discusses the distinction in detail
for a one incumbent-one entrant model. Our article can be viewed as an extension of the
framework developed there to the case in which the number of potential firms is large.

In Section 2 we present our model and develop some useful propositions characterizing
the quantity equilibrium, given any vector of strategic investments. In Section 3 we develop
three propositions that characterize the perfect Nash equilibrium of the sequential entry
game. First, equilibrium never involves excess capacity. Second, a necessary and sufficient
statistic for entry of any firm is that its maximal profit, computed on the assumption of no
further entry, be positive. As a corollary, aggregate output is no smaller than the limit
output. Finally, the equilibrium number of firms is the smallest number that can deter
further entry.

In Section 4 we present and discuss some simulation results. Using a computer algo-
rithm, we are able to vary parameters of the model, such as the degree to which the technology
is sunk, and to analyze the effect on the equilibrium configuration of firms. This allows us
to assess the impact of strategic behavior on the industry. Perhaps surprisingly, we find that
strategic entry deterrence is ordinarily welfare improving in our model, because equilibrium
output does not change significantly, but the number of firms, and hence the sunk costs
associated with entry, are reduced.

The reason for the relative constancy of equilibrium output is that a form of limit
pricing is embodied in the entry-deterring equilibrium. It has been clear that limit pricing
behavior might work to the benefit of consumers since the work of Bain. In expanding
capacity and output to deter entry, a monopolist will lower price and reduce the social cost
of monopoly. In our model there is an additional benefit to entry-deterring behavior: a shift
in the equilibrium market structure toward the efficient structure, which with globally in-
creasing returns is just a single firm.

Curiously, we discover that the equilibrium profit of firms is not monotonically de-
creasing in the order of entry: the privilege of being an early entrant is not necessarily
valuable. In Section 5 we briefly comment on the possible significance of our results.
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2. The model
B We begin by making four assumptions.

Assumgtion 1. A11~ﬁrms produce an undifferentiated product with inverse demand function
p = f(X), where X is aggregate output.

Assumption 2. The function f(X) is twice differentiable, and, for A(X)>0,/"(X) <0. Further,
(X)) + X f"(X) <0, for all X; < X, where X; is output of firm i.

The second restriction in Assumption 2 is that the marginal revenue of any firm is decreasing
in any other firm’s output. As we observe below, this property is crucial for the results we
obtain, and the assumption is therefore not innocuous.'

There are n potential firms.

Assumption 3. For any firm i the cost function is C(X;, k;) = F(k;) + VX, X; < k;.

F(k;) is the cost of capacity k;. We suppose that, once incurred, capacity costs are sunk.
Output can be produced at constant variable cost ¥ per unit, up to capacity k;. We further
assume the following.

Assumption 4. F(0) = 0; F(k;) > 0, for k; > 0; F(k;) > F(ky), for k; > koy; and F(k;)/k;
< F(ko)/ko, for k; > ko.

Notice that capacity costs are increasing in k;, but average capacity costs are decreasing
in k,'.z

We analyze an (n + 1)-stage game of perfect information (Kuhn, 1954) in which
firms 1 through # sequentially choose capacities k" = (ky, ..., k) in the first n stages.
In the (n + 1)st stage, they play a capacity-constrained Cournot game in quantities. An
equilibrium to a game of perfect information is, of course, subgame perfect in the sense of
Selten (1975).

O Properties of the constrained Cournot equilibrium. Given k" = (k, k,, ..., k,), the
quantity equilibrium, which we denote by x” = (x;, X2, . . ., X,), is the solution to

Xx;=min (k;, Z(X_))), i=1,...,n,
where X_; = ¥ x; and Z(X_;) is argmax x; f(X_; + x;) — Vx;. That is, Z(-) is the Cournot
Wiall X

reaction function for the quantity-setting game in stage (n + 1). Notice that the symbols x;
and X refer to Cournot equilibrium quantities, given capacities.

In Figure 1 we illustrate the solution to the quantity game where there are two firms,
one and two, with positive capacities in stage (n + 1). There are four regions in the figure:
in I, both firms are unconstrained by their capacities; in II both are constrained; in III (IV),
one (two) is constrained and two (one) is unconstrained. The boundary between regions II
and IV is Z(x,) and the boundary between II and III is Z(x;).

In the Cournot equilibrium there are potentially three types of firms, which are described
in the following definition.

Definition 1. If x; < Z(X_;), firm i is constrained. If x; = Z(X_;), firm i is: (a) semiconstrained
if x; = k;; (b) unconstrained if x; < k;.

Notice that the output of any firm which is either constrained or semiconstrained is equal
to its capacity (x; = k;), and that the output of an unconstrained firm is less than its capacity.

T'A defense of this assumption that has been cited commonly by other authors is that it is sufficient for
stability of a Cournot equilibrium.
2 This seems to be a reasonable simplification of observed cost functions in many manufacturing industries.
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FIGURE 1
THE FOUR PHASES OF CONSTRAINED COURNOT EQUILIBRIUM FOR DUOPOLY

Xp, Ky
REGION III

x;=k,  (FIRM 1
CONSTRAINED)

X5 = Z(ky) (FIRM 2 Xy = Z(x,)
UNCONSTRAINED)

/

REGION I

Xo = Z(Xy)
(BOTH FIRMS UNCONSTRAINED)

Xy = Z(x1)
REGION 1I REGION IV
X, = kq x; = Zlky) (FIRM 1
) UNCONSTRAINED)
X272 xy=k, (FIRM 2
(BOTH FIRMS CONSTRAINED) CONSTRAINED)

e X1 Zixg)

X, kq

To analyze the sequential entry game we need some properties of the Cournot equi-
librium, which are summarized in the following four propositions.

Proposition 1. Given k" = (ky, . . . , k), the Cournot equilibrium x" = (x,, . . . , X,,) is unique.

The proof of uniqueness is a direct application of the Rosen (1965) uniqueness theorem.
The theorem requires that the game is strictly smooth (Friedman, 1986, p. 44); second, that
the Jacobian of the system of first-order conditions, which will not be simultaneously satisfied
at boundary equilibria, be negative quasi-definite (Friedman, 1986, p. 45).

Proposition 2. (a) x; and X ( 2 x;) are continuous in k". (b) Given (kl, ey ki,
Kis1, ..., k), there exists a k; > O such that firm i is constrained if k; < k;, semicon-
strained if k; = k;, and unconstrained if k; > k;. (c) If firms i and j are either semicon-
strained or unconstrained, then x; = X;. (d) If firm i is constrained and firm j is either
semiconstrained or unconstrained, then x; < x;. (€) x; is decreasing in k; if i is unconstrained
and j is constrained, and nonincreasing otherwise. (f) x; and X are increasing in k; if i is
constrained, and nondecreasing otherwise.

Proofs of parts (a), (b), (c), and (d) are trivial. Proofs of parts (e) and (f) are straightforward
but tedious, and have been omitted for the sake of brevity.

Definition 2. Let H;(k") = x; f(X) — Vx; denote the gross profit of firm i in Cournot equi-
librium.

Proposition 2 has immediate consequences for these gross profit functions that we
record in Proposition 3.

Proposition 3. (a) H;(-) is continuous in k". (b) H,(+) is decreasing in k;, j # i,
if j is constrained. (c) For any k; > 0, k; = 0, and k; > 0, Hy(ky, ..., Kkj, ..., k»)
> Hi(ky, .. k,, ..., kn), j # i. (d) For any pair k;, k such that j is either semiconstrained
orunconstrained, H(kl, e ks k) = Hiky, . k,, ..., ky) for all i.
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There are some immediate and useful implications of Propositions 2 and 3 concerning
the effect of adding or subtracting firms, which we loosely call the entry and exit corollaries.

Entry Corollary. Suppose initially that m firms, m < n, have positive capacities. Now suppose
one or more additional firms enter with positive capacities. Then aggregate output increases,
aggregate output of the m original firms does not increase, and the output of any firm that
was originally unconstrained decreases. Finally, the gross profit of each of the m original
firms decreases.

Exit Corollary. Suppose again that m firms initially have positive capacities and that one
or more of them exit. Then aggregate output decreases, aggregate output of the remaining
firms does not decrease, the output of any firm that was initially unconstrained increases,
and the output of any firm that was initially constrained remains constant. Finally, the gross
profit of each of the remaining firms increases.

Assumption 4 implies a useful proposition concerning net profits of firms in Cournot
equilibrium.

Proposition 4. If firms i and j are constrained or semiconstrained, then [H;(+) — F(k;)]
— [H;(+) — F(k;)] has the sign of (k; — k;). In words, net profits in a Cournot equilibrium
are ranked in order of capacities, provided that the firms being ranked are not unconstrained.

. _ _ ., Hk) . . .
Proof. Since x; = k;, H/(+) — F(k;)) = | f(X)—V = k;, which, from Assumption 4, is
increasing in k;.

We are interested in the free-entry equilibria of the (n + 1)-stage game—the equilibria
in which not all of the » firms choose a positive capacity. Hence, we assume that » is so
large that if k; > 0 for all i, then some firm (or firms) earns negative profit. For technical
reasons, we assume that # is finite.

Assumption 5. The number of firms, #, is finite and is such that if k; > 0 for all i, then
Hik, ..., ky,) — F(k;) <0 for some j.

3. Properties of perfect equilibrium

B Preview of results. Before turning to the analysis of perfect equilibrium, it is useful to
preview the main results that we shall establish. We first show that in perfect equilibrium
no firm holds excess capacity. This reflects among other things the fact that excess capacity
is not a barrier to entry in this model. From the entry corollary we see why. If a firm is
unconstrained before entry—if it holds excess capacity—, then not only will it not use the
excess capacity after entry, but it will, in fact, hold even more excess capacity. It is clear
that the ““no-excess-capacity result” depends critically on the demand restriction that marginal
revenue of any firm is decreasing in the output of other firms. Bulow, Geanakoplos, and
Klemperer (1985) provide an example in which relaxing this restriction can lead to excess
capacity in the perfect equilibrium of a simple entry game.

Next we derive a necessary and sufficient statistic for entry. That is, we determine a
necessary and sufficient condition for entry of some firm i, given the predetermined capacities
of the first (i — 1) firms. The ith firm will enter if and only if its maximized profit, given
that firms (i + 1) through # hold zero capacity, is positive. Firm i will not, of course, actually
choose capacity in this myopic fashion if it does enter. The condition simply tells us when
a firm will enter, and moreover what it means in this model to say that entry is deterred,
or that we have a free-entry equilibrium.

The entry proposition also tells us something about the identity of firms in perfect
equilibrium and their aggregate output. Suppose there are i firms in perfect equilibrium:
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they will be firms 1 through i, the first / firms in the sequence of potential firms. Further,
their aggregate output will be no less than the Bain-Labini-Modigliani limit output.

We then come to perhaps the major result characterizing perfect equilibrium. Suppose
the first i firms had infinite capacities, which maximizes their leverage with respect to entry
of firm (i + 1). It is clearly possible that firm (i + 1) will not be deterred from entering since
excess capacity is no barrier to entry. Given Assumption 5, however, there is some minimum
value of i, less than #, such that if the first ; firms held infinite capacities, firm (i + 1) would
be deterred from entering. We show that this minimum number of firms that could deter
entry is the number of firms that will, in fact, enter in perfect equilibrium.

Finally, we remark that when the number of firms that enter (choose a positive capacity)
is “large,” for all practical purposes the output is the limit output. Thus, in a sense we are
resurrecting the limit-output model. What our analysis adds is a theory of market structure—
the number of firms and their market shares are endogenous in our model.

O Nonexistence of equilibrium. Before we can prove these results we must confront a
nonexistence problem. To see the problem, illustrated in Figure 2, we focus on a case in
which there are just two potential firms: firm one chooses k;, firm two chooses k,, and the
firms then play a capacity-constrained quantity game. Firm two’s reaction correspondence
in Figure 2 comprises two segments—BA and A'G’. Given k; = k;, firm two is indifferent
between k, and k,. The line BAG is the ordinary (full-cost) Cournot reaction function—
the locus of profit-maximizing values of x, = k,, given x; = k;. The reaction correspondence
is coincident with this reaction function to the left of 4. For k; > k;, firm two’s best capacity
response is k,, which is discretely larger than k,. The discontinuity in firm two’s reaction
correspondence is defined by the condition that its isoprofit locus through point 4 be tangent
to firm one’s variable-cost Cournot reaction function—at point 7 in the figure. This reaction
function is, of course, the boundary between regions II and IV in Figure 1. Hence, in the
quantity equilibrium corresponding to any point on A'G’, firm one holds excess capacity,
but firm two does not. That is, for all (k;, k,) on AG’, x; = k; < k; and x, = k,. It then
follows that firm one’s net profit in any Cournot equilibrium corresponding to a point on
A'G' is less than its net profit in the Cournot equilibrium corresponding to point 4. Hence,
firm one will not present firm two with a capacity larger than k.

FIGURE 2
FIRM 2's REACTION CORRESPONDENCE

X9, k2“

G
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To see the nonexistence problem, suppose that as we move from left to right along
BAG, firm one’s profit is still increasing at point A. If, given k; = k,, there is any positive
probability that firm two would choose k, instead of k», then firm one will choose
k, < k;. But then there is no equilibrium, since firm one’s profit is increasing on the half-
open interval, [0, k,). This problem potentially occurs in any case where »n exceeds 1. To
avoid it we assume the following.

Assumption 6. If in any subgame any firm is indifferent between two or more capacities,
the firm chooses the smallest capacity.

Note that Assumption 6 ensures that all reaction correspondences are reaction functions.

O No excess capacity. In examining the case of no excess capacity we offer the following
proposition.

Proposition 5. In perfect equilibrium the output of each firm is equal to its capacity.

The argument proceeds as follows. Consider the subgame (defined by) (ky, ..., k),
and suppose that x; < k; in the ensuing subgame-perfect equilibrium. We show that for k;
set equal to the quantity X;, aggregate output in the corresponding subgame-perfect equi-
librium is no larger (and price no smaller) than it was in the equilibrium of the original
subgame, and hence that i’s output is identical in both. Therefore, firm i’s profit increases
if it eliminates excess capacity, and excess capacity is inconsistent with perfect equilibrium.

Proof. Consider the subgame (k"!, k;), where k! denotes the vector of capacities
ki, ..., k,-_l), and denote the subgame-perfect responses of firms (i + 1) through » by
(ki1 - . ., ky) and the aggregate output in the corresponding equilibrium by X. Suppose
that ﬁrm i’s output in the equilibrium, X;, is less than its capacity, k;. Now consider the
subgame (k*"!, k; = X;)—the subgame in which firm i’s capacity, k;, is equal to X;—and
denote subgame-perfect responses and aggregate output in the corresponding equilibrium

by (kists . - -, k,) and X. We must show that X=<X
Define
S={k"Vk;,. .., kJdX=X},
and
S={k"V k... kJX<X}.
Ifki ki ..., k) ES, then X< Xz and we are done. .
Suppose then that KV ki, .. k) E S. Observe that for any k™1, ki kivi, ..., k) ES
and any (kl_ls kia ki+15 D] kn) € S’ }Ij(k’_l’ kia ki+l9 s kn) = I{j(kl_l> ki> ki+15 L) kn)

for all j > i, since i is either unconstrained or semiconstrained (see Proposition 3(d)).
This implies that firm #’s reaction functions are identical in the two subgames, which in
turn implies that firm (# — 1)’s reaction functions are also identical, and so on. Hence,
(kivts - .. k) = Kivts - . ., k), and therefore X = X. Q.E.D.

O The entry statistic. Next we find the condition that determines whether a firm will
enter, given the capacity choices of all previous firms.

Definition 3. Let Gi(k'™') = max [H(k"!, k;, 0, ..., 0) — F(k)].
k1>0

Gi(k"™") is the maximum profit firm i could earn by entering (by choosing k; > 0),
given predetermined capacities, k!, and given that the capacities of all subsequent firms
are zero. That is, G;(+) is a “myopic” entry signal for firm i, because it is conditioned on
no subsequent entry. Proposition 3 implies that G;(-) is continuous and nonincreasing in
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k;, j < i, and strictly decreasing in k; if k; is sufficiently small. We show in the following
proposition that despite the fact that firm 7 actually makes its entry decision with perfect
foresight about subsequent entry, this myopic calculation yields a statistic that is both nec-
essary and sufficient for entry.

Proposition 6. Tt is necessary and sufficient for the entry of firm i that G;(k"!) > 0.

Proof. Necessity is trivial to establish since firm i’s profit is nonincreasing in k;, j > i.
(We assume for convenience, that a firm anticipating exactly zero profit will not enter.)
To prove sufficiency, let k; = oo, and consider two cases. If G, (k"™!, k; = o) < 0,
then firm i can deter entry. Denote by k; the smallest value of k; that deters entry, and
denote argmax H;, (k"' ki, kir1, 0, . .., 0) — F(kiy1) by k;iy1. Then, by continuity we have

kit1>0
Gin(k™ ki) = Hipa (k™ ki, kv, 0, . . . ,0)— Flkiy1) = 0.
Let k; = max (k;, ki+1), and let ki, = min (k;, ki+1). Then, from Proposition 4 we have
Hi(k™ K kivy, 0, 00— F(k) = Gk, k) = 0.
But k; deters entry, and firm i’s net profit in the subgame (k*"!, k;) is
Hi(k",k;,0,...,0)— Fk;),

which from the preceding inequality and Proposition 3(c) is positive. Thus, k; is a profitable
entry-deterring strategy for firm i.

If Gii(k'™", k; = o) > 0, we have the second case. In the subgame defined by
(k*', k; = o0), at least one of the perfect responses, denoted by (kiri, ..., k), will be
positive. For example, if k; = 0 for all i < j < n, then k, > 0, since 7 is the last firm. Let X;
denote firm #’s output and X aggregate output in this subgame-perfect equilibrium, and let
j denote a firm, j > i, such that k; > 0. Observe that

Hi(ki_lski= CX),]‘CH-I,. .. 5kn)—F(xi)ZI{j(ki_l’ki= w’ki-l-l,* .. 9kn)_F(i€J)>O'

The first inequality follows from the fact that no firm has an output larger than X; and from
Proposition 4. Now consider the subgame (k'"!, k; = X;), and denote the corresponding
subgame-perfect responses by (ki.1, . .., k,) and aggregate output by X. The “eliminate
excess capacity argument” used to prove Proposition 5 implies that X < X and hence that

Hi(ki—ls ki = xi? ici+l e e ey ]’%rl)Z Hi(ki‘ls ki = 0, ki+l e s ey kn)'
The last three inequalities imply that k; = x; is a profitable entry strategy for firmi. Q.E.D.
Two corollaries deserve attention.

Corollary 1. If there are i positive capacities in the perfect equilibrium of the (» + 1)-stage
game, then k; > 0 for j < i, and k; = 0 for j > i.

Corollary 2. Let X be the value of aggregate output such that

max {xf(X +x) — Vx— F(x)} =0.

Then, letting X* denote aggregate output in perfect equilibrium, we see that X* > X.

That is, in perfect equilibrium output is no smaller than the Bain-Labini-Modigliani limit
output. The proof of Corollary 2 is quite simple. From Proposition 5 we know that in perfect
n

equilibrium X k; = X*, and from Corollary 1 we know that k, = 0. Suppose that X* < X;
i=1

then G,(k"!) > 0, and hence firm # would enter, which is a contradiction.
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0O Determining the equilibrium number of firms. Now that we have necessary and sufficient
conditions for the entry of firm 7, we want to determine the number of firms that will enter
in perfect equilibrium. Suppose for the moment that i firms had entered and that each of
them had an infinite capacity. Denote this vector of capacities by k.. It is clear that this
maximizes their leverage with respect to the entry of (i + 1), and further that k’, will not
necessarily deter entry. Let u be the smallest value of i such that G;;;(k,) < 0. The integer
u is then the smallest number of firms that could deter entry. We show that in the perfect
equilibrium of the (n + 1)-stage game, the first 4 firms will enter and that no other
firm will.

Proposition 7. In perfect equilibrium the number of firms entering (choosing positive capacity
levels) is the smallest number that can deter the entry of an additional firm.

We present the proof in the Appendix. The structure of the argument is as follows. We
consider all subgames (defined by k') in which G;,,(k*) > 0: all subgames in which firm
(i + 1) enters. We partition these subgames into sets, indexed by z = | and defined as
follows:

z= m;}lei+j(k', kiv1=00,kip2=00,. .., ,kij=00)>0,
J

where I is the set of positive integers. If z = 1, entry will be deterred when k., is sufficiently
large. If z = 2, entry will be deterred when k;.; and k;,, are sufficiently large, and so on.
We show that the number of firms entering in the perfect equilibrium of any such subgame
is z, the index of the subgame. This proves Proposition 7, since the index of the subgame
in which no firm has entered is the integer u—the smallest number of firms that can deter
the entry of an additional firm.

Consider first the case z = 1, and let k;;; be the smallest value of k;;; that deters the
entry of firm (i + 2). We show that any “accommodation” strategy k;;; < k;;; implies a
subgame equilibrium that makes firm (i + 1) worse off. We then consider the case z = 2,
and let k;;; denote the smallest value of k;;; such that firm (i + 2) can deter entry. We know
from the z = 1 case that firm (i + 2) will deter entry if k;.; = k;.,. We show that for z = 2,
any ki, < ki1 will again make firm (i + 1) worse off than it is with k;,; = k;,{, and hence
exactly two firms will enter any subgame in which z = 2. The case z = 3 is then proved by
using the results for z = 1, 2, and so on, recursively.

4. Explicit solutions to the model: the case of linear demand

m Proposition 7 implies a corollary that greatly simplifies the task of finding solutions to
explicit parameterizations of the model. The proposition states that the equilibrium number
of firms will be the smallest number that can deter entry. But this number is independent
of the capacities of firms that do enter. Thus, the process of finding a solution to the model
can be decomposed into two stages, first finding the equilibrium number of firms u, and
then solving, conditional on u# and on the fact that firm (# + 1) is deterred from entering,
for the equilibrium vector of capacities, quantities, and the equilibrium price.
In this section we suppose that the inverse demand function is linear:

p=2—-X.
Let F(k;) = F+ ak;and V = (1 — «), so that
C(fi,k,‘)'—_F"' ak,“"(l —a))fi, )?is ki,

where 0 < « < 1. The parameter « represents the proportion of production costs that are
sunk, with unit production costs held constant at unity. A change in « has no effect on total
costs, but does affect the degree of strategic advantage that is conferred by the ability to sink
capacity in advance of production. The parameter F represents a fixed (and sunk) cost
of entry.
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O The equilibrium number of firms. We obtain the equilibrium number of firms by deriv-
ing in explicit form the boundaries of the (index) partition of the subgame described
in the previous section. These boundaries are equivalent to the equations G,(kL) = 0,
Gy(k%) = 0, Gy(k3) = 0 ..., where k’, is the vector of infinite capacities for the first i
firms. The subgame partition is derived in the parameter space (F, «), and is illustrated
in Figure 3. Note that Figure 3 identifies equilibrium ‘“n-opolies,” without having solved
for the full perfect equilibrium to the model. It is instructive to hold F constant in Figure 3
and to observe what happens to the number of firms as we vary a. An increase in « increases
the relative importance of the sunk component of unit production costs. This increases the
strategic advantage of earlier entrants, and at discrete values of «a will reduce the number
of firms in perfect equilibrium. When o« = 1, all production costs are sunk, and the equi-
librium consists of a single firm, for all values of F. That is, the first entrant is able credibly
to install sufficient capacity to deter any further entry.

Solutions to the model can be further subdivided into one of two kinds—blockaded
solutions and strategic solutions. To see the nature of the distinction, consider the following
exercise. Given u, the number of firms that enter in perfect equilibrium, consider a sequential
game of perfect information in which there are exactly u firms. If the solution to this game
is identical to the perfect equilibrium solution, we say that the perfect equilibrium solution
is blockaded. If they are different, which implies that the perfect equilibrium is materially
influenced by the potential for entry, we say that the perfect equilibrium solution is strategic.

The intuition behind the blockaded solution is elementary and traditional; it is a direct
extension of Bain’s concept of blockaded monopoly. In a blockaded #-opoly, the incumbent
firms can ignore the possibility of entry, although there is strategic interaction among them.
The division of all solutions into either blockaded or strategic solutions implies a further
subpartition of the technology parameter space, which we illustrate in Figure 4.

Obviously, the threat of additional entry has no effect in the parameter regions corre-

FIGURE 3
EQUILIBRIUM NUMBER OF FIRMS
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FIGURE 4
BLOCKADED AND STRATEGIC “n—OPOLIES"”
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sponding to blockaded solutions. These regions cover a large part of the parameter space,
and we conjecture that as the number of producing firms increases, the “likelihood” of
blockaded solutions becomes progressively larger. This observation suggests at least a different
perspective on the idea that potential entry disciplines the market. In our model the strategic
interaction between actual entrants often has more impact on the final equilibrium than
does the need to deter potential entrants.

A complete solution to the model requires that each firm’s choice of capacity be profit
maximizing, given the vector of capacity choices of earlier entrants, and given the subgame
equilibrium conditioned by that firm’s capacity choice. The monopoly case is simple. In
the blockaded case the monopolist’s choice is unconstrained. In the strategic case the mo-
nopolist installs just enough capacity to deter entry.

We may also obtain analytic solutions to the duopoly case, albeit with some tedious
computation.® To derive equilibria involving larger numbers of producing firms, we have
written a computer algorithm that computes the (approximate) perfect equilibrium to the
entry game for parameter values leading to two or three producing firms.* Figure 5 reports
approximate perfect equilibria to the entry game for technology parameters leading to one,
two, or three producing firms.

O Size distributions and the threat of entry. From the results reported in Figure 5, we can
analyze the effect on the equilibrium of varying the technology parameters « and F. We
begin with the blockaded equilibria. Starting from any blockaded equilibrium, a decrease

3 The blockaded duopoly solutions are derived in full in Ware (1984).
* The computer algorithm mimics the recursive structure of the sequential game by first finding firm u’s best
response function, then (¥ — 1)’s, and so on. Details are available from the authors on request.
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FIGURE 5
PERFECT EQUILIBRIUM IN F — a¢ SPACE
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in F, the sunk cost of entry, has no effect on the equilibrium (providing that F does not
change sufficiently to permit entry or to produce a strategic equilibrium). The parameter
«, the proportion of production costs that are sunk, is a measure of the degree of strategic
advantage held by early movers in the sequential game. The effect on the blockaded equi-
librium of varying « is as expected: for a given number of firms, a decrease in « leads to a
reduced variance of equilibrium firm sizes. Firms that move early are unable to capture so
large a share of the market when the strategic advantage of moving early, in the form of
sunk production costs, is reduced.

A general result is that the threat of entry reduces the variance of firm sizes. This can
be seen in Figure 5, either moving from right to left across a blockaded-strategic boundary,
or from right to left within a strategic region. The issue here is the credibility of the incum-
bents’ capacity in deterring entry. Given aggregate industry capacity, greater symmetry of
capacities lowers the minimum fixed cost of entry for which deterrence is feasible. Thus,
lowering the fixed costs of entry within any strategic region leads to reduced variance of
firm sizes in market equilibrium.

O Nonmonotonic market shares. The results in Spence (1977), Dixit (1980), and Ware
(1984) establish that the privilege of being a first mover is a valuable one in this type of
sequential entry game. An obvious conjecture, consistent with the results in McLean and
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Riordan (1985), is that the privilege of being an early mover is likewise valuable. Surprisingly,
in our model the profit of a firm early in the sequence of entrants is not necessarily larger
than (or equal to) the profit of firms later in the sequence. For example, as Figure 5 reveals,
when F = .045 and « = .1, firm three is larger and more profitable than firm two.

To understand this curious result, focus first on firm three’s capacity decision, given
(k1, k2). In this particular case (F = .045 and « = ,1) the existence of a fourth potential firm
has no bearing on the equilibrium, since it is a three-firm blockaded equilibrium. This allows
us to compute in a straightforward, if tedious, manner the perfect equilibrium for all subgames
(k1, k;). We record the results in Figure 6.° In region I all three firms are constrained, in
region IV both firm one and firm two are unconstrained, and in region II (III) firm one
(firm two) is unconstrained and firm two (firm one) is constrained.

Now focus on firm two’s reaction function. In region I firm two’s profit is increasing
in k, for all k,. As k, passes through the line ABCDE, firm two’s profit drops discretely,
since subgames (k;, k) in regions II, III, and IV induce firm three to choose a capacity
discretely larger than the capacity it chooses on ABCDE. In regions III and IV, firm two is
unconstrained (it holds excess capacity), and hence its reaction function for k; < k, is ABC.
For subgames in which k; > k;, firm two must choose between an equilibrium on CDE in
region I and the best equilibrium in region II. In region II its best response is on the line
CD'E'. For k, < .311, its profit on CDE is larger, and for k; > .311, its profit on CD'E’ is
larger. Hence, its reaction function comprises two segments—ABCD and D'E’.

Finally, consider firm one’s choice. It will choose the point on firm two’s reaction

FIGURE 6

REACTION FUNCTION OF FIRM 2 IMPLICIT IN A NONMONOTONIC PERFECT
EQUILIBRIUM (AT POINT D)
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*In Figure 6 the locus 4B is defined by (1 — k; — kp)*/4 = (11 — 10k,)(8 — 10k;)/900, the locus BC by
(1 — ky — kp)*/4 = 77/1600, and the locus CE by (1 — k; — k2)*/4 = (11 — 10k,)(8 — 10k,)/900.
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function that offers it the largest profit. Moving from left to right along ABCDE, firm one’s
profit is still increasing at D, and its profit at D is larger than its profit at any point on D'E’,
since it holds excess capacity in region II. Hence, firm one chooses k; = .311 and induces
firms two and three to choose k; = .197 and k; = .246.

The key to the intuitive understanding of this result is the observation that the equi-
librium profit of firm two (and of firm one) in any subgame (k,, k,) is discontinuous along
ABCDE. Below the line, small changes in k; or k, induce small changes in k3. Beginning
at any point on the line, a small increase in k, or k, induces firm three to increase its capacity
discretely, which action discretely reduces the profit of firm two. That is, on the line ABCDE
small increases in k; or k;, induce a large increase in k3 and a discrete decrease in firm two’s
profit. It is this discontinuity that allows firm one to force the solution at D. In moving to
the right along ABCD, firm one is squeezing firm two and knows that firm two will reduce
k, to avoid the discrete drop in its profit that any subgame above ABCDE promises. At
point D firm two has been pushed to the limit, and any further increase in k; would induce
firm two to increase its capacity discretely, and thus to reduce firm one’s profit.

The result that profits are not invariably decreasing in the order in which firms enter
calls into question the applicability of our model. At a minimum, it suggests that one should
incorporate the possibility that firms will attempt to manipulate the order of entry by refusing
to enter when their turn comes. Any model that allows for this sort of “wait and see” strategy
will, of course, be more complex.

5. Conclusions

B Recent contributions in theoretical industrial organization, notably those of Spence
(1977) and Dixit (1980), have pointed the way toward the development of a theory of
market structure. Although these models do not offer a complete theory of market structure,
because the entry game is restricted to a single incumbent facing a single potential entrant,
it is clear that a theory of market structure is embedded in their assumptions of strategic
behavior and sequential entry.

In this article we have developed a theory of market structure suggested by the work
of these earlier authors. Firms enter the market in sequence, each computing the reaction
of all subsequent entrants to its own strategic investment decision. Only demand and cost
conditions and the structure of the entry game are specified exogenously; the number of
firms, their size distribution, and the market price are determined as the equilibrium to this
entry game.

In a sense, the theory is an elaboration of the Bain-Labini-Modigliani limit-output or
limit-price model. Aggregate output in equilibrium is always approximately equal to the
limit output. The fact that output is never less than the limit output also has implications
for efficiency. Roughly, firms use their power of strategic commitment to obtain as large a
share of the market equilibrium quantity as they can. Thus, each firm acts to minimize the
number of subsequent entrants. By reducing the number of firms in equilibrium, and hence
economizing on entry costs, such behavior tends to improve welfare.

A reservation concerning the model is the artificial “order of entry,” which is essential
to determining equilibrium market structure. The most spectacular rivalry in many mar-
kets—the scramble to establish priority—is ignored in our analysis. Our model is perhaps
least useful in understanding the evolution of market structure in such industries.

Our model seems most applicable to explaining entry into an established industry. Any
potential entrant must obviously confront the irreversible decisions made by his predecessors,
and it must take into account the possibility of subsequent entry by other firms. Indeed, a
question that naturally arises is whether such an industry is in entry equilibrium. To answer
this question, we believe that one must adopt the analytical framework (broadly defined)
used in this article. Entry by its very nature is sequential, and rational entry requires analysis
of a sequential game of the kind we develop.



EATON AND WARE / 15

From this perspective, Proposition 6 is particularly interesting. It says that one can
answer the “entry equilibrium” question by putting oneself in the frame of reference of a
myopic entrant—an entrant who makes his entry decision on the basis that there will be
no subsequent entry.

Appendix
B The proof of Proposition 7 follows.

Proof of Proposition 7. We consider all subgames in which G, (k) > 0. We partition these subgames into sets
indexed by z = 1 and defined as follows:

z= ng}lei+j(ki,ki+1 =00,Kis2=00,...,ky;j=00)>0,
J!
where I* is the set of positive integers. We must show that in the perfect equilibrium of any such subgame, exactly
z firms enter.

Case z = 1. Consider the case z = 1, and let k;,, be the smallest value of ki, such that Gia(k’, kiry) < 0.
By continuity, Gk, kir)) = 0. Let ko be the value of k;, implied by the maximization that defines
Gisa(+). If kg < kipr, then there will be m > i + 1 firms in the perfect equilibrium of the subgame (k', k;.,).

Denote this equilibrium by (&), ki1, ..., km, O, ..., 0). We consider four equilibria of the Cournot game
in stage (n + 1) associated with the following capacity vectors: (k', ki1, 0, ..., 0), (k' ki1, kiv2, O, ..., 0),
K kvt ooy Koy 0,00, 0), and (K, kivr, . . ., Koy Kmat = kin2, O, . . ., 0). The first of these has (i + 1) firms with

positive capacity, the second (i + 2), the third m, and the fourth (m + 1). Let X}, denote the aggregate output of
the first # firms in the v-firm Cournot equilibrium and let x} denote the output of firm j in the v-firm Cournot
equilibrium.

To show that (i + 1) will deter entry (that is, choose kix; = kisy), it is sufficient to show that X7 = X,
since price in the (i + 1)-firm equilibrium is then no smaller than it is in the m-firm equilibrium, and since
x7 < kit < ki = xIt!. Assume the opposite:

Xm<Xii. (A1)
Then
X=X+, (A2)

since the marginal revenue of each of the first i firms is greater in the m-firm Cournot equilibrium than it is in the
(i + 1)-firm equilibrium. Moreover,

Xmii= X3, (A3)
and

Xmt =X (A4)

Otherwise, firm (m + 1) would not be deterred, and (ki,2, . . . , K, O, . . . , 0) would not be subgame perfect responses
to (k' k1) By the same reasoning that led to (A2), inequality (A3) implies that

Xt < xir2, (AS)

From Proposition 2, inequalities (A4) and (A5), and the fact that k;,, is the minimum value of k;,, that deters
entry, we have

XPt. L AxmExI A xr e xi =k = (A6)
The first inequality follows from Proposition 2, the second from subtracting (A5) from (A4), and the equalities
from the definition of k;,,. From (A6) we have

XM+ xm=xit (A7)

Adding (A7) and (A2), we have X7 > X‘t!, which contradicts (A1). Hence, in any subgame with index z = 1,
precisely one firm will enter.

Case z = 2. Now consider the case z = 2. Let us, we hope without confusion, redefine k;,, as the smallest value of
k;+1 such that Giya(k'’, kivy, kisa = 00) < 0. That is, k;,, is the smallest value of k;,, such that firm (i + 2) can deter
the entry of firm (i + 3). If ki; = kis,, the index of the implied subgame, (k' k;4,), is 1, and from above we know
that firm (i + 2) will deter entry. We shall show that firm (i + 1) prefers ki, to any k., < kis1, and hence that
precisely two firms enter in any subgame with index z = 2.

Denote the subgame-perfect responses to (k, kii;) by (kir2, O, ..., 0). First, we establish that
Gisa(K', kivy, kiv2) = 0. To see this switch k;,; and k;,, in the investment sequence. This makes no difference to
firm (i + 3)’s opportunity set. Observe that since k;., is the smallest value of k., that allows firm (i + 2)
to deter entry, then, given k., = Kiy2, Kisa = kiyy is the smallest value of k;., that will deter entry, so that
Gi+3(ki, kis1, kiv2) = 0.
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Let k;.3 be the value of k;,; implied by the maximization that defines Gi.3(-). If kir1 < kis1, then there
will be m > (i + 2) firms in the perfect equilibrium of the subgame (k’, k). Denote this equilibrium by
(k' kv - . > kmy O, . . ., 0). We again consider four equilibria of the Cournot game in stage (n + 1) associated with
the following capacity vectors:

(ki9ki+l,l.€.i+2909~ .. 30)5 (ki’ ]_(i+lyl_ci+2a ]_(i+35 09- .. 90)5
ki kisty. o km,0,...,0),  and (K kier,. .. Koo Kmer = Kix3,0,. . ., 0).

To show that firm (i + 1) prefers ki1 to kiq < ki, it is sufficient to show that X7 > Xit3, where X3 again
denotes the aggregate output of the first # firms in the v-firm Cournot equilibrium. Suppose the contrary,

Xm<Xi3. (A8)

By the reasoning used to establish (A2), we have
Xr= X2, (A9)

By the reasoning used to establish (A6), we have
X X=X X 2 kg F ki = X+ X (A10)

Adding (A9) and (A10), we have X7 > X%, which contradicts (A8). Hence, in any subgame with index z = 2,
precisely two firms will enter.

Replication of this argument establishes that in any subgame, with index z, exactly z firms enter in perfect
equilibrium. The index of the subgame in which there is no committed capacity is, of course, the smallest number
of firms that can deter entry of an additional firm. Q.E.D.
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