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Preface

Most books that use MATLAB are aimed at readers who know how to program.
This book is for people who have never programmed before.

As a result, the order of presentation is unusual. The book starts with scalar
values and works up to vectors and matrices very gradually. This approach
is good for beginning programmers, because it is hard to understand compos-
ite objects until you understand basic programming semantics. But there are
problems:

� The MATLAB documentation is written in terms of matrices, and so are
the error messages. To mitigate this problem, the book explains the neces-
sary vocabulary early and deciphers some of the messages that beginners
find confusing.

� Many of the examples in the first half of the book are not idiomatic MAT-
LAB. I address this problem in the second half by translating the examples
into a more standard style.

The book puts a lot of emphasis on functions, in part because they are an
important mechanism for controlling program complexity, and also because they
are useful for working with MATLAB tools like fzero and ode45.

I assume that readers know calculus, differential equations, and physics, but not
linear algebra. I explain the math as I go along, but the descriptions might not
be enough for someone who hasn’t seen the material before.

There are small exercises within each chapter, and a few larger exercises at the
end of some chapters.

If you have suggestions and corrections, please send them to
downey@allendowney.com.

Allen B. Downey
Needham, MA
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Chapter 1

Variables and values

1.1 A glorified calculator

At heart, MATLAB is a glorified calculator. When you start MATLAB you
will see a window entitled MATLAB that contains smaller windows entitled
Current Directory, Command History and Command Window. The Command
Window runs the MATLAB interpreter, which allows you to type MATLAB
commands, then executes them and prints the result.

Initially, the Command Window contains a welcome message with information
about the version of MATLAB you are running, followed by a chevron:

>>

which is the MATLAB prompt; that is, this symbol prompts you to enter a
command.

The simplest kind of command is a mathematical expression, which is made
up of operands (like numbers, for example) and operators (like the plus sign,
+).

If you type an expression and then press Enter (or Return), MATLAB evalu-
ates the expression and prints the result.

>> 2 + 1

ans = 3

Just to be clear: in the example above, MATLAB printed >>; I typed 2 + 1

and then hit Enter, and MATLAB printed ans = 3. And when I say “printed,”
I really mean “displayed on the screen,” which might be confusing, but it’s the
way people talk.

An expression can contain any number of operators and operands. You don’t
have to put spaces between them; some people do and some people don’t.
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>> 1+2+3+4+5+6+7+8+9

ans = 45

Speaking of spaces, you might have noticed that MATLAB puts some space
between ans = and the result. In my examples I will leave it out to save paper.

The other arithmetic operators are pretty much what you would expect. Sub-
traction is denoted by a minus sign, -; multiplication by an asterisk, * (some-
times pronounced “splat”); division by a forward slash /.

>> 2*3 - 4/5

ans = 5.2000

The order of operations is what you would expect from basic algebra: multi-
plication and division happen before addition and subtraction. If you want to
override the order of operations, you can use parentheses.

>> 2 * (3-4) / 5

ans = -0.4000

When I added the parentheses I also changed the spacing to make the grouping
of operands clearer to a human reader. This is the first of many style guidelines
I will recommend for making your programs easier to read. Style doesn’t change
what the program does; the MATLAB interpreter doesn’t check for style. But
human readers do, and the most important human who will read your code is
you.

And that brings us to the First Theorem of debugging:

Readable code is debuggable code.

It is worth spending time to make your code pretty; it will save you time de-
bugging!

The other common operator is exponentiation, which uses the ^ symbol, some-
times pronounced “carat” or “hat”. So 2 raised to the 16th power is

>> 2^16

ans = 65536

As in basic algebra, exponentiation happens before multiplication and division,
but again, you can use parentheses to override the order of operations.

1.2 Math functions

MATLAB knows how to compute pretty much every math function you’ve heard
of. It knows all the trigonometric functions; here’s how you use them:

>> sin(1)

ans = 0.8415
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This command is an example of a function call. The name of the function is
sin, which is the usual abbreviation for the trigonometric sine. The value in
parentheses is called the argument. All the trig functions in MATLAB work
in radians.

Some functions take more than one argument, in which case they are separated
by commas. For example, atan2 computes the inverse tangent, which is the
angle in radians between the positive x-axis and the point with the given y and
x coordinates.

>> atan2(1,1)

ans = 0.7854

If that bit of trigonometry isn’t familiar to you, don’t worry about it. It’s just
an example of a function with multiple arguments.

MATLAB also provides exponential functions, like exp, which computes e raised
to the given power. So exp(1) is just e.

>> exp(1)

ans = 2.7183

The inverse of exp is log, which computes the logarithm base e:

>> log(exp(3))

ans = 3

This example also demonstrates that function calls can be nested; that is, you
can use the result from one function as an argument for another.

More generally, you can use a function call as an operand in an expression.

>> sqrt(sin(0.5)^2 + cos(0.5)^2)

ans = 1

As you probably guessed, sqrt computes the square root.

There are lots of other math functions, but this is not meant to be a reference
manual. To learn about other functions, you should read the documentation.

1.3 Documentation

MATLAB comes with two forms of online documentation, help and doc.

The help command works from the Command Window; just type help followed
by the name of a command.

>> help sin

SIN Sine of argument in radians.

SIN(X) is the sine of the elements of X.

See also asin, sind.
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Overloaded functions or methods (ones with the same name in other

directories) help sym/sin.m

Reference page in Help browser

doc sin

Unfortunately, this documentation is not beginner-friendly.

One gotcha is that the name of the function appears in the help page in capital
letters, but if you type it like that in MATLAB, you get an error:

>> SIN(1)

??? Undefined command/function 'SIN'.

Another problem is that the help page uses vocabulary you don’t know yet.
For example, “the elements of X” won’t make sense until we get to vectors and
matrices a few chapters from now.

The doc pages are usually better. If you type doc sin, a browser appears with
more detailed information about the function, including examples of how to use
it. The examples often use vectors and arrays, so they may not make sense yet,
but you can get a preview of what’s coming.

1.4 Variables

One of the features that makes MATLAB more powerful than a calculator is
the ability to give a name to a value. A named value is called a variable.

MATLAB comes with a few predefined variables. For example*, the name pi

refers to the mathematical quantity π, which is approximately

>> pi

ans = 3.1416

And if you do anything with complex numbers, you might find it convenient
that both i and j are predefined as the square root of −1.

You can use a variable name anywhere you can use a number; for example, as
an operand in an expression:

>> pi * 3^2

ans = 28.2743

or as an argument to a function:

>> sin(pi/2)

ans = 1

>> exp(i * pi)

ans = -1.0000 + 0.0000i

*Technically pi is a function, not a variable, but for now it’s best to pretend.
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As the second example shows, many MATLAB functions work with complex
numbers. This example demonstrates Euler’s Equality: eiπ = −1.

Whenever you evaluate an expression, MATLAB assigns the result to a variable
named ans. You can use ans in a subsequent calculation as shorthand for “the
value of the previous expression”.

>> 3^2 + 4^2

ans = 25

>> sqrt(ans)

ans = 5

But keep in mind that the value of ans changes every time you evaluate an
expression.

1.5 Assignment statements

You can create your own variables, and give them values, with an assignment
statement. The assignment operator is the equals sign, =.

>> x = 6 * 7

x = 42

This example creates a new variable named x and assigns it the value of the
expression 6 * 7. MATLAB responds with the variable name and the computed
value.

In every assignment statement, the left side has to be a legal variable name.
The right side can be any expression, including function calls.

Almost any sequence of lower and upper case letters is a legal variable name.
Some punctuation is also legal, but the underscore, , is the only commonly-used
non-letter. Numbers are fine, but not at the beginning. Spaces are not allowed.
Variable names are “case sensitive”, so x and X are different variables.

>> fibonacci0 = 1;

>> LENGTH = 10;

>> first_name = 'allen'

first_name = allen

The first two examples demonstrate the use of the semi-colon, which suppresses
the output from a command. In this case MATLAB creates the variables and
assigns them values, but displays nothing.

The third example demonstrates that not everything in MATLAB is a number.
A sequence of characters in single quotes is a string.

Although i, j and pi are predefined, you are free to reassign them. It is common
to use i and j for other purposes, but it is probably not a good idea to change
the value of pi!
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1.6 Why variables?

The most common reasons to use variables are

� To avoid recomputing a value that is used repeatedly. For example, if you
are performing computations involving e, you might want to compute it
once and save the result.

>> e = exp(1)

e = 2.7183

� To make the connection between the code and the underlying mathematics
more apparent. If you are computing the area of a circle, you might want
to use a variable named r:

>> r = 3

r = 3

>> area = pi * r^2

area = 28.2743

That way your code resembles the familiar formula πr2.

� To break a long computation into a sequence of steps. Suppose you are
evaluating a big, hairy expression like this:

ans = ((x - theta) * sqrt(2 * pi) * sigma) ^ -1 * ...

exp(-1/2 * (log(x - theta) - zeta)^2 / sigma^2)

You can use an ellipsis to break the expression into multiple lines. Just
type ... at the end of the first line and continue on the next.

But often it is better to break the computation into a sequence of steps
and assign intermediate results to variables.

shiftx = x - theta

denom = shiftx * sqrt(2 * pi) * sigma

temp = (log(shiftx) - zeta) / sigma

exponent = -1/2 * temp^2

ans = exp(exponent) / denom

The names of the intermediate variables explain their role in the compu-
tation. shiftx is the value of x shifted by theta. It should be no surprise
that exponent is the argument of exp, and denom ends up in the denom-
inator. Choosing informative names makes the code easier to read and
understand (see the First Theorem of Debugging).
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1.7 Errors

It’s early, but now would be a good time to start making errors. Whenever you
learn a new feature, you should try to make as many errors as possible, as soon
as possible.

When you make deliberate errors, you get to see what the error messages look
like. Later, when you make accidental errors, you will know what the messages
mean.

A common error for beginning programmers is leaving out the * for multiplica-
tion.

>> area = pi r^2

??? area = pi r^2

|

Error: Unexpected MATLAB expression.

The error message indicates that, after seeing the operand pi, MATLAB was
“expecting” to see an operator, like *. Instead, it got a variable name, which is
the “unexpected expression” indicated by the vertical line, | (which is called a
“pipe”).

Another common error is to leave out the parentheses around the arguments of
a function. For example, in math notation, it is common to write something
like sinπ, but not in MATLAB.

>> sin pi

??? Function 'sin' is not defined for values of class 'char'.

The problem is that when you leave out the parentheses, MATLAB treats the
argument as a string (rather than as an expression). In this case the sin function
generates a reasonable error message, but in other cases the results can be
baffling. For example, what do you think is going on here?

>> abs pi

ans = 112 105

There is a reason for this “feature”, but rather than get into that now, let me
suggest that you should always put parentheses around arguments.

This example also demonstrates the Second Theorem of Debugging:

The only thing worse than getting an error message is not getting
an error message.

Beginning programmers hate error messages and do everything they can to make
them go away. Experienced programmers know that error messages are your
friend. They can be hard to understand, and even misleading, but it is worth
making some effort to understand them.

Here’s another common rookie error. If you were translating the following math-
ematical expression into MATLAB:
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1

2
√
π

You might be tempted to write something like this:

1 / 2 * sqrt(pi)

But that would be wrong. So very wrong.

1.8 Floating-point arithmetic

In mathematics, there are several kinds of numbers: integer, real, rational,
irrational, imaginary, complex, etc. MATLAB only has one kind of number,
called floating-point.

You might have noticed that MATLAB expresses values in decimal notation.
So, for example, the rational number 1/3 is represented by the floating-point
value

>> 1/3

ans = 0.3333

which is only approximately correct. It’s not quite as bad as it seems; MATLAB
uses more digits than it shows by default. You can change the format to see
the other digits.

>> format long

>> 1/3

ans = 0.33333333333333

Internally, MATLAB uses the IEEE double-precision floating-point format,
which provides about 15 significant digits of precision (in base 10). Leading
and trailing zeros don’t count as “significant” digits, so MATLAB can represent
large and small numbers with the same precision.

Very large and very small values are displayed in scientific notation.

>> factorial(100)

ans = 9.332621544394410e+157

The e in this notation is not the transcendental number known as e; it is just an
abbreviation for “exponent”. So this means that 100! is approximately 9.33 ×
10157. The exact solution is a 158-digit integer, but we only know the first 16
digits.

You can enter numbers using the same notation.

>> speed_of_light = 3.0e8

speed_of_light = 300000000
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Although MATLAB can handle large numbers, there is a limit. The predefined
variables realmax and realmin contain the largest and smallest numbers that
MATLAB can handle�.

>> realmax

ans = 1.797693134862316e+308

>> realmin

ans = 2.225073858507201e-308

If the result of a computation is too big, MATLAB “rounds up” to infinity.

>> factorial(170)

ans = 7.257415615307994e+306

>> factorial(171)

ans = Inf

Division by zero also returns Inf, but in this case MATLAB gives you a warning
because division by zero is usually considered undefined.

>> 1/0

Warning: Divide by zero.

ans = Inf

A warning is like an error message without teeth; the computation is allowed to
continue. Allowing Inf to propagate through a computation doesn’t always do
what you expect, but if you are careful with how you use it, Inf can be quite
useful.

For operations that are truly undefined, MATLAB returns NaN, which stands
for “not a number”.

>> 0/0

Warning: Divide by zero.

ans = NaN

1.9 Comments

Along with the commands that make up a program, it is useful to include
comments that provide additional information about the program. The percent
symbol % separates the comments from the code.

>> speed_of_light = 3.0e8 % meters per second

speed_of_light = 300000000

�The names of these variables are misleading; floating-point numbers are sometimes,
wrongly, called “real”.
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The comment runs from the percent symbol to the end of the line. In this case
it specifies the units of the value. In an ideal world, MATLAB would keep track
of units and propagate them through the computation, but for now that burden
falls on the programmer.

Comments have no effect on the execution of the program. They are there
for human readers. Good comments make programs more readable, but bad
comments are useless or (even worse) misleading.

Avoid comments that are redundant with the code:

>> x = 5 % assign the value 5 to x

Good comments provide additional information that is not in the code, like
units in the example above, or the meaning of a variable:

>> p = 0 % position from the origin in meters

>> v = 100 % velocity in meters / second

>> a = -9.8 % acceleration of gravity in meters / second^2

If you use longer variable names, you might not need explanatory comments,
but there is a tradeoff: longer code can become harder to read. Also, if you are
translating from math that uses short variable names, it can be useful to make
your program consistent with your math.

1.10 Glossary

interpreter: The program that reads and executes MATLAB code.

command: A line of MATLAB code executed by the interpreter.

prompt: The symbol the interpreter prints to indicate that it is waiting for
you to type a command.

operator: One of the symbols, like * and +, that represent mathematical op-
erations.

operand: A number or variable that appears in an expression along with op-
erators.

expression: A sequence of operands and operators that specifies a mathemat-
ical computation and yields a value.

value: The numerical result of a computation.

evaluate: To compute the value of an expression.

order of operations: The rules that specify which operations in an expression
are performed first.

function: A named computation; for example log10 is the name of a function
that computes logarithms in base 10.
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call: To cause a function to execute and compute a result.

function call: A kind of command that executes a function.

argument: An expression that appears in a function call to specify the value
the function operates on.

nested function call: An expression that uses the result from one function
call as an argument for another.

variable: A named value.

assignment statement: A command that creates a new variable (if necessary)
and gives it a value.

string: A value that consists of a sequence of characters (as opposed to a num-
ber).

floating-point: The kind of number MATLAB works with. All floating-point
numbers can be represented with about 16 significant decimal digits (un-
like mathematical integers and reals).

scientific notation: A format for typing and displaying large and small num-
bers; e.g. 3.0e8, which represents 3.0× 108 or 300,000,000.

comment: Part of a program that provides additional information about the
program, but does not affect its execution.

1.11 Exercises

Exercise 1.1 Write a MATLAB expression that evaluates the following math
expression. You can assume that the variables mu, sigma and x already exist.

e
−

(

x−µ

σ
√

2

)

2

σ
√
2π

(1.1)

Note: you can’t use Greek letters in MATLAB; when translating math expres-
sions with Greek letters, it is common to write out the name of the letter (as-
suming you know it).
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Chapter 2

Scripts

2.1 M-files

So far we have typed all of our programs “at the prompt,” which is fine if you
are not writing more than a few lines. Beyond that, you will want to store your
program in a script and then execute the script.

A script is a file that contains MATLAB code. These files are also called “M-
files” because they use the extension .m, which is short for MATLAB.

You can create and edit scripts with any text editor or word processor, but the
simplest way is by selecting New→Script from the File menu. A window appears
running a text editor specially designed for MATLAB.

Type the following code in the editor

x = 5

and then press the (outdated) floppy disk icon, or select Save from the Filemenu.
Either way, a dialog box appears where you can choose the file name and the
directory where it should go. Change the name to myscript.m and leave the
directory unchanged.

By default, MATLAB will store your script in a directory that is on the search
path, which is the list of directories MATLAB searches for scripts.

Go back to the Command Window and type myscript (without the extension)
at the prompt. MATLAB executes your script and displays the result.

>> myscript

x = 5

When you run a script, MATLAB executes the commands in the M-File, one
after another, exactly as if you had typed them at the prompt.

If something goes wrong and MATLAB can’t find your script, you will get an
error message like:
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>> myscript

??? Undefined function or variable 'myscript'.

In this case you can either save your script again in a directory that is on the
search path, or modify the search path to include the directory where you keep
your scripts. You’ll have to consult the documentation for the details (sorry!).

The filename can be anything you want, but you should try to choose something
meaningful and memorable. You should be very careful to choose a name that is
not already in use; if you do, you might accidentally replace one of MATLAB’s
functions with your own. Finally, the name of the file cannot contain spaces. If
you create a file named my script.m, MATLAB doesn’t complain until you try
to run it:

>> my script

??? Undefined function or method 'my' for input arguments

of type 'char'.

The problem is that it is looking for a scipt named my. The problem is even
worse if the first word of the filename is a function that exists. Just for fun,
create a script named abs val.m and run it.

Keeping track of your scripts can be a pain. To keep things simple, for now, I
suggest putting all of your scripts in the default directory.

Exercise 2.1 The Fibonacci sequence, denoted F , is described by the equations
F1 = 1, F2 = 1, and for i ≥ 3, Fi = Fi−1 +Fi−2. The elements of this sequence
occur naturally in many plants, particularly those with petals or scales arranged
in the form of a logarithmic spiral.

The following expression computes the nth Fibonacci number:

Fn =
1√
5

[(

1 +
√
5

2

)n

−
(

1−
√
5

2

)n]

(2.1)

Translate this expression into MATLAB and store your code in a file named
fibonacci1. At the prompt, set the value of n to 10 and then run your script.
The last line of your script should assign the value of Fn to ans. (The correct
value of F10 is 55).

2.2 Why scripts?

The most common reasons to use scripts are:

� When you are writing more than a couple of lines of code, it might take
a few tries to get everything right. Putting your code in a script makes it
easier to edit than typing it at the prompt.
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On the other hand, it can be a pain to switch back and forth between the
Command Window and the Editor. Try to arrange your windows so you
can see the Editor and the Command Window at the same time, and use
the Tab key or the mouse to switch between them.

� If you choose good names for your scripts, you will be able to remember
which script does what, and you might be able to reuse a script from one
project to the next.

� If you run a script repeatedly, it is faster to type the name of the script
than to retype the code!

Unfortunately, the great power of scripts comes with great responsibility, which
is that you have to make sure that the code you are running is the code you
think you are running.

First, whenever you edit your script, you have to save it before you run it. If
you forget to save it, you will be running the old version.

Also, whenever you start a new script, start with something simple, like x=5,
that produces a visible effect. Then run your script and confirm that you get
what you expect. MATLAB comes with a lot of predefined functions. It is easy
to write a script that has the same name as a MATLAB function, and if you
are not careful, you might find yourself running the MATLAB function instead
of your script.

Either way, if the code you are running is not the code you are looking at,
you will find debugging a frustrating exercise! And that brings us to the Third
Theorem of Debugging:

You must always be 100% sure that the code you are running is the
code you think you are running.

2.3 The workspace

The variables you create are stored in the workspace, which is a set of variables
and their values. The who command prints the names of the variables in the
workspace.

>> x=5;

>> y=7;

>> z=9;

>> who

Your variables are:

x y z



16 Scripts

The clear command removes variables.

>> clear y

>> who

Your variables are:

x z

To display the value of a variable, you can use the disp function.

>> disp(z)

9

But it’s easier to just type the variable name.

>> z

z = 9

(Strictly speaking, the name of a variable is an expression, so evaluating it
should assign a value to ans, but MATLAB seems to handle this as a special
case.)

2.4 More errors

Again, when you try something new, you should make a few mistakes on purpose
so you’ll recognize them later.

The most common error with scripts is to run a script without creating the
necessary variables. For example, fibonacci1 requires you to assign a value to
n. If you don’t:

>> fibonacci1

??? Undefined function or variable "n".

Error in ==> fibonacci1 at 4

diff = t1^(n+1) - t2^(n+1);

The details of this message might be different for you, depending on what’s in
your script. But the general idea is that n is undefined. Notice that MATLAB
tells you what line of your program the error is in, and displays the line.

This information can be helpful, but beware! MATLAB is telling you where the
error was discovered, not where the error is. In this case, the error is not in the
script at all; it is, in a sense, in the workspace.

Which brings us to the Fourth Theorem of Debugging:

Error messages tell you where the problem was discovered, not where
it was caused.

The object of the game is to find the cause and fix it—not just to make the
error message go away.
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2.5 Pre- and post-conditions

Every script should contain a comment that explains what it does, and what
the requirements are for the workspace. For example, I might put something
like this at the beginning of fibonacci1:

% Computes the nth Fibonacci number.

% Precondition: you must assign a value to n before running

% this script. Postcondition: the result is stored in ans.

A precondition is something that must be true, when the script starts, in order
for it to work correctly. A postcondition is something that will be true when
the script completes.

If there is a comment at the beginning of a script, MATLAB assumes it is
the documentation for the script, so if you type help fibonacci1, you get the
contents of the comment (without the percent signs).

>> help fibonacci1

Computes the nth Fibonacci number.

Precondition: you must assign a value to n before running

this script. Postcondition: the result is stored in ans.

That way, scripts that you write behave just like predefined scripts. You can
even use the doc command to see your comment in the Help Window.

2.6 Assignment and equality

In mathematics the equals sign means that the two sides of the equation have
the same value. In MATLAB an assignment statement looks like a mathematical
equality, but it’s not.

One difference is that the sides of an assignment statement are not interchange-
able. The right side can be any legal expression, but the left side has to be a
variable, which is called the target of the assignment. So this is legal:

>> y = 1;

>> x = y+1

x = 2

But this is not:

>> y+1 = x

??? y+1 = x

|

Error: The expression to the left of the equals sign is not a valid

target for an assignment.

In this case the error message is pretty helpful, as long as you know what a
“target” is.
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Another difference is that an assignment statement is only temporary, in the
following sense. When you assign x = y+1, you get the current value of y. If y
changes later, x does not get updated.

A third difference is that a mathematical equality is a statement that may or
may not be true. For example, y = y + 1 is a statement that happens to be
false for all real values of y. In MATLAB, y = y+1 is a sensible and useful
assignment statement. It reads the current value of y, adds one, and replaces
the old value with the new value.

>> y = 1;

>> y = y+1

y = 2

When you read MATLAB code, you might find it helpful to pronounce the
equals sign “gets” rather than “equals.” So x = y+1 is pronounced “x gets the
value of y plus one.”

To test your understanding of assignment statements, try this exercise:

Exercise 2.2 Write a few lines of code that swap the values of x and y. Put
your code in a script called swap and test it.

2.7 Incremental development

When you start writing scripts that are more than a few lines, you might find
yourself spending more and more time debugging. The more code you write
before you start debugging, the harder it is to find the problem.

Incremental development is a way of programming that tries to minimize
the pain of debugging. The fundamental steps are

1. Always start with a working program. If you have an example from a
book or a program you wrote that is similar to what you are working on,
start with that. Otherwise, start with something you know is correct, like
x=5. Run the program and confirm that you are running the program you
think you are running.

This step is important, because in most environments there are lots of
little things that can trip you up when you start a new project. Get them
out of the way so you can focus on programming.

2. Make one small, testable change at a time. A “testable” change is one
that displays something on the screen (or has some other effect) that you
can check. Ideally, you should know what the correct answer is, or be able
to check it by performing another computation.

3. Run the program and see if the change worked. If so, go back to Step 2.
If not, you will have to do some debugging, but if the change you made
was small, it shouldn’t take long to find the problem.
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When this process works, you will find that your changes usually work the first
time, or the problem is obvious. That’s a good thing, and it brings us to the
Fifth Theorem of Debugging:

The best kind of debugging is the kind you don’t have to do.

In practice, there are two problems with incremental development:

� Sometimes you have to write extra code to generate visible output that
you can check. This extra code is called scaffolding because you use it
to build the program and then remove it when you are done. But time
you save on debugging is almost always worth the time you spend on
scaffolding.

� When you are getting started, it is usually not obvious how to choose the
steps that get from x=5 to the program you are trying to write. There is
an extended example in Section 5.7.

If you find yourself writing more than a few lines of code before you start
testing, and you are spending a lot of time debugging, you should try incremental
development.

2.8 Unit testing

In large software projects, unit testing is the process of testing software com-
ponents in isolation before putting them together.

The programs we have seen so far are not big enough to need unit testing, but
the same principle applies when you are working with a new function or a new
language feature for the first time. You should test it in isolation before you
put it into your program.

For example, suppose you know that x is the sine of some angle and you want
to find the angle. You find the MATLAB function asin, and you are pretty
sure it computes the inverse sine function. Pretty sure is not good enough; you
want to be very sure.

Since we know sin 0 = 0, we could try

>> asin(0)

ans = 0

which is correct. Also, we know that the sine of 90 degrees is 1, so if we try
asin(1), we expect the answer to be 90, right?

>> asin(1)

ans = 1.5708
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Oops. We forgot that the trig functions in MATLAB work in radians, not
degrees. So the correct answer is π/2, which we can confirm by dividing through
by pi:

>> asin(1) / pi

ans = 0.5000

With this kind of unit testing, you are not really checking for errors in MATLAB,
you are checking your understanding. If you make an error because you are
confused about how MATLAB works, it might take a long time to find, because
when you look at the code, it looks right.

Which brings us to the Sixth Theorem of Debugging:

The worst bugs aren’t in your code; they are in your head.

2.9 Glossary

M-file: A file that contains a MATLAB program.

script: An M-file that contains a sequence of MATLAB commands.

search path: The list of directories where MATLAB looks for M-files.

workspace: A set of variables and their values.

precondition: Something that must be true when the script starts, in order
for it to work correctly.

postcondition: Something that will be true when the script completes.

target: The variable on the left side of an assignment statement.

incremental development: A way of programming by making a series of
small, testable changes.

scaffolding: Code you write to help you program or debug, but which is not
part of the finished program.

unit testing: A process of testing software by testing each component in iso-
lation.

2.10 Exercises

Exercise 2.3 Imagine that you are the owner of a car rental company with two
locations, Albany and Boston. Some of your customers do “one-way rentals,”
picking up a car in Albany and returning it in Boston, or the other way around.
Over time, you have observed that each week 5% of the cars in Albany are
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dropped off in Boston, and 3% of the cars in Boston get dropped off in Albany.
At the beginning of the year, there are 150 cars at each location.

Write a script called car update that updates the number of cars in each location
from one week to the next. The precondition is that the variables a and b

contain the number of cars in each location at the beginning of the week. The
postcondition is that a and b have been modified to reflect the number of cars
that moved.

To test your program, initialize a and b at the prompt and then execute the
script. The script should display the updated values of a and b, but not any
intermediate variables.

Note: cars are countable things, so a and b should always be integer values. You
might want to use the round function to compute the number of cars that move
during each week.

If you execute your script repeatedly, you can simulate the passage of time from
week to week. What do you think will happen to the number of cars? Will all
the cars end up in one place? Will the number of cars reach an equilibrium, or
will it oscillate from week to week?

In the next chapter we will see how to execute your script automatically, and
how to plot the values of a and b versus time.
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Chapter 3

Loops

3.1 Updating variables

In Exercise 2.3, you might have been tempted to write something like

a = a - 0.05*a + 0.03*b

b = b + 0.05*a - 0.03*b

But that would be wrong, so very wrong. Why? The problem is that the first
line changes the value of a, so when the second line runs, it gets the old value
of b and the new value of a. As a result, the change in a is not always the same
as the change in b, which violates the principle of Conversation of Cars!

One solution is to use temporary variables anew and bnew:

anew = a - 0.05*a + 0.03*b

bnew = b + 0.05*a - 0.03*b

a = anew

b = bnew

This has the effect of updating the variables “simultaneously;” that is, it reads
both old values before writing either new value.

The following is an alternative solution that has the added advantage of simpli-
fying the computation:

atob = 0.05*a - 0.03*b

a = a - atob

b = b + atob

It is easy to look at this code and confirm that it obeys Conversation of Cars.
Even if the value of atob is wrong, at least the total number of cars is right.
And that brings us to the Seventh Theorem of Debugging:

The best way to avoid a bug is to make it impossible.

In this case, removing redundancy also eliminates the opportunity for a bug.
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3.2 Kinds of error

There are four kinds of error:

Syntax error: You have written a MATLAB command that cannot execute
because it violates one of the rules of syntax. For example, you can’t have
two operands in a row without an operator, so pi r^2 contains a syntax
error. When MATLAB finds a syntax error, it prints an error message
and stops running your program.

Runtime error: Your program starts running, but something goes wrong
along the way. For example, if you try to access a variable that doesn’t
exist, that’s a runtime error. When MATLAB detects the problem, it
prints an error message and stops.

Logical error: Your program runs without generating any error messages, but
it doesn’t do the right thing. The problem in the previous section, where
we changed the value of a before reading the old value, is a logical error.

Numerical error: Most computations in MATLAB are only approximately
right. Most of the time the errors are small enough that we don’t care,
but in some cases the roundoff errors are a problem.

Syntax errors are usually the easiest. Sometimes the error messages are confus-
ing, but MATLAB can usually tell you where the error is, at least roughly.

Run time errors are harder because, as I mentioned before, MATLAB can tell
you where it detected the problem, but not what caused it.

Logical errors are hard because MATLAB can’t help at all. Only you know what
the program is supposed to do, so only you can check it. From MATLAB’s point
of view, there’s nothing wrong with the program; the bug is in your head!

Numerical errors can be tricky because it’s not clear whether the problem is
your fault. For most simple computations, MATLAB produces the floating-
point value that is closest to the exact solution, which means that the first 15
significant digits should be correct. But some computations are ill-conditioned,
which means that even if your program is correct, the roundoff errors accumulate
and the number of correct digits can be smaller. Sometimes MATLAB can warn
you that this is happening, but not always! Precision (the number of digits in
the answer) does not imply accuracy (the number of digits that are right).

3.3 Absolute and relative error

There are two ways of thinking about numerical errors, called absolute and
relative.
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An absolute error is just the difference between the correct value and the ap-
proximation. We usually write the magnitude of the error, ignoring its sign,
because it doesn’t matter whether the approximation is too high or too low.

For example, we might want to estimate 9! using the formula
√
18π(9/e)9. The

exact answer is 9 · 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1 = 362, 880. The approximation is
359, 536.87. The absolute error is 3,343.13.

At first glance, that sounds like a lot—we’re off by three thousand—but it is
worth taking into account the size of the thing we are estimating. For example,
$3000 matters a lot if we are talking about my annual salary, but not at all if
we are talking about the national debt.

A natural way to handle this problem is to use relative error, which is the error
expressed as a fraction (or percentage) of the exact value. In this case, we
would divide the error by 362,880, yielding .00921, which is just less than 1%.
For many purposes, being off by 1% is good enough.

3.4 for loops

A loop is a part of a program that executes repeatedly; a for loop is the kind
of loop that uses the for statement.

The simplest use of a for loop is to execute one or more lines a fixed number
of times. For example, in the last chapter we wrote a script named car update

that simulates one week in the life of a rental car company. To simulate an
entire year, we have to run it 52 times:

for i=1:52

car_update

end

The first line looks like an assignment statement, and it is like an assignment
statement, except that it runs more than once. The first time it runs, it creates
the variable i and assigns it the value 1. The second time, i gets the value 2,
and so on, up to 52.

The colon operator, :, specifies a range of integers. In the spirit of unit testing,
you can create a range at the prompt:

>> 1:5

ans = 1 2 3 4 5

The variable you use in the for statement is called the loop variable. It is a
common convention to use the names i, j and k as loop variables.

The statements inside the loop are called the body. By convention, they are
indented to show that they are inside the loop, but the indentation does not
actually affect the execution of the program. The end of the loop is officially
marked by the end statement.

To see the loop in action you can run a loop that displays the loop variable:



26 Loops

>> for i=1:5

i

end

i = 1

i = 2

i = 3

i = 4

i = 5

As this example shows, you can run a for loop from the command line, but it’s
much more common to put it in a script.

Exercise 3.1 Create a script named car loop that uses a for loop to run
car update 52 times. Remember that before you run car update, you have to
assign values to a and b. For this exercise, start with the values a = 150 and b

= 150.

If everything goes smoothly, your script will display a long stream of numbers
on the screen. But it is probably too long to fit, and even if it fit, it would be
hard to interpret. A graph would be much better!

3.5 plotting

plot is a versatile function for plotting points and lines on a two-dimensional
graph. Unfortunately, it is so versatile that it can be hard to use (and hard to
read the documentation!). We will start simple and work our way up.

To plot a single point, type

>> plot(1, 2)

A Figure Window should appear with a graph and a single, blue dot at x position
1 and y position 2. To make the dot more visible, you can specify a different
shape:

>> plot(1, 2, 'o')

The letter in single quotes is a string that specifies how the point should be
plotted. You can also specify the color:

>> plot(1, 2, 'ro')

r stands for red; the other colors include green, blue, cyan, magenta, yellow
and black. Other shapes include +, *, x, s (for square), d (for diamond), and ^

(for a triangle).

When you use plot this way, it can only plot one point at a time. If you run
plot again, it clears the figure before making the new plot. The hold command
lets you override that behavior. hold on tells MATLAB not to clear the figure
when it makes a new plot; hold off returns to the default behavior.
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Try this:

>> hold on

>> plot(1, 1, 'o')

>> plot(2, 2, 'o')

You should see a figure with two points. MATLAB scales the plot automatically
so that the axes run from the lowest value in the plot to the highest. So in this
example the points are plotted in the corners.

Exercise 3.2 Modify car loop so that each time through the loop it plots the
value of a versus the value of i.

Once you get that working, modify it so it plots the values of a with red circles
and the values of b with blue diamonds.

One more thing: if you use hold on to prevent MATLAB from clearing the
figure, you might want to clear the figure yourself, from time to time, with the
command clf.

3.6 Sequences

In mathematics a sequence is a set of numbers that corresponds to the positive
integers. The numbers in the sequence are called elements. In math notation,
the elements are denoted with subscripts, so the first element of the series A is
A1, followed by A2, and so on.

for loops are a natural way to compute the elements of a sequence. As an
example, in a geometric sequence, each element is a constant multiple of the
previous element. As a more specific example, let’s look at the sequence with
A1 = 1 and the ratio Ai+1 = Ai/2, for all i. In other words, each element is
half as big as the one before it.

The following loop computes the first 10 elements of A:

a = 1

for i=2:10

a = a/2

end

Each time through the loop, we find the next value of a by dividing the previous
value by 2. Notice that the loop range starts at 2 because the initial value of a
corresponds to A1, so the first time through the loop we are computing A2.

Each time through the loop, we replace the previous element with the next, so
at the end, a contains the 10th element. The other elements are displayed on
the screen, but they are not saved in a variable. Later, we will see how to save
all of the elements of a sequence in a vector.

This loop computes the sequence recurrently, which means that each element
depends on the previous one. For this sequence it is also possible to compute
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the ith element directly, as a function of i, without using the previous element.
In math notation, Ai = A1r

i−1.

Exercise 3.3 Write a script named sequence that uses a loop to compute
elements of A directly.

3.7 Series

In mathematics, a series is the sum of the elements of a sequence. It’s a terrible
name, because in common English, “sequence” and “series” mean pretty much
the same thing, but in math, a sequence is a set of numbers, and a series is an
expression (a sum) that has a single value. In math notation, a series is often
written using the summation symbol

∑

.

For example, the sum of the first 10 elements of A is

10
∑

i=1

Ai

A for loop is a natural way to compute the value of this series:

A1 = 1;

total = 0;

for i=1:10

a = A1 * 0.5^(i-1);

total = total + a;

end

ans = total

A1 is the first element of the sequence, so each time through the loop a is the
ith element.

The way we are using total is sometimes called an accumulator; that is, a
variable that accumulates a result a little bit at a time. Before the loop we
initialize it to 0. Each time through the loop we add in the ith element. At the
end of the loop total contains the sum of the elements. Since that’s the value
we were looking for, we assign it to ans.

Exercise 3.4 This example computes the terms of the series directly; as an
exercise, write a script named series that computes the same sum by computing
the elements recurrently. You will have to be careful about where you start and
stop the loop.

3.8 Generalization

As written, the previous example always adds up the first 10 elements of the
sequence, but we might be curious to know what happens to total as we increase
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the number of terms in the series. If you have studied geometric series, you might
know that this series converges on 2; that is, as the number of terms goes to
infinity, the sum approaches 2 asymptotically.

To see if that’s true for our program, we could replace the constant, 10, with a
variable named n:

A1 = 1;

total = 0;

for i=1:n

a = A1 * 0.5^(i-1);

total = total + a;

end

ans = total

Now the script can compute any number of terms, with the precondition that
you have to set n before you execute the script. Here’s how you could run it
with different values of n:

>> n=10; series

total = 1.99804687500000

>> n=20; series

total = 1.99999809265137

>> n=30; series

total = 1.99999999813735

>> n=40; series

total = 1.99999999999818

It sure looks like it’s converging on 2.

Replacing a constant with a variable is called generalization. Instead of com-
puting a fixed, specific number of terms, the new script is more general; it can
compute any number of terms.

This is an important idea we will come back to when we talk about functions.

3.9 Glossary

absolute error: The difference between an approximation and an exact an-
swer.

relative error: The difference between an approximation and an exact answer,
expressed as a fraction or percentage of the exact answer.
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loop: A part of a program that runs repeatedly.

loop variable: A variable, defined in a for statement, that gets assigned a
different value each time through the loop.

range: The set of values assigned to the loop variable, often specified with the
colon operator; for example 1:5.

body: The statements inside the for loop that are run repeatedly.

sequence: In mathematics, a set of numbers that correspond to the positive
integers.

element: A member of the set of numbers in a sequence.

recurrently: A way of computing the next element of a sequence based on
previous elements.

directly: A way of computing an element in a sequence without using previous
elements.

series: The sum of the elements in a sequence.

accumulator: A variable that is used to accumulate a result a little bit at a
time.

generalization: A way to make a program more versatile, for example by
replacing a specific value with a variable that can have any value.

3.10 Exercises

Exercise 3.5 We have already seen the Fibonacci sequence, F , which is defined
recurrently as

Fi = Fi−1 + Fi−2

In order to get started, you have to specify the first two elements, but once you
have those, you can compute the rest. The most common Fibonacci sequence
starts with F1 = 1 and F2 = 1.

Write a script called fibonacci2 that uses a for loop to compute the first 10
elements of this Fibonacci sequence. As a postcondition, your script should
assign the 10th element to ans.

Now generalize your script so that it computes the nth element for any value
of n, with the precondition that you have to set n before you run the script. To
keep things simple for now, you can assume that n is greater than 2.
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Hint: you will have to use two variables to keep track of the previous two ele-
ments of the sequence. You might want to call them prev1 and prev2. Initially,
prev1 = F1 and prev2 = F2. At the end of the loop, you will have to update
prev1 and prev2; think carefully about the order of the updates!

Exercise 3.6 Write a script named fib plot that loops i through a range
from 1 to 20, uses fibonacci2 to compute Fibonacci numbers, and plots Fi for
each i with a series of red circles.
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Chapter 4

Vectors

4.1 Checking preconditions

Some of the loops in the previous chapter don’t work if the value of n isn’t set
correctly before the loop runs. For example, this loop computes the sum of the
first n elements of a geometric sequence:

A1 = 1;

total = 0;

for i=1:n

a = A1 * 0.5^(i-1);

total = total + a;

end

ans = total

It works for any positive value of n, but what if n is negative? In that case, you
get:

total = 0

Why? Because the expression 1:-1 means “all the numbers from 1 to -1, count-
ing up by 1.” It’s not immediately obvious what that should mean, but MAT-
LAB’s interpretation is that there aren’t any numbers that fit that description,
so the result is

>> 1:-1

ans = Empty matrix: 1-by-0

If the matrix is empty, you might expect it to be “0-by-0,” but there you have
it. In any case, if you loop over an empty range, the loop never runs at all,
which is why in this example the value of total is zero for any negative value
of n.
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If you are sure that you will never make a mistake, and that the preconditions
of your functions will always be satisfied, then you don’t have to check. But
for the rest of us, it is dangerous to write a script, like this one, that quietly
produces the wrong answer (or at least a meaningless answer) if the input value
is negative. A better alternative is to use an if statement.

4.2 if

The if statement allows you to check for certain conditions and execute state-
ments if the conditions are met. In the previous example, we could write:

if n<0

ans = NaN

end

The syntax is similar to a for loop. The first line specifies the condition we
are interested in; in this case we are asking if n is negative. If it is, MATLAB
executes the body of the statement, which is the indented sequence of statements
between the if and the end.

MATLAB doesn’t require you to indent the body of an if statement, but it
makes your code more readable, so you should do it, and don’t make me tell
you again.

In this example, the “right” thing to do if n is negative is to set ans = NaN,
which is a standard way to indicate that the result is undefined (not a number).

If the condition is not satisfied, the statements in the body are not executed.
Sometimes there are alternative statements to execute when the condition is
false. In that case you can extend the if statement with an else clause.

The complete version of the previous example might look like this:

if n<0

ans = NaN

else

A1 = 1;

total = 0;

for i=1:n

a = A1 * 0.5^(i-1);

total = total + a;

end

ans = total

end

Statements like if and for that contain other statements are called compound
statements. All compound statements end with, well, end.

In this example, one of the statements in the else clause is a for loop. Putting
one compound statement inside another is legal and common, and sometimes
called nesting.
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4.3 Relational operators

The operators that compare values, like < and > are called relational operators
because they test the relationship between two values. The result of a relational
operator is one of the logical values: either 1, which represents “true,” or 0,
which represents “false.”

Relational operators often appear in if statements, but you can also evaluate
them at the prompt:

>> x = 5;

>> x < 10

ans = 1

You can assign a logical value to a variable:

>> flag = x > 10

flag = 0

A variable that contains a logical value is often called a flag because it flags the
status of some condition.

The other relational operators are <= and >=, which are self-explanatory, ==,
for “equal,” and ~=, for “not equal.” (In some logic notations, the tilde is the
symbol for “not.”)

Don’t forget that == is the operator that tests equality, and = is the assignment
operator. If you try to use = in an if statement, you get a syntax error:

if x=5

??? if x=5

|

Error: The expression to the left of the equals sign is not a valid

target for an assignment.

MATLAB thinks you are making an assignment to a variable named if x!

4.4 Logical operators

To test if a number falls in an interval, you might be tempted to write something
like 0 < x < 10, but that would be wrong, so very wrong. Unfortunately, in
many cases, you will get the right answer for the wrong reason. For example:

>> x = 5;

>> 0 < x < 10 % right for the wrong reason

ans = 1

But don’t be fooled!
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>> x = 17

>> 0 < x < 10 % just plain wrong

ans = 1

The problem is that MATLAB is evaluating the operators from left to right, so
first it checks if 0<x. It is, so the result is 1. Then it compares the logical value
1 (not the value of x) to 10. Since 1<10, the result is true, even though x is not
in the interval.

For beginning programmers, this is an evil, evil bug!

One way around this problem is to use a nested if statement to check the two
conditions separately:

ans = 0

if 0<x

if x<10

ans = 1

end

end

But it is more concise to use the AND operator, &&, to combine the conditions.

>> x = 5;

>> 0<x && x<10

ans = 1

>> x = 17;

>> 0<x && x<10

ans = 0

The result of AND is true if both of the operands are true. The OR operator,
||, is true if either or both of the operands are true.

4.5 Vectors

The values we have seen so far are all single numbers, which are called scalars
to contrast them with vectors and matrices, which are collections of numbers.

A vector in MATLAB is similar to a sequence in mathematics; it is a set of
numbers that correspond to positive integers. What we called a “range” in the
previous chapter was actually a vector.

In general, anything you can do with a scalar, you can also do with a vector.
You can assign a vector value to a variable:
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>> X = 1:5

X = 1 2 3 4 5

Variables that contain vectors are often capital letters. That’s just a convention;
MATLAB doesn’t require it, but for beginning programmers it is a useful way
to remember what is a scalar and what is a vector.

Just as with sequences, the numbers that make up the vector are called ele-
ments.

4.6 Vector arithmetic

You can perform arithmetic with vectors, too. If you add a scalar to a vector,
MATLAB increments each element of the vector:

>> Y = X+5

Y = 6 7 8 9 10

The result is a new vector; the original value of X is not changed.

If you add two vectors, MATLAB adds the corresponding elements of each
vector and creates a new vector that contains the sums:

>> Z = X+Y

Z = 7 9 11 13 15

But adding vectors only works if the operands are the same size. Otherwise:

>> W = 1:3

W = 1 2 3

>> X+W

??? Error using ==> plus

Matrix dimensions must agree.

The error message in this case is confusing, because we are thinking of these
values as vectors, not matrices. The problem is a slight mismatch between math
vocabulary and MATLAB vocabulary.

4.7 Everything is a matrix

In math (specifically in linear algebra) a vector is a one-dimensional sequence
of values and a matrix is two-dimensional (and, if you want to think of it that
way, a scalar is zero-dimensional). In MATLAB, everything is a matrix.
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You can see this if you use the whos command to display the variables in the
workspace. whos is similar to who except that it also displays the size and type
of each variable.

First I’ll make one of each kind of value:

>> scalar = 5

scalar = 5

>> vector = 1:5

vector = 1 2 3 4 5

>> matrix = ones(2,3)

matrix =

1 1 1

1 1 1

ones is a function that builds a new matrix with the given number of rows and
columns, and sets all the elements to 1. Now let’s see what we’ve got.

>> whos

Name Size Bytes Class

scalar 1x1 8 double array

vector 1x5 40 double array

matrix 2x3 32 double array

According to MATLAB, everything is a double array: “double” is another name
for double-precision floating-point numbers, and “array” is another name for a
matrix.

The only difference is the size, which is specified by the number of rows and
columns. The thing we called scalar is, according to MATLAB, a matrix with
one row and one column. Our vector is really a matrix with one row and 5
columns. And, of course, matrix is a matrix.

The point of all this is that you can think of your values as scalars, vectors,
and matrices, and I think you should, as long as you remember that MATLAB
thinks everything is a matrix.

Here’s another example where the error message only makes sense if you know
what is happening under the hood:

>> X = 1:5

X = 1 2 3 4 5
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>> Y = 1:5

Y = 1 2 3 4 5

>> Z = X*Y

??? Error using ==> mtimes

Inner matrix dimensions must agree.

First of all, mtimes is the MATLAB function that performs matrix multipli-
cation. The reason the “inner matrix dimensions must agree” is that the way
matrix multiplication is defined in linear algebra, the number of rows in X has
to equal the number of columns in Y (those are the inner dimensions).

If you don’t know linear algebra, this doesn’t make much sense. When you
saw X*Y you probably expected it to multiply each the the elements of X by the
corresponding element of Y and put the results into a new vector. That operation
is called elementwise multiplication, and the operator that performs it is .*:

>> X .* Y

ans = 1 4 9 16 25

We’ll get back to the elementwise operators later; you can forget about them
for now.

4.8 Indices

You can select elements of a vector with parentheses:

>> Y = 6:10

Y = 6 7 8 9 10

>> Y(1)

ans = 6

>> Y(5)

ans = 10

This means that the first element of Y is 6 and the fifth element is 10. The
number in parentheses is called the index because it indicates which element
of the vector you want.

The index can be any kind of expression.

>> i = 1;
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>> Y(i+1)

ans = 7

Loops and vectors go together like the storm and rain. For example, this loop
displays the elements of Y.

for i=1:5

Y(i)

end

Each time through the loop we use a different value of i as an index into Y.

A limitation of this example is that we had to know the number of elements in
Y. We can make it more general by using the length function, which returns
the number of elements in a vector:

for i=1:length(Y)

Y(i)

end

There. Now that will work for a vector of any length.

4.9 Indexing errors

An index can be any kind of expression, but the value of the expression has to
be a positive integer, and it has to be less than or equal to the length of the
vector. If it’s zero or negative, you get this:

>> Y(0)

??? Subscript indices must either be real positive integers or

logicals.

“Subscript indices” is MATLAB’s longfangled way to say “indices.” “Real pos-
itive integers” means that complex numbers are out. And you can forget about
“logicals” for now.

If the index is too big, you get this:

>> Y(6)

??? Index exceeds matrix dimensions.

There’s the “m” word again, but other than that, this message is pretty clear.

Finally, don’t forget that the index has to be an integer:

>> Y(1.5)

??? Subscript indices must either be real positive integers or

logicals.



4.10 Vectors and sequences 41

4.10 Vectors and sequences

Vectors and sequences go together like ice cream and apple pie. For example,
another way to evaluate the Fibonacci sequence is by storing successive values
in a vector. Again, the definition of the Fibonacci sequence is F1 = 1, F2 = 1,
and Fi = Fi−1 + Fi−2 for i ≥ 3. In MATLAB, that looks like

F(1) = 1

F(2) = 1

for i=3:n

F(i) = F(i-1) + F(i-2)

end

ans = F(n)

Notice that I am using a capital letter for the vector F and lower-case letters
for the scalars i and n. At the end, the script extracts the final element of F
and stores it in ans, since the result of this script is supposed to be the nth
Fibonacci number, not the whole sequence.

If you had any trouble with Exercise 3.5, you have to appreciate the simplicity
of this version. The MATLAB syntax is similar to the math notation, which
makes it easier to check correctness. The only drawbacks are

� You have to be careful with the range of the loop. In this version, the loop
runs from 3 to n, and each time we assign a value to the ith element. It
would also work to “shift” the index over by two, running the loop from
1 to n-2:

F(1) = 1

F(2) = 1

for i=1:n-2

F(i+2) = F(i+1) + F(i)

end

ans = F(n)

Either version is fine, but you have to choose one approach and be con-
sistent. If you combine elements of both, you will get confused. I prefer
the version that has F(i) on the left side of the assignment, so that each
time through the loop it assigns the ith element.

� If you really only want the nth Fibonacci number, then storing the whole
sequence wastes some storage space. But if wasting space makes your code
easier to write and debug, that’s probably ok.

Exercise 4.1 Write a loop that computes the first n elements of the geometric
sequence Ai+1 = Ai/2 with A1 = 1. Notice that the math notation puts Ai+1 on
the left side of the equality. When you translate to MATLAB, you may want to
shift the index.
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4.11 Plotting vectors

Plotting and vectors go together like the moon and June, whatever that means.
If you call plot with a single vector as an argument, MATLAB plots the indices
on the x-axis and the elements on the y-axis. To plot the Fibonacci numbers
we computed in the previous section:

plot(F)

This display is often useful for debugging, especially if your vectors are big
enough that displaying the elements on the screen is unwieldy.

If you call plot with two vectors as arguments, MATLAB plots the second one
as a function of the first; that is, it treats the first vector as a sequence of x
values and the second as corresponding y value and plots a sequence of (x, y)
points.

X = 1:5

Y = 6:10

plot(X, Y)

By default, MATLAB draws a blue line, but you can override that setting with
the same kind of string we saw in Section 3.5. For example, the string ’ro-’

tells MATLAB to plot a red circle at each data point; the hyphen means the
points should be connected with a line.

In this example, I stuck with the convention of naming the first argument X

(since it is plotted on the x-axis) and the second Y. There is nothing special
about these names; you could just as well plot X as a function of Y. MATLAB
always treats the first vector as the “independent” variable, and the second as
the “dependent” variable (if those terms are familiar to you).

4.12 Reduce

A frequent use of loops is to run through the elements of an array and add them
up, or multiply them together, or compute the sum of their squares, etc. This
kind of operation is called reduce, because it reduces a vector with multiple
elements down to a single scalar.

For example, this loop adds up the elements of a vector named X (which we
assume has been defined).

total = 0

for i=1:length(X)

total = total + X(i)

end

ans = total

The use of total as an accumulator is similar to what we saw in Section 3.7.
Again, we use the length function to find the upper bound of the range, so this
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loop will work regardless of the length of X. Each time through the loop, we add
in the ith element of X, so at the end of the loop total contains the sum of the
elements.

Exercise 4.2 Write a similar loop that multiplies all the elements of a vector
together. You might want to call the accumulator product, and you might want
to think about the initial value you give it before the loop.

4.13 Apply

Another common use of a loop is to run through the elements of a vector,
perform some operation on the elements, and create a new vector with the
results. This kind of operation is called apply, because you apply the operation
to each element in the vector.

For example, the following loop computes a vector Y that contains the squares
of the elements of X (assuming, again, that X is already defined).

for i=1:length(X)

Y(i) = X(i)^2

end

Exercise 4.3 Write a loop that computes a vector Y that contains the sines of
the elements of X. To test your loop, write a script that

1. Uses linspace (see the documentation) to assign to X a vector with 100
elements running from 0 to 2π.

2. Uses your loop to store the sines in Y.

3. Plots the elements of Y as a function of the elements of X.

4.14 Search

Yet another use of loops is to search the elements of a vector and return the index
of the value you are looking for (or the first value that has a particular property).
For example, if a vector contains the computed altitude of a falling object, you
might want to know the index where the object touches down (assuming that
the ground is at altitude 0).

To create some fake data, we’ll use an extended version of the colon operator:

X = 10:-1:-10

The values in this range run from 10 to -10, with a step size of -1. The step
size is the interval between elements of the range.

The following loop finds the index of the element 0 in X:
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for i=1:length(X)

if X(i) == 0

ans = i

end

end

One funny thing about this loop is that it keeps going after it finds what it is
looking for. That might be what you want; if the target value appears more
than one, this loop provides the index of the last one.

But if you want the index of the first one (or you know that there is only one),
you can save some unnecessary looping by using the break statement.

for i=1:length(X)

if X(i) == 0

ans = i

break

end

end

break does pretty much what it sounds like. It ends the loop and proceeds
immediately to the next statement after the loop (in this case, there isn’t one,
so the script ends).

This example demonstrates the basic idea of a search, but it also demonstrates
a dangerous use of the if statement. Remember that floating-point values are
often only approximately right. That means that if you look for a perfect match,
you might not find it. For example, try this:

X = linspace(1,2)

for i=1:length(X)

Y(i) = sin(X(i))

end

plot(X, Y)

You can see in the plot that the value of sinx goes through 0.9 in this range,
but if you search for the index where Y(i) == 0.9, you will come up empty.

for i=1:length(Y)

if Y(i) == 0.9

ans = i

break

end

end

The condition is never true, so the body of the if statement is never executed.

Even though the plot shows a continuous line, don’t forget that X and Y are
sequences of discrete (and usually approximate) values. As a rule, you should
(almost) never use the == operator to compare floating-point values. There are
a number of ways to get around this limitation; we will get to them later.
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Exercise 4.4 Write a loop that finds the index of the first negative number in
a vector and stores it in ans. If there are no negative numbers, it should set
ans to -1 (which is not a legal index, so it is a good way to indicate the special
case).

4.15 Spoiling the fun

Experienced MATLAB programmers would never write the kind of loops in this
chapter, because MATLAB provides simpler and faster ways to perform many
reduce, filter and search operations.

For example, the sum function computes the sum of the elements in a vector
and prod computes the product.

Many apply operations can be done with elementwise operators. The following
statement is more concise than the loop in Section 4.13

Y = X .^ 2

Also, most built-in MATLAB functions work with vectors:

X = linspace(0, 2*pi)

Y = sin(X)

plot(X, Y)

Finally, the find function can perform search operations, but understanding it
requires a couple of concepts we haven’t got to, so for now you are better off on
your own.

I started with simple loops because I wanted to demonstrate the basic concepts
and give you a chance to practice. At some point you will probably have to
write a loop for which there is no MATLAB shortcut, but you have to work
your way up from somewhere.

If you understand loops and you are are comfortable with the shortcuts, feel
free to use them! Otherwise, you can always write out the loop.

Exercise 4.5 Write an expression that computes the sum of the squares of the
elements of a vector.

4.16 Glossary

compound: A statement, like if and for, that contains other statements in
an indented body.

nesting: Putting one compound statement in the body of another.

relational operator: An operator that compares two values and generates a
logical value as a result.
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logical value: A value that represents either “true” or “false”. MATLAB uses
the values 1 and 0, respectively.

flag: A variable that contains a logical value, often used to store the status of
some condition.

scalar: A single value.

vector: A sequence of values.

matrix: A two-dimensional collection of values (also called “array” in some
MATLAB documentation).

index: An integer value used to indicate one of the values in a vector or matrix
(also called subscript in some MATLAB documentation).

element: One of the values in a vector or matrix.

elementwise: An operation that acts on the individual elements of a vector or
matrix (unlike some linear algebra operations).

reduce: A way of processing the elements of a vector and generating a single
value; for example, the sum of the elements.

apply: A way of processing a vector by performing some operation on each of
the elements, producing a vector that contains the results.

search: A way of processing a vector by examining the elements in order until
one is found that has the desired property.

4.17 Exercises

Exercise 4.6 The ratio of consecutive Fibonacci numbers, Fn+1/Fn, converges
to a constant value as n increases. Write a script that computes a vector with
the first n elements of a Fibonacci sequence (assuming that the variable n is
defined), and then computes a new vector that contains the ratios of consecutive
Fibonacci numbers. Plot this vector to see if it seems to converge. What value
does it converge on?

Exercise 4.7 A certain famous system of differential equations can be approx-
imated by a system of difference equations that looks like this:

xi+1 = xi + σ (yi − xi) dt (4.1)

yi+1 = yi + [xi(r − zi)− yi] dt (4.2)

zi+1 = zi + (xiyi − bzi) dt (4.3)
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� Write a script that computes the first 10 elements of the sequences X, Y
and Z and stores them in vectors named X, Y and Z.

Use the initial values X1 = 1, Y1 = 2 and Z1 = 3, with values σ = 10,
b = 8/3 and r = 28, and with time step dt = 0.01.

� Read the documentation for plot3 and comet3 and plot the results in 3
dimensions.

� Once the code is working, use semi-colons to suppress the output and then
run the program with sequence length 100, 1000 and 10000.

� Run the program again with different starting conditions. What effect does
it have on the result?

� Run the program with different values for σ, b and r and see if you can
get a sense of how each variable affects the system.

Exercise 4.8 The logistic map is often cited as an example of how complex,
chaotic behaviour can arise from simple non-linear dynamical equations [some
of this description is adapted from the Wikipedia page on the logistic map]. It
was popularized in a seminal 1976 paper by the biologist Robert May.

It has been used to model the biomass of a species in the presence of limiting
factors such as food supply and disease. In this case, there are two processes at
work: (1) A reproductive process increases the biomass of the species in propor-
tion to the current population. (2) A starvation process causes the biomass to
decrease at a rate proportional to the carrying capacity of the environment less
the current population.

Mathematically this can be written as

Xi+1 = rXi(1−Xi)

where Xi is a number between zero and one that represents the biomass at year
i, and r is a positive number that represents a combined rate for reproduction
and starvation.

� Write a script named logmap that computes the first 50 elements of X
with r=3.9 and X1=0.5, where r is the parameter of the logistic map and
X1 is the initial population.

� Plot the results for a range of values of r from 2.4 to 4.0. How does the
behavior of the system change as you vary r.

� One way to characterize the effect of r is to make a plot with r on the
x-axis and biomass on the y axis, and to show, for each value of r, the
values of biomass that occur in steady state. See if you can figure out how
to generate this plot.
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Chapter 5

Functions

5.1 Name Collisions

Remember that all of your scripts run in the same workspace, so if one script
changes the value of a variable, all your other scripts see the change. With
a small number of simple scripts, that’s not a problem, but eventually the
interactions between scripts become unmanageable.

For example, the following (increasingly familiar) script computes the sum of
the first n terms in a geometric sequence, but it also has the side-effect of
assigning values to A1, total, i and a.

A1 = 1;

total = 0;

for i=1:10

a = A1 * 0.5^(i-1);

total = total + a;

end

ans = total

If you were using any of those variable names before calling this script, you might
be surprised to find, after running the script, that their values had changed. If
you have two scripts that use the same variable names, you might find that they
work separately and then break when you try to combine them. This kind of
interaction is called a name collision.

As the number of scripts you write increases, and they get longer and more
complex, name collisions become more of a problem. Avoiding this problem is
one of the motivations for functions.
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5.2 Functions

A function is like a script, except

� Each function has its own workspace, so any variables defined inside a
function only exist while the function is running, and don’t interfere with
variables in other workspaces, even if they have the same name.

� Function inputs and outputs are defined carefully to avoid unexpected
interactions.

To define a new function, you create an M-file with the name you want, and
put a function definition in it. For example, to create a function named myfunc,
create an M-file named myfunc.m and put the following definition into it.

function res = myfunc(x)

s = sin(x)

c = cos(x)

res = abs(s) + abs(c)

end

The first word of the file has to be the word function, because that’s how
MATLAB tells the difference between a script and a function file.

A function definition is a compound statement. The first line is called the
signature of the function; it defines the inputs and outputs of the function.
In this case the input variable is named x. When this function is called, the
argument provided by the user will be assigned to x.

The output variable is named res, which is short for “result.” You can call
the output variable whatever you want, but as a convention, I like to call it res.
Usually the last thing a function does is assign a value to the output variable.

Once you have defined a new function, you call it the same way you call built-in
MATLAB functions. If you call the function as a statement, MATLAB puts the
result into ans:

>> myfunc(1)

s = 0.84147098480790

c = 0.54030230586814

res = 1.38177329067604

ans = 1.38177329067604

But it is more common (and better style) to assign the result to a variable:

>> y = myfunc(1)
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s = 0.84147098480790

c = 0.54030230586814

res = 1.38177329067604

y = 1.38177329067604

While you are debugging a new function, you might want to display intermediate
results like this, but once it is working, you will want to add semi-colons to make
it a silent function. Most built-in functions are silent; they compute a result,
but they don’t display anything (except sometimes warning messages).

Each function has its own workspace, which is created when the function starts
and destroyed when the function ends. If you try to access (read or write) the
variables defined inside a function, you will find that they don’t exist.

>> clear

>> y = myfunc(1);

>> who

Your variables are: y

>> s

??? Undefined function or variable 's'.

The only value from the function that you can access is the result, which in this
case is assigned to y.

If you have variables named s or c in your workspace before you call myfunc,
they will still be there when the function completes.

>> s = 1;

>> c = 1;

>> y = myfunc(1);

>> s, c

s = 1

c = 1

So inside a function you can use whatever variable names you want without
worrying about collisions.

5.3 Documentation

At the beginning of every function file, you should include a comment that
explains what the function does.
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% res = myfunc (x)

% Compute the Manhattan distance from the origin to the

% point on the unit circle with angle (x) in radians.

function res = myfunc (x)

s = sin(x);

c = cos(x);

res = abs(s) + abs(c);

end

When you ask for help, MATLAB prints the comment you provide.

>> help myfunc

res = myfunc (x)

Compute the Manhattan distance from the origin to the

point on the unit circle with angle (x) in radians.

There are lots of conventions about what should be included in these comments.
Among other things, it is a good idea to include

� The signature of the function, which includes the name of the function,
the input variable(s) and the output variable(s).

� A clear, concise, abstract description of what the function does. An ab-
stract description is one that leaves out the details of how the function
works, and includes only information that someone using the function
needs to know. You can put additional comments inside the function that
explain the details.

� An explanation of what the input variables mean; for example, in this case
it is important to note that x is considered to be an angle in radians.

� Any preconditions and postconditions.

5.4 Function names

There are three “gotchas” that come up when you start naming functions. The
first is that the “real” name of your function is determined by the file name,
not by the name you put in the function signature. As a matter of style, you
should make sure that they are always the same, but if you make a mistake, or
if you change the name of a function, it is easy to get confused.

In the spirit of making errors on purpose, change the name of the function in
myfunc to something else, and then run it again.

If this is what you put in myfunc.m:
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function res = something_else (x)

s = sin(x);

c = cos(x);

res = abs(s) + abs(c);

end

Then here’s what you’ll get:

>> y = myfunc(1);

>> y = something_else(1);

??? Undefined command/function 'something_else'.

The second gotcha is that the name of the file can’t have spaces. For example,
if you write a function and name the file my func.m, which the MATLAB editor
will happily allow you to do, and then try to run it, you get:

>> y = my func(1)

??? y = my func(1)

|

Error: Unexpected MATLAB expression.

The third gotcha is that your function names can collide with built-in MATLAB
functions. For example, if you create an M-file named sum.m, and then call sum,
MATLAB might call your new function, not the built-in version! Which one
actually gets called depends on the order of the directories in the search path,
and (in some cases) on the arguments. As an example, put the following code
in a file named sum.m:

function res = sum(x)

res = 7;

end

And then try this:

>> sum(1:3)

ans = 6

>> sum

ans = 7

In the first case MATLAB used the built-in function; in the second case it ran
your function! This kind of interaction can be very confusing. Before you create
a new function, check to see if there is already a MATLAB function with the
same name. If there is, choose another name!

5.5 Multiple input variables

Functions can, and often do, take more than one input variable. For example,
the following function takes two input variables, a and b:
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function res = hypotenuse(a, b)

res = sqrt(a^2 + b^2);

end

If you remember the Pythagorean Theorem, you probably figured out that this
function computes the length of the hypotenuse of a right triangle if the lengths
of the adjacent sides are a and b. (There is a MATLAB function called hypot

that does the same thing.)

If we call it from the Command Window with arguments 3 and 4, we can confirm
that the length of the third side is 5.

>> c = hypotenuse(3, 4)

c = 5

The arguments you provide are assigned to the input variables in order, so in
this case 3 is assigned to a and 4 is assigned to b. MATLAB checks that you
provide the right number of arguments; if you provide too few, you get

>> c = hypotenuse(3)

??? Input argument "b" is undefined.

Error in ==> hypotenuse at 2

res = sqrt(a^2 + b^2);

This error message is confusing, because it suggests that the problem is in
hypotenuse rather than in the function call. Keep that in mind when you are
debugging.

If you provide too many arguments, you get

>> c = hypotenuse(3, 4, 5)

??? Error using ==> hypotenuse

Too many input arguments.

Which is a better message.

5.6 Logical functions

In Section 4.4 we used logical operators to compare values. MATLAB also
provides logical functions that check for certain conditions and return logical
values: 1 for “true” and 0 for “false”.

For example, isprime checks to see whether a number is prime.

>> isprime(17)

ans = 1

>> isprime(21)

ans = 0
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The functions isscalar and isvector check whether a value is a scalar or
vector; if both are false, you can assume it is a matrix (at least for now).

To check whether a value you have computed is an integer, you might be tempted
to use isinteger. But that would be wrong, so very wrong. isinteger checks
whether a value belongs to one of the integer types (a topic we have not dis-
cussed); it doesn’t check whether a floating-point value happens to be integral.

>> c = hypotenuse(3, 4)

c = 5

>> isinteger(c)

ans = 0

To do that, we have to write our own logical function, which we’ll call
isintegral:

function res = isintegral(x)

if round(x) == x

res = 1;

else

res = 0;

end

end

This function is good enough for most applications, but remember that floating-
point values are only approximately right; in some cases the approximation is
an integer but the actual value is not.

5.7 An incremental development example

Let’s say that we want to write a program to search for “Pythagorean triples:”
sets of integral values, like 3, 4 and 5, that are the lengths of the sides of a right
triangle. In other words, we would like to find integral values a, b and c such
that a2 + b2 = c2.

Here are the steps we will follow to develop the program incrementally.

� Write a script named find triples and start with a simple statement
like x=5.

� Write a loop that enumerates values of a from 1 to 3, and displays them.

� Write a nested loop that enumerates values of b from 1 to 4, and displays
them.

� Inside the loop, call hypotenuse to compute c and display it.
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� Use isintegral to check whether c is an integral value.

� Use an if statement to print only the triples a, b and c that pass the test.

� Transform the script into a function.

� Generalize the function to take input variables that specify the range to
search.

So the first draft of this program is x=5, which might seem silly, but if you start
simple and add a little bit at a time, you will avoid a lot of debugging.

Here’s the second draft:

for a=1:3

a

end

At each step, the program is testable: it produces output (or another visible
effect) that you can check.

5.8 Nested loops

The third draft contains a nested loop:

for a=1:3

a

for b=1:4

b

end

end

The inner loop gets executed 3 times, once for each value of a, so here’s what
the output loops like (I adjusted the spacing to make the structure clear):

>> find_triples

a = 1 b = 1

b = 2

b = 3

b = 4

a = 2 b = 1

b = 2

b = 3

b = 4

a = 3 b = 1

b = 2

b = 3

b = 4
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The next step is to compute c for each pair of values a and b.

for a=1:3

for b=1:4

c = hypotenuse(a, b);

[a, b, c]

end

end

To display the values of a, b and c, I am using a feature we haven’t seen before.
The bracket operator creates a new matrix which, when it is displayed, shows
the three values on one line:

>> find_triples

ans = 1.0000 1.0000 1.4142

ans = 1.0000 2.0000 2.2361

ans = 1.0000 3.0000 3.1623

ans = 1.0000 4.0000 4.1231

ans = 2.0000 1.0000 2.2361

ans = 2.0000 2.0000 2.8284

ans = 2.0000 3.0000 3.6056

ans = 2.0000 4.0000 4.4721

ans = 3.0000 1.0000 3.1623

ans = 3.0000 2.0000 3.6056

ans = 3.0000 3.0000 4.2426

ans = 3 4 5

Sharp-eyed readers will notice that we are wasting some effort here. After
checking a = 1 and b = 2, there is no point in checking a = 2 and b = 1. We
can eliminate the extra work by adjusting the range of the second loop:

for a=1:3

for b=a:4

c = hypotenuse(a, b);

[a, b, c]

end

end

If you are following along, run this version to make sure it has the expected
effect.

5.9 Conditions and flags

The next step is to check for integral values of c. This loop calls isintegral
and prints the resulting logical value.

for a=1:3

for b=a:4
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c = hypotenuse(a, b);

flag = isintegral(c);

[c, flag]

end

end

By not displaying a and b I made it easy to scan the output to make sure that
the values of c and flag look right.

>> find_triples

ans = 1.4142 0

ans = 2.2361 0

ans = 3.1623 0

ans = 4.1231 0

ans = 2.8284 0

ans = 3.6056 0

ans = 4.4721 0

ans = 4.2426 0

ans = 5 1

I chose the ranges for a and b to be small (so the amount of output is manage-
able), but to contain at least one Pythagorean triple. A constant challenge of
debugging is to generate enough output to demonstrate that the code is working
(or not) without being overwhelmed.

The next step is to use flag to display only the successful triples:

for a=1:3

for b=a:4

c = hypotenuse(a, b);

flag = isintegral(c);

if flag

[a, b, c]

end

end

end

Now the output is elegant and simple:

>> find_triples

ans = 3 4 5

5.10 Encapsulation and generalization

As a script, this program has the side-effect of assigning values to a, b, c and
flag, which would make it hard to use if any of those names were in use. By
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wrapping the code in a function, we can avoid name collisions; this process is
called encapsulation because it isolates this program from the workspace.

In order to put the code we have written inside a function, we have to indent
the whole thing. The MATLAB editor provides a shortcut for doing that, the
Increase Indent command under the Text menu. Just don’t forget to unselect
the text before you start typing!

The first draft of the function takes no input variables:

function res = find_triples ()

for a=1:3

for b=a:4

c = hypotenuse(a, b);

flag = isintegral(c);

if flag

[a, b, c]

end

end

end

end

The empty parentheses in the signature are not strictly necessary, but they
make it apparent that there are no input variables. Similarly, when I call the
new function, I like to use parentheses to remind me that it is a function, not a
script:

>> find_triples()

The output variable isn’t strictly necessary, either; it never gets assigned a value.
But I put it there as a matter of habit, and also so my function signatures all
have the same structure.

The next step is to generalize this function by adding input variables. The
natural generalization is to replace the constant values 3 and 4 with a variable
so we can search an arbitrarily large range of values.

function res = find_triples (n)

for a=1:n

for b=a:n

c = hypotenuse(a, b);

flag = isintegral(c);

if flag

[a, b, c]

end

end

end

end

Here are the results for the range from 1 to 15:
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>> find_triples(15)

ans = 3 4 5

ans = 5 12 13

ans = 6 8 10

ans = 8 15 17

ans = 9 12 15

Some of these are more interesting than others. The triples 5, 12, 13 and 8, 15, 17
are “new,” but the others are just multiples of the 3, 4, 5 triangle we already
knew.

5.11 A misstep

When you change the signature of a function, you have to change all the places
that call the function, too. For example, suppose I decided to add a third input
variable to hypotenuse:

function res = hypotenuse(a, b, d)

res = (a.^d + b.^d) ^ (1/d);

end

When d is 2, this does the same thing it did before. There is no practical reason
to generalize the function in this way; it’s just an example. Now when you run
find triples, you get:

>> find_triples(20)

??? Input argument "d" is undefined.

Error in ==> hypotenuse at 2

res = (a.^d + b.^d) ^ (1/d);

Error in ==> find_triples at 7

c = hypotenuse(a, b);

So that makes it pretty easy to find the error. This is an example of a devel-
opment technique that is sometimes useful: rather than search the program for
all the places that use hypotenuse, you can run the program and use the error
messages to guide you.

But this technique is risky, especially if the error messages make suggestions
about what to change. If you do what you’re told, you might make the error
message go away, but that doesn’t mean the program will do the right thing.
MATLAB doesn’t know what the program is supposed to do, but you should.

And that brings us to the Eighth Theorem of debugging:

Error messages sometimes tell you what’s wrong, but they seldom
tell you what to do (and when they try, they’re usually wrong).
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5.12 continue

As one final improvement, let’s modify the function so that it only displays the
“lowest” of each Pythagorean triple, and not the multiples.

The simplest way to eliminate the multiples is to check whether a and b share
a common factor. If they do, then dividing both by the common factor yields a
smaller, similar triangle that has already been checked.

MATLAB provides a gcd function that computes the greatest common divisor
of two numbers. If the result is greater than 1, then a and b share a common
factor and we can use the continue statement to skip to the next pair:

function res = find_triples (n)

for a=1:n

for b=a:n

if gcd(a,b) > 1

continue

end

c = hypotenuse(a, b);

if isintegral(c)

[a, b, c]

end

end

end

end

continue causes the program to end the current iteration immediately (without
executing the rest of the body), jump to the top of the loop, and “continue”
with the next iteration.

In this case, since there are two loops, it might not be obvious which loop to
jump to, but the rule is to jump to the inner-most loop (which is what we
wanted).

I also simplified the program slightly by eliminating flag and using isintegral
as the condition of the if statement.

Here are the results with n=40:

>> find_triples(40)

ans = 3 4 5

ans = 5 12 13

ans = 7 24 25

ans = 8 15 17

ans = 9 40 41

ans = 12 35 37

ans = 20 21 29
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There is an interesting connection between Fibonacci numbers and Pythagorean
triples. If F is a Fibonacci sequence, then

(FnFn+3, 2Fn+1Fn+2, F
2
n+1 + F 2

n+2)

is a Pythagorean triple for all n ≥ 1.

Exercise 5.1 Write a function named fib triple that takes an input vari-
able n, uses fibonacci2 to compute the first n Fibonacci numbers, and then
checks whether this formula produces a Pythagorean triple for each number in
the sequence.

5.13 Mechanism and leap of faith

Let’s review the sequence of steps that occur when you call a function:

1. Before the function starts running, MATLAB creates a new workspace for
it.

2. MATLAB evaluates each of the arguments and assigns the resulting values,
in order, to the input variables (which live in the new workspace).

3. The body of the code executes. Somewhere in the body (often the last
line) a value gets assigned to the output variable.

4. The function’s workspace is destroyed; the only thing that remains is the
value of the output variable and any side effects the function had (like
displaying values or creating a figure).

5. The program resumes from where it left off. The value of the function call
is the value of the output variable.

When you are reading a program and you come to a function call, there are two
ways to interpret it:

� You can think about the mechanism I just described, and follow the exe-
cution of the program into the function and back, or

� You can take the “leap of faith”: assume that the function works correctly,
and go on to the next statement after the function call.

When you use built-in functions, it is natural to take the leap of faith, in part
because you expect that most MATLAB functions work, and in part because
you don’t generally have access to the code in the body of the function.

But when you start writing your own functions, you will probably find yourself
following the “flow of execution.” This can be useful while you are learning,
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but as you gain experience, you should get more comfortable with the idea of
writing a function, testing it to make sure it works, and then forgetting about
the details of how it works.

Forgetting about details is called abstraction; in the context of functions,
abstraction means forgetting about how a function works, and just assuming
(after appropriate testing) that it works.

5.14 Glossary

side-effect: An effect, like modifying the workspace, that is not the primary
purpose of a script.

name collision: The scenario where two scripts that use the same variable
name interfere with each other.

input variable: A variable in a function that gets its value, when the function
is called, from one of the arguments.

output variable: A variable in a function that is used to return a value from
the function to the caller.

signature: The first line of a function definition, which specifies the names of
the function, the input variables and the output variables.

silent function: A function that doesn’t display anything or generate a figure,
or have any other side-effects.

logical function: A function that returns a logical value (1 for “true” or 0 for
“false”).

encapsulation: The process of wrapping part of a program in a function in
order to limit interactions (including name collisions) between the function
and the rest of the program.

generalization: Making a function more versatile by replacing specific values
with input variables.

abstraction: The process of ignoring the details of how a function works in
order to focus on a simpler model of what the function does.

5.15 Exercises

Exercise 5.2 Take any of the scripts you have written so far, encapsulate the
code in an appropriately-named function, and generalize the function by adding
one or more input variables.

Make the function silent and then call it from the Command Window and con-
firm that you can display the output value.
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Chapter 6

Zero-finding

6.1 Why functions?

The previous chapter explained some of the benefits of functions, including

� Each function has its own workspace, so using functions helps avoid name
collisions.

� Functions lend themselves to incremental development: you can debug the
body of the function first (as a script), then encapsulate it as a function,
and then generalize it by adding input variables.

� Functions allow you to divide a large problem into small pieces, work on
the pieces one at a time, and then assemble a complete solution.

� Once you have a function working, you can forget about the details of how
it works and concentrate on what it does. This process of abstraction is
an important tool for managing the complexity of large programs.

Another reason you should consider using functions is that many of the tools
provided by MATLAB require you to write functions. For example, in this
chapter we will use fzero to find solutions of nonlinear equations. Later we will
use ode45 to approximate solutions to differential equations.

6.2 Maps

In mathematics, a map is a correspondence between one set called the range
and another set called the domain. For each element of the range, the map
specifies the corresponding element of the domain.
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You can think of a sequence as a map from positive integers to elements. You
can think of a vector as a map from indices to elements. In these cases the maps
are discrete because the elements of the range are countable.

You can also think of a function as a map from inputs to outputs, but in this
case the range is continuous because the inputs can take any value, not just
integers. (Strictly speaking, the set of floating-point numbers is discrete, but
since floating-point numbers are meant to represent real numbers, we think of
them as continuous.)

6.3 A note on notation

In this chapter I need to start talking about mathematical functions, and I am
going to use a notation you might not have seen before.

If you have studied functions in a math class, you have probably seen something
like

f(x) = x2 − 2x− 3

which is supposed to mean that f is a function that maps from x to x2−2x−3.
The problem is that f(x) is also used to mean the value of f that corresponds
to a particular value of x. So I don’t like this notation. I prefer

f : x → x2 − 2x− 3

which means “f is the function that maps from x to x2− 2x− 3.” In MATLAB,
this would be expressed like this:

function res = error_func(x)

res = x^2 - 2*x -3;

end

I’ll explain soon why this function is called error func. Now, back to our
regularly-scheduled programming.

6.4 Nonlinear equations

What does it mean to “solve” an equation? That may seem like an obvious
question, but I want to take a minute to think about it, starting with a simple
example: let’s say that we want to know the value of a variable, x, but all we
know about it is the relationship x2 = a.

If you have taken algebra, you probably know how to “solve” this equation: you
take the square root of both sides and get x =

√
a. Then, with the satisfaction

of a job well done, you move on to the next problem.
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But what have you really done? The relationship you derived is equivalent to
the relationship you started with—they contain the same information about
x—so why is the second one preferable to the first?

There are two reasons. One is that the relationship is now “explicit in x;”
because x is all alone on the left side, we can treat the right side as a recipe for
computing x, assuming that we know the value of a.

The other reason is that the recipe is written in terms of operations we know
how to perform. Assuming that we know how to compute square roots, we can
compute the value of x for any value of a.

When people talk about solving an equation, what they usually mean is some-
thing like “finding an equivalent relationship that is explicit in one of the vari-
ables.” In the context of this book, that’s what I will call an analytic solution,
to distinguish it from a numerical solution, which is what we are going to do
next.

To demonstrate a numerical solution, consider the equation x2 − 2x = 3. You
could solve this analytically, either by factoring it or by using the quadratic
equation, and you would discover that there are two solutions, x = 3 and x =
−1. Alternatively, you could solve it numerically by rewriting it as x =

√
2x+ 3.

This equation is not explicit, since x appears on both sides, so it is not clear
that this move did any good at all. But suppose that we had some reason to
expect there to be a solution near 4. We could start with x = 4 as an “initial
guess,” and then use the equation x =

√
2x+ 3 iteratively to compute successive

approximations of the solution.

Here’s what would happen:

>> x = 4;

>> x = sqrt(2*x+3)

x = 3.3166

>> x = sqrt(2*x+3)

x = 3.1037

>> x = sqrt(2*x+3)

x = 3.0344

>> x = sqrt(2*x+3)

x = 3.0114
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>> x = sqrt(2*x+3)

x = 3.0038

After each iteration, x is closer to the correct answer, and after 5 iterations, the
relative error is about 0.1%, which is good enough for most purposes.

Techniques that generate numerical solutions are called numerical methods.
The nice thing about the method I just demonstrated is that it is simple, but
it doesn’t always work as well as it did in this example, and it is not used very
often in practice. We’ll see one of the more practical alternatives in a minute.

6.5 Zero-finding

A nonlinear equation like x2 − 2x = 3 is a statement of equality that is true for
some values of x and false for others. A value that makes it true is a solution;
any other value is a non-solution. But for any given non-solution, there is no
sense of whether it is close or far from a solution, or where we might look to
find one.

To address this limitation, it is useful to rewrite non-linear equations as zero-
finding problems:

� The first step is to define an “error function” that computes how far a
given value of x is from being a solution.

In this example, the error function is

f : x → x2 − 2x− 3

Any value of x that makes f(x) = 0 is also a solution of the original
equation.

� The next step is to find values of x that make f(x) = 0. These values are
called zeros of the function, or sometimes roots.

Zero-finding lends itself to numerical solution because we can use the values of
f , evaluated at various values of x, to make reasonable inferences about where
to look for zeros.

For example, if we can find two values x1 and x2 such that f(x1) > 0 and
f(x2) < 0, then we can be certain that there is at least one zero between x1

and x2 (provided that we know that f is continuous). In this case we would say
that x1 and x2 bracket a zero.

Here’s what this scenario might look like on a graph:
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x1, f(x1)

x2, f(x2)

If this was all you knew about f , where would you go looking for a zero? If you
said “halfway between x1 and x2,” then congratulations! You just invented a
numerical method called bisection!

If you said, “I would connect the dots with a straight line and compute the zero
of the line,” then congratulations! You just invented the secant method!

And if you said, “I would evaluate f at a third point, find the parabola that
passes through all three points, and compute the zeros of the parabola,” then...
well, you probably didn’t say that.

Finally, if you said, “I would use a built-in MATLAB function that combines
the best features of several efficient and robust numerical methods,” then you
are ready to go on to the next section.

6.6 fzero

fzero is a built-in MATLAB function that combines the best features of several
efficient and robust numerical methods.

In order to use fzero, you have to define a MATLAB function that computes
the error function you derived from the original nonlinear equation, and you
have to provide an initial guess at the location of a zero.

We’ve already seen an example of an error function:

function res = error_func(x)

res = x^2 - 2*x -3;

end

You can call error func from the Command Window, and confirm that there
are zeros at 3 and -1.

>> error_func(3)

ans = 0

>> error_func(-1)

ans = 0
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But let’s pretend that we don’t know exactly where the roots are; we only know
that one of them is near 4. Then we could call fzero like this:

>> fzero(@error_func, 4)

ans = 3.0000

Success! We found one of the zeros.

The first argument is a function handle that names the M-file that evaluates
the error function. The @ symbol allows us to name the function without calling
it. The interesting thing here is that you are not actually calling error func

directly; you are just telling fzero where it is. In turn, fzero calls your error
function—more than once, in fact.

The second argument is the initial guess. If we provide a different initial guess,
we get a different root (at least sometimes).

>> fzero(@error_func, -2)

ans = -1

Alternatively, if you know two values that bracket the root, you can provide
both:

>> fzero(@error_func, [2,4])

ans = 3

The second argument here is actually a vector that contains two elements. The
bracket operator is a convenient way (one of several) to create a new vector.

You might be curious to know how many times fzero calls your function, and
where. If you modify error func so that it displays the value of x every time
it is called and then run fzero again, you get:

>> fzero(@error_func, [2,4])

x = 2

x = 4

x = 2.75000000000000

x = 3.03708133971292

x = 2.99755211623500

x = 2.99997750209270

x = 3.00000000025200

x = 3.00000000000000

x = 3

x = 3

ans = 3

Not surprisingly, it starts by computing f(2) and f(4). After each iteration,
the interval that brackets the root gets smaller; fzero stops when the interval
is so small that the estimated zero is correct to 16 digits. If you don’t need that
much precision, you can tell fzero to give you a quicker, dirtier answer (see the
documentation for details).
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6.7 What could go wrong?

The most common problem people have with fzero is leaving out the @. In that
case, you get something like:

>> fzero(error_func, [2,4])

??? Input argument "x" is undefined.

Error in ==> error_func at 2

x

Which is a very confusing error message. The problem is that MATLAB treats
the first argument as a function call, so it calls error func with no arguments.
Since error func requires one argument, the message indicates that the input
argument is “undefined,” although it might be clearer to say that you haven’t
provided a value for it.

Another common problem is writing an error function that never assigns a value
to the output variable. In general, functions should always assign a value to the
output variable, but MATLAB doesn’t enforce this rule, so it is easy to forget.
For example, if you write:

function res = error_func(x)

y = x^2 - 2*x -3

end

and then call it from the Command Window:

>> error_func(4)

y = 5

It looks like it worked, but don’t be fooled. This function assigns a value to y,
and it displays the result, but when the function ends, y disappears along with
the function’s workspace. If you try to use it with fzero, you get

>> fzero(@error_func, [2,4])

y = -3

??? Error using ==> fzero

FZERO cannot continue because user supplied function_handle ==>

error_func failed with the error below.

Output argument "res" (and maybe others) not assigned during

call to "/home/downey/error_func.m (error_func)".

If you read it carefully, this is a pretty good error message (with the quibble
that “output argument” is not a good synonym for “output variable”).

You would have seen the same error message when you called error func from
the interpreter, if only you had assigned the result to a variable:
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>> x = error_func(4)

y = 5

??? Output argument "res" (and maybe others) not assigned during

call to "/home/downey/error_func.m (error_func)".

Error in ==> error_func at 2

y = x^2 - 2*x -3

You can avoid all of this if you remember these two rules:

� Functions should always assign values to their output variables*.

� When you call a function, you should always do something with the result
(either assign it to a variable or use it as part of an expression, etc.).

When you write your own functions and use them yourself, it is easy for mistakes
to go undetected. But when you use your functions with MATLAB functions
like fzero, you have to get it right!

Yet another thing that can go wrong: if you provide an interval for the initial
guess and it doesn’t actually contain a root, you get

>> fzero(@error_func, [0,1])

??? Error using ==> fzero

The function values at the interval endpoints must differ in sign.

There is one other thing that can go wrong when you use fzero, but this one
is less likely to be your fault. It is possible that fzero won’t be able to find a
root.

fzero is generally pretty robust, so you may never have a problem, but you
should remember that there is no guarantee that fzero will work, especially if
you provide a single value as an initial guess. Even if you provide an interval that
brackets a root, things can still go wrong if the error function is discontinuous.

6.8 Finding an initial guess

The better your initial guess (or interval) is, the more likely it is that fzero will
work, and the fewer iterations it will need.

When you are solving problems in the real world, you will usually have some
intuition about the answer. This intuition is often enough to provide a good
initial guess for zero-finding.

*Well, ok, there are exceptions, including find triples. Functions that don’t return a
value are sometimes called “commands,” because they do something (like display values or
generate a figure) but either don’t have an output variable or don’t make an assignment to it.
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Another approach is to plot the function and see if you can approximate the
zeros visually. If you have a function, like error func that takes a scalar input
variable and returns a scalar output variable, you can plot it with ezplot:

>> ezplot(@error_func, [-2,5])

The first argument is a function handle; the second is the interval you want to
plot the function in.

By default ezplot calls your function 100 times (each time with a different value
of x, of course). So you probably want to make your function silent before you
plot it.

6.9 More name collisions

Functions and variables occupy the same “name-space,” which means that when-
ever a name appears in an expression, MATLAB starts by looking for a variable
with that name, and if there isn’t one, it looks for a function.

As a result, if you have a variable with the same name as a function, the variable
shadows the function. For example, if you assign a value to sin, and then try
to use the sin function, you might get an error:

>> sin = 3;

>> x = 5;

>> sin(x)

??? Index exceeds matrix dimensions.

In this example, the problem is clear. Since the value of sin is a scalar, and a
scalar is really a 1x1 matrix, MATLAB tries to access the 5th element of the
matrix and finds that there isn’t one. Of course, if there were more distance
between the assignment and the “function call,” this message would be pretty
confusing.

But the only thing worse than getting an error message is not getting an error
message. If the value of sin was a vector, or if the value of x was smaller, you
would really be in trouble.

>> sin = 3;

>> sin(1)

ans = 3

Just to review, the sine of 1 is not 3!

The converse error can also happen if you try to access an undefined variable
that also happens to be the name of a function. For example, if you have a
function named f, and then try to increment a variable named f (and if you
forget to initialize f), you get
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>> f = f+1

??? Error: "f" previously appeared to be used as a function or

command, conflicting with its use here as the name of a variable.

A possible cause of this error is that you forgot to initialize the

variable, or you have initialized it implicitly using load or eval.

At least, that’s what you get if you are lucky. If this happens inside a function,
MATLAB tries to call f as a function, and you get this

??? Input argument "x" is undefined.

Error in ==> f at 3

y = x^2 - a

There is no universal way to avoid these kind of collisions, but you can improve
your chances by choosing variable names that don’t shadow existing functions,
and by choosing function names that you are unlikely to use as variables. That’s
why in Section 6.3 I called the error function error func rather than f. I often
give functions names that end in func, so that helps, too.

6.10 Debugging in four acts

When you are debugging a program, and especially if you are working on a hard
bug, there are four things to try:

reading: Examine your code, read it back to yourself, and check that it means
what you meant to say.

running: Experiment by making changes and running different versions. Often
if you display the right thing at the right place in the program, the problem
becomes obvious, but sometimes you have to spend some time to build
scaffolding.

ruminating: Take some time to think! What kind of error is it: syntax, run-
time, logical? What information can you get from the error messages,
or from the output of the program? What kind of error could cause the
problem you’re seeing? What did you change last, before the problem
appeared?

retreating: At some point, the best thing to do is back off, undoing recent
changes, until you get back to a program that works, and that you under-
stand. Then you can starting rebuilding.

Beginning programmers sometimes get stuck on one of these activities and forget
the others. Each activity comes with its own failure mode.

For example, reading your code might help if the problem is a typographical
error, but not if the problem is a conceptual misunderstanding. If you don’t
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understand what your program does, you can read it 100 times and never see
the error, because the error is in your head.

Running experiments can help, especially if you run small, simple tests. But if
you run experiments without thinking or reading your code, you might fall into
a pattern I call “random walk programming,” which is the process of making
random changes until the program does the right thing. Needless to say, random
walk programming can take a long time.

The way out is to take more time to think. Debugging is like an experimental
science. You should have at least one hypothesis about what the problem is. If
there are two or more possibilities, try to think of a test that would eliminate
one of them.

Taking a break sometimes helps with the thinking. So does talking. If you
explain the problem to someone else (or even yourself), you will sometimes find
the answer before you finish asking the question.

But even the best debugging techniques will fail if there are too many errors,
or if the code you are trying to fix is too big and complicated. Sometimes the
best option is to retreat, simplifying the program until you get to something
that works, and then rebuild.

Beginning programmers are often reluctant to retreat, because they can’t stand
to delete a line of code (even if it’s wrong). If it makes you feel better, copy
your program into another file before you start stripping it down. Then you can
paste the pieces back in a little bit at a time.

To summarize, here’s the Ninth Theorem of debugging:

Finding a hard bug requires reading, running, ruminating, and some-
times retreating. If you get stuck on one of these activities, try the
others.

6.11 Glossary

analytic solution: A way of solving an equation by performing algebraic oper-
ations and deriving an explicit way to compute a value that is only known
implicitly.

numerical solution: A way of solving an equation by finding a numerical value
that satisfies the equation, often approximately.

numerical method: A method (or algorithm) for generating a numerical so-
lution.

map: A correspondence between the elements of one set (the range) and the
elements of another (the domain). You can think of sequences, vectors
and functions as different kinds of maps.
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range: The set of values a map maps from.

domain: The set of values a map maps to.

discrete set: A set, like the integers, whose elements are countable.

continuous set: A set, like the real numbers, whose elements are not count-
able. You can think of floating-point numbers as a continuous set.

zero (of a function): A value in the range of a function that maps to 0.

function handle: In MATLAB, a function handle is a way of referring to a
function by name (and passing it as an argument) without calling it.

shadow: A kind of name collision in which a new definition causes an existing
definition to become invisible. In MATLAB, variable names can shadow
built-in functions (with hilarious results).

6.12 Exercises

Exercise 6.1 1. Write a function called cheby6 that evaluates the 6th
Chebyshev polynomial. It should take an input variable, x, and return

32x6 − 48x4 + 18x2 − 1 (6.1)

2. Use ezplot to display a graph of this function in the interval from 0 to 1.
Estimate the location of any zeros in this range.

3. Use fzero to find as many different roots as you can. Does fzero always
find the root that is closest to the initial guess?

Exercise 6.2 The density of a duck, ρ, is 0.3g/cm3 (0.3 times the density of
water).

The volume of a sphere� with radius r is 4

3
πr3.

If a sphere with radius r is submerged in water to a depth d, the volume of the
sphere below the water line is

volume =
π

3
(3rd2 − d3) as long as d < 2r

An object floats at the level where the weight of the displaced water equals the
total weight of the object.

�This example is adapted from Gerald and Wheatley, Applied Numerical Analysis, Fourth
Edition, Addison-Wesley, 1989.
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Assuming that a duck is a sphere with radius 10 cm, at what depth does a duck
float?

Here are some suggestions about how to proceed:

� Write an equation relating ρ, d and r.

� Rearrange the equation so the right-hand side is zero. Our goal is to find
values of d that are roots of this equation.

� Write a MATLAB function that evaluates this function. Test it, then
make it a quiet function.

� Make a guess about the value of d0 to use as a starting place.

� Use fzero to find a root near d0.

� Check to make sure the result makes sense. In particular, check that d <
2r, because otherwise the volume equation doesn’t work!

� Try different values of ρ and r and see if you get the effect you expect.
What happens as ρ increases? Goes to infinity? Goes to zero? What
happens as r increases? Goes to infinity? Goes to zero?
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Chapter 7

Functions of vectors

7.1 Functions and files

So far we have only put one function in each file. It is also possible to put more
than one function in a file, but only the first one, the top-level function can
be called from the Command Window. The other helper functions can be
called from anywhere inside the file, but not from any other file.

Large programs almost always require more than one function; keeping all the
functions in one file is convenient, but it makes debugging difficult because you
can’t call helper functions from the Command Window.

To help with this problem, I often use the top-level function to develop and test
my helper functions. For example, to write a program for Exercise 6.2, I would
create a file named duck.m and start with a top-level function named duck that
takes no input variables and returns no output value.

Then I would write a function named error func to evaluate the error function
for fzero. To test error func I would call it from duck and then call duck
from the Command Window.

Here’s what my first draft might look like:

function res = duck()

error = error_func(10)

end

function res = error_func(h)

rho = 0.3; % density in g / cm^3

r = 10; % radius in cm

res = h;

end
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The line res = h isn’t finished yet, but this is enough code to test. Once I
finished and tested error func, I would modify duck to use fzero.

For this problem I might only need two functions, but if there were more, I
could write and test them one at a time, and then combine them into a working
program.

7.2 Physical modeling

Most of the examples so far have been about mathematics; Exercise 6.2, the
“duck problem,” is the first example we have seen of a physical system. If you
didn’t work on this exercise, you should at least go back and read it.

This book is supposed to be about physical modeling, so it might be a good
idea to explain what that is. Physical modeling is a process for making predic-
tions about physical systems and explaining their behavior. A physical system
is something in the real world that we are interested in, like a duck.

The following figure shows the steps of this process:

Physical

System

System

Behavior

Prediction/

Explanation
Model
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Amodel is a simplified description of a physical system. The process of building
a model is called abstraction. In this context, “abstract” is the opposite of
“realistic;” an abstract model bears little direct resemblance to the physical
system it models, in the same way that abstract art does not directly depict
objects in the real world. A realistic model is one that includes more details
and corresponds more directly to the real world.

Abstraction involves making justified decisions about which factors to include
in the model and which factors can be simplified or ignored. For example, in the
duck problem, we took into account the density of the duck and the buoyancy
of water, but we ignored the buoyancy of the duck due to displacement of air
and the dynamic effect of paddling feet. We also simplified the geometry of the
duck by assuming that the underwater parts of a duck are similar to a segment
of a sphere. And we used coarse estimates of the size and weight of the duck.

Some of these decisions are justifiable. The density of the duck is much higher
than the density of air, so the effect of buoyancy in air is probably small. Other
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decisions, like the spherical geometry, are harder to justify, but very helpful. The
actual geometry of a duck is complicated; the sphere model makes it possible
to generate an approximate answer without making detailed measurements of
real ducks.

A more realistic model is not necessarily better. Models are useful because they
can be analyzed mathematically and simulated computationally. Models that
are too realistic might be difficult to simulate and impossible to analyze.

A model is successful if it is good enough for its purpose. If we only need a rough
idea of the fraction of a duck that lies below the surface, the sphere model is
good enough. If we need a more precise answer (for some reason) we might need
a more realistic model.

Checking whether a model is good enough is called validation. The strongest
form of validation is to make a measurement of an actual physical system and
compare it to the prediction of a model.

If that is infeasible, there are weaker forms of validation. One is to compare
multiple models of the same system. If they are inconsistent, that is an indica-
tion that (at least) one of them is wrong, and the size of the discrepancy is a
hint about the reliability of their predictions.

We have only seen one physical model so far, so parts of this discussion may not
be clear yet. We will come back to these topics later, but first we should learn
more about vectors.

7.3 Vectors as input variables

Since many of the built-in functions take vectors as arguments, it should come
as no surprise that you can write functions that take vectors. Here’s a simple
(silly) example:

function res = display_vector(X)

X

end

There’s nothing special about this function at all. The only difference from the
scalar functions we’ve seen is that I used a capital letter to remind me that X is
a vector.

This is another example of a function that doesn’t actually have a return value;
it just displays the value of the input variable:

>> display_vector(1:3)

X = 1 2 3

Here’s a more interesting example that encapsulates the code from Section 4.12
that adds up the elements of a vector:
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function res = mysum(X)

total = 0;

for i=1:length(X)

total = total + X(i);

end

res = total;

end

I called it mysum to avoid a collision with the built-in function sum, which does
pretty much the same thing.

Here’s how you call it from the Command Window:

>> total = mysum(1:3)

total = 6

Because this function has a return value, I made a point of assigning it to a
variable.

7.4 Vectors as output variables

There’s also nothing wrong with assigning a vector to an output variable. Here’s
an example that encapsulates the code from Section 4.13:

function res = myapply(X)

for i=1:length(X)

Y(i) = X(i)^2

end

res = Y

end

Ideally I would have changed the name of the output variable to Res, as a
reminder that it is supposed to get a vector value, but I didn’t.

Here’s how myapply works:

>> V = myapply(1:3)

V = 1 4 9

Exercise 7.1 Write a function named find target that encapsulates the code,
from Section 4.14, that finds the location of a target value in a vector.

7.5 Vectorizing your functions

Functions that work on vectors will almost always work on scalars as well,
because MATLAB considers a scalar to be a vector with length 1.
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>> mysum(17)

ans = 17

>> myapply(9)

ans = 81

Unfortunately, the converse is not always true. If you write a function with
scalar inputs in mind, it might not work on vectors.

But it might! If the operators and functions you use in the body of your function
work on vectors, then your function will probably work on vectors.

For example, here is the very first function we wrote:

function res = myfunc (x)

s = sin(x)

c = cos(x)

res = abs(s) + abs(c)

end

And lo! It turns out to work on vectors:

>> Y = myfunc(1:3)

Y = 1.3818 1.3254 1.1311

At this point, I want to take a minute to acknowledge that I have been a little
harsh in my presentation of MATLAB, because there are a number of features
that I think make life harder than it needs to be for beginners. But here, finally,
we are seeing features that show MATLAB’s strengths.

Some of the other functions we wrote don’t work on vectors, but they can
be patched up with just a little effort. For example, here’s hypotenuse from
Section 5.5:

function res = hypotenuse(a, b)

res = sqrt(a^2 + b^2);

end

This doesn’t work on vectors because the ^ operator tries to do matrix expo-
nentiation, which only works on square matrices.

>> hypotenuse(1:3, 1:3)

??? Error using ==> mpower

Matrix must be square.

But if you replace ^ with the elementwise operator .^, it works!

>> A = [3,5,8];

>> B = [4,12,15];

>> C = hypotenuse(A, B)

C = 5 13 17
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In this case, it matches up corresponding elements from the two input vectors,
so the elements of C are the hypotenuses of the pairs (3, 4), (5, 12) and (8, 15),
respectively.

In general, if you write a function using only elementwise operators and functions
that work on vectors, then the new function will also work on vectors.

7.6 Sums and differences

Another common vector operation is cumulative sum, which takes a vector
as an input and computes a new vector that contains all of the partial sums of
the original. In math notation, if V is the original vector, then the elements of
the cumulative sum, C, are:

Ci =
i
∑

j=1

Vj

In other words, the ith element of C is the sum of the first i elements from V .
MATLAB provides a function named cumsum that computes cumulative sums:

>> V = 1:5

V = 1 2 3 4 5

>> C = cumsum(V)

C = 1 3 6 10 15

Exercise 7.2 Write a function named cumulative sum that uses a loop to
compute the cumulative sum of the input vector.

The inverse operation of cumsum is diff, which computes the difference between
successive elements of the input vector.

>> D = diff(C)

D = 2 3 4 5

Notice that the output vector is shorter by one than the input vector. As a
result, MATLAB’s version of diff is not exactly the inverse of cumsum. If it
were, then we would expect cumsum(diff(X)) to be X:

>> cumsum(diff(V))

ans = 1 2 3 4

But it isn’t.
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Exercise 7.3 Write a function named mydiff that computes the inverse of
cumsum, so that cumsum(mydiff(X)) and mydiff(cumsum(X)) both return X.

7.7 Products and ratios

The multiplicative version of cumsum is cumprod, which computes the cumula-
tive product. In math notation, that’s:

Pi =
i
∏

j=1

Vj

In MATLAB, that looks like:

>> V = 1:5

V = 1 2 3 4 5

>> P = cumprod(V)

P = 1 2 6 24 120

Exercise 7.4 Write a function named cumulative prod that uses a loop to
compute the cumulative product of the input vector.

MATLAB doesn’t provide the multiplicative version of diff, which would be
called ratio, and which would compute the ratio of successive elements of the
input vector.

Exercise 7.5 Write a function named myratio that computes the inverse of
cumprod, so that cumprod(myratio(X)) and myratio(cumprod(X)) both return
X.

You can use a loop, or if you want to be clever, you can take advantage of the
fact that eln a+ln b = ab.

If you apply myratio to a vector that contains Fibonacci numbers, you can
confirm that the ratio of successive elements converges on the golden ratio, (1+√
5)/2 (see Exercise 4.6).

7.8 Existential quantification

It is often useful to check the elements of a vector to see if there are any that
satisfy a condition. For example, you might want to know if there are any
positive elements. In logic, this condition is called existential quantification,
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and it is denoted with the symbol ∃, which is pronounced “there exists.” For
example, this expression

∃x in S : x > 0

means, “there exists some element x in the set S such that x > 0.” In MATLAB
it is natural to express this idea with a logical function, like exists, that returns
1 if there is such an element and 0 if there is not.

function res = exists(X)

for i=1:length(X)

if X(i) > 0

res = 1;

return

end

end

res = 0;

end

We haven’t seen the return statement before; it is similar to break except that
it breaks out of the whole function, not just the loop. That behavior is what we
want here because as soon as we find a positive element, we know the answer (it
exists!) and we can end the function immediately without looking at the rest of
the elements.

If we exit at the end of the loop, that means we didn’t find what we were looking
for (because if we had, we would have hit the return statement).

7.9 Universal quantification

Another common operation on vectors is to check whether all of the elements
satisfy a condition, which is known to logicians as universal quantification
and denoted with the symbol ∀ which is pronounced “for all.” So this expression

∀x in S : x > 0

means “for all elements, x, in the set S, x > 0.”

A slightly silly way to evaluate this expression in MATLAB is to count the
number of elements that satisfy the condition. A better way is to reduce the
problem to existential quantification; that is, to rewrite

∀x in S : x > 0

as
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∼ ∃x in S : x ≤ 0

Where ∼ ∃ means “does not exist.” In other words, checking that all the
elements are positive is the same as checking that there are no elements that
are non-positive.

Exercise 7.6 Write a function named forall that takes a vector and returns
1 if all of the elements are positive and 0 if there are any non-positive elements.

7.10 Logical vectors

When you apply a logical operator to a vector, the result is a logical vector;
that is, a vector whose elements are the logical values 1 and 0.

>> V = -3:3

V = -3 -2 -1 0 1 2 3

>> L = V>0

L = 0 0 0 0 1 1 1

In this example, L is a logical vector whose elements correspond to the elements
of V. For each positive element of V, the corresponding element of L is 1.

Logical vectors can be used like flags to store the state of a condition. They are
also often used with the find function, which takes a logical vector and returns
a vector that contains the indices of the elements that are “true.”

Applying find to L yields

>> find(L)

ans = 5 6 7

which indicates that elements 5, 6 and 7 have the value 1.

If there are no “true” elements, the result is an empty vector.

>> find(V>10)

ans = Empty matrix: 1-by-0

This example computes the logical vector and passes it as an argument to find

without assigning it to an intermediate variable. You can read this version
abstractly as “find the indices of elements of V that are greater than 10.”

We can also use find to write exists more concisely:
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function res = exists(X)

L = find(X>0)

res = length(L) > 0

end

Exercise 7.7 Write a version of forall using find.

7.11 Glossary

top-level function: The first function in an M-file; it is the only function that
can be called from the Command Window or from another file.

helper function: A function in an M-file that is not the top-level function; it
only be called from another function in the same file.

physical modeling: A process for making predictions about physical systems
and explaining their behavior.

physical system: Something in the real world that we are interested in study-
ing.

model : A simplified description of a physical system that lends itself to anal-
ysis or simulation.

abstraction: The process of building a model by making decisions about what
factors to simplify or ignore.

validation: Checking whether a model is adequate for its purpose.

existential quantification: A logical condition that expresses the idea that
“there exists” an element of a set with a certain property.

universal quantification: A logical condition that expresses the idea that all
elements of a set have a certain property.

logical vector: A vector, usually the result of applying a logical operator to a
vector, that contains logical values 1 and 0.



Chapter 8

Ordinary Differential

Equations

8.1 Differential equations

A differential equation (DE) is an equation that describes the derivatives of
an unknown function. “Solving a DE” means finding a function whose deriva-
tives satisfy the equation.

For example, when bacteria grow in particularly bacteria-friendly conditions, the
rate of growth at any point in time is proportional to the current population.
What we might like to know is the population as a function of time. Toward
that end, let’s define f to be a function that maps from time, t, to population y.
We don’t know what it is, but we can write a differential equation that describes
it:

df

dt
= af

where a is a constant that characterizes how quickly the population increases.

Notice that both sides of the equation are functions. To say that two functions
are equal is to say that their values are equal at all times. In other words:

∀t : df
dt

(t) = af(t)

This is an ordinary differential equation (ODE) because all the derivatives
involved are taken with respect to the same variable. If the equation related
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derivatives with respect to different variables (partial derivatives), it would be
a partial differential equation.

This equation is first order because it involves only first derivatives. If it
involved second derivatives, it would be second order, and so on.

This equation is linear because each term involves t, f or df/dt raised to the
first power; if any of the terms involved products or powers of t, f and df/dt it
would be nonlinear.

Linear, first order ODEs can be solved analytically; that is, we can express
the solution as a function of t. This particular ODE has an infinite number of
solutions, but they all have this form:

f(t) = beat

For any value of b, this function satisfies the ODE. If you don’t believe me, take
its derivative and check.

If we know the population of bacteria at a particular point in time, we can use
that additional information to determine which of the infinite solutions is the
(unique) one that describes a particular population over time.

For example, if we know that f(0) = 5 billion cells, then we can write

f(0) = 5 = bea0

and solve for b, which is 5. That determines what we wanted to know:

f(t) = 5eat

The extra bit of information that determines b is called the initial condition
(although it isn’t always specified at t = 0).

Unfortunately, most interesting physical systems are described by nonlinear
DEs, most of which can’t be solved analytically. The alternative is to solve
them numerically.

8.2 Euler’s method

The simplest numerical method for ODEs is Euler’s method. Here’s a test to
see if you are as smart as Euler. Let’s say that you arrive at time t and measure
the current population, y, and the rate of change, r. What do you think the
population will be after some period of time ∆t has elapsed?
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If you said y + r∆t, congratulations! You just invented Euler’s method (but
you’re still not as smart as Euler).

This estimate is based on the assumption that r is constant, but in general it’s
not, so we only expect the estimate to be good if r changes slowly and ∆t is
small.

But let’s assume (for now) that the ODE we are interested in can be written so
that

df

dt
(t) = g(t, y)

where g is some function that maps (t, y) onto r; that is, given the time and
current population, it computes the rate of change. Then we can advance from
one point in time to the next using these equations:

Tn+1 = Tn +∆t (8.1)

Fn+1 = Fn + g(t, y) ∆t (8.2)

Here {Ti} is a sequence of times where we estimate the value of f , and {Fi}
is the sequence of estimates. For each index i, Fi is an estimate of f(Ti). The
interval ∆t is called the time step.

Assuming that we start at t = 0 and we have an initial condition f(0) = y0
(where y0 denotes a particular, known value), we set T1 = 0 and F1 = y0, and
then use Equations 8.1 and 8.2 to compute values of Ti and Fi until Ti gets to
the value of t we are interested in.

If the rate doesn’t change too fast and the time step isn’t too big, Euler’s method
is accurate enough for most purposes. One way to check is to run it once with
time step ∆t and then run it again with time step ∆t/2. If the results are the
same, they are probably accurate; otherwise, cut the time step again.

Euler’s method is first order, which means that each time you cut the time
step in half, you expect the estimation error to drop by half. With a second-
order method, you expect the error to drop by a factor of 4; third-order drops
by 8, etc. The price of higher order methods is that they have to evaluate g
more times per time step.

8.3 Another note on notation

There’s a lot of math notation in this chapter so I want to pause to review what
we have so far. Here are the variables, their meanings, and their types:
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Name Meaning Type

t time scalar variable
∆t time step scalar constant
y population scalar variable
r rate of change scalar variable
f The unknown function specified, function t → y

implicitly, by an ODE.
df/dt The first time derivative of f function t → r
g A “rate function,” derived from

the ODE, that computes rate of function t, y → r
change for any t, y.

T a sequence of times, t, where sequence
we estimate f(t)

F a sequence of estimates for f(t) sequence

So f is a function that computes the population as a function of time, f(t) is
the function evaluated at a particular time, and if we assign f(t) to a variable,
we usually call that variable y.

Similarly, g is a “rate function” that computes the rate of change as a function
of time and population. If we assign g(t, y) to a variable, we call it r.

df/dt is the first derivative of f , and it maps from t to a rate. If we assign
df/dt(t) to a variable, we call it r.

It is easy to get df/dt confused with g, but notice that they are not even the same
type. g is more general: it can compute the rate of change for any (hypothetical)
population at any time; df/dt is more specific: it is the actual rate of change at
time t, given that the population is f(t).

8.4 ode45

A limitation of Euler’s method is that the time step is constant from one iter-
ation to the next. But some parts of the solution are harder to estimate than
others; if the time step is small enough to get the hard parts right, it is doing
more work than necessary on the easy parts. The ideal solution is to adjust
the time step as you go along. Methods that do that are called adaptive,
and one of the best adaptive methods is the Dormand-Prince pair of Runge-
Kutta formulas. You don’t have to know what that means, because the nice
people at Mathworks have implemented it in a function called ode45. The ode
stands for “ordinary differential equation [solver];” the 45 indicates that it uses
a combination of 4th and 5th order formulas.

In order to use ode45, you have to write a MATLAB function that evaluates g
as a function of t and y.
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As an example, suppose that the rate of population growth for rats depends on
the current population and the availability of food, which varies over the course
of the year. The governing equation might be something like

df

dt
(t) = af(t) [1 + sin(ωt)]

where t is time in days and f(t) is the population at time t.

a and ω are parameters. A parameter is a value that quantifies a physical
aspect of the scenario being modeled. For example, in Exercise 6.2 we used
parameters rho and r to quantify the density and radius of a duck. Parameters
are often constants, but in some models they vary in time.

In this example, a characterizes the reproductive rate, and ω is the frequency
of a periodic function that describes the effect of varying food supply on repro-
duction.

This equation specifies a relationship between a function and its derivative. In
order to estimate values of f numerically, we have to transform it into a rate
function.

The first step is to introduce a variable, y, as another name for f(t)

df

dt
(t) = ay [1 + sin(ωt)]

This equation means that if we are given t and y, we can compute df/dt(t),
which is the rate of change of f . The next step is to express that computation
as a function called g:

g(t, y) = ay [1 + sin(ωt)]

Writing the function this way is useful because we can use it with Euler’s method
or ode45 to estimate values of f . All we have to do is write a MATLAB function
that evaluates g. Here’s what that looks like using the values a = 0.01 and
ω = 2π/365 (one cycle per year):

function res = rats(t, y)

a = 0.01;

omega = 2 * pi / 365;

res = a * y * (1 + sin(omega * t));

end

You can test this function from the Command Window by calling it with dif-
ferent values of t and y; the result is the rate of change (in units of rats per
day):
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>> r = rats(0, 2)

r = 0.0200

So if there are two rats on January 1, we expect them to reproduce at a rate
that would produce 2 more rats per hundred days. But if we come back in April,
the rate has almost doubled:

>> r = rats(120, 2)

r = 0.0376

Since the rate is constantly changing, it is not easy to predict the future rat
population, but that is exactly what ode45 does. Here’s how you would use it:

>> ode45(@rats, [0, 365], 2)

The first argument is a handle for the function that computes g. The second
argument is the interval we are interested in, one year. The third argument is
the initial population, f(0) = 2.

When you call ode45 without assigning the result to a variable, MATLAB dis-
plays the result in a figure:
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The x-axis shows time from 0 to 365 days; the y-axis shows the rat population,
which starts at 2 and grows to almost 80. The rate of growth is slow in the
winter and summer, and faster in the spring and fall, but it also accelerates as
the population grows.

8.5 Multiple output variables

ode45 is one of many MATLAB functions that return more than one output
variable. The syntax for calling it and saving the results is

>> [T, Y] = ode45(@rats, [0, 365], 2);
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The first return value is assigned to T; the second is assigned to Y. Each element
of T is a time, t, where ode45 estimated the population; each element of Y is an
estimate of f(t).

If you assign the output values to variables, ode45 doesn’t draw the figure; you
have to do it yourself:

>> plot(T, Y, 'bo-')

If you plot the elements of T, you’ll see that the space between the points is not
quite even. They are closer together at the beginning of the interval and farther
apart at the end.

To see the population at the end of the year, you can display the last element
from each vector:

>> [T(end), Y(end)]

ans = 365.0000 76.9530

end is a special word in MATLAB; when it appears as an index, it means “the
index of the last element.” You can use it in an expression, so Y(end-1) is the
second-to-last element of Y.

How much does the final population change if you double the initial population?
How much does it change if you double the interval to two years? How much
does it change if you double the value of a?

8.6 Analytic or numerical?

When you solve an ODE analytically, the result is a function, f , that allows
you to compute the population, f(t), for any value of t. When you solve an
ODE numerically, you get two vectors. You can think of these vectors as a
discrete approximation of the continuous function f : “discrete” because it is
only defined for certain values of t, and “approximate” because each value Fi is
only an estimate of the true value f(t).

So those are the limitations of numerical solutions. The primary advantage is
that you can compute numerical solutions to ODEs that don’t have analytic
solutions, which is the vast majority of nonlinear ODEs.

If you are curious to know more about how ode45 works, you can modify rats

to display the points, (t, y), where ode45 evaluates g. Here is a simple version:

function res = rats(t, y)

plot(t, y, 'bo')

a = 0.01;

omega = 2 * pi / 365;

res = a * y * (1 + sin(omega * t));

end
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Each time rats is called, it plots one data point; in order to see all of the data
points, you have to use hold on.

>> clf; hold on

>> [T, Y] = ode45(@rats, [0, 10], 2);

This figure shows part of the output, zoomed in on the range from Day 100 to
170:
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The circles show the points where ode45 called rats. The lines through the
circles show the slope (rate of change) calculated at each point. The rectangles
show the locations of the estimates (Ti, Fi). Notice that ode45 typically evalu-
ates g several times for each estimate. This allows it to improve the estimates,
for one thing, but also to detect places where the errors are increasing so it can
decrease the time step (or the other way around).

8.7 What can go wrong?

Don’t forget the @ on the function handle. If you leave it out, MATLAB treats
the first argument as a function call, and calls rats without providing argu-
ments.

>> ode45(rats, [0,365], 2)

??? Input argument "y" is undefined.

Error in ==> rats at 4

res = a * y * (1 + sin(omega * t));

Again, the error message is confusing, because it looks like the problem is in
rats. You’ve been warned!

Also, remember that the function you write will be called by ode45, which means
it has to have the signature ode45 expects: it should take two input variables,
t and y, in that order, and return one output variable, r.

If you are working with a rate function like this:
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g(t, y) = ay

You might be tempted to write this:

function res = rate_func(y) % WRONG

a = 0.1

res = a * y

end

But that would be wrong. So very wrong. Why? Because when ode45 calls
rate func, it provides two arguments. If you only take one input variable, you’ll
get an error. So you have to write a function that takes t as an input variable,
even if you don’t use it.

function res = rate_func(t, y) % RIGHT

a = 0.1

res = a * y

end

Another common error is to write a function that doesn’t make an assignment
to the output variable. If you write something like this:

function res = rats(t, y)

a = 0.01;

omega = 2 * pi / 365;

r = a * y * (1 + sin(omega * t)) % WRONG

end

And then call it from ode45, you get

>> ode45(@rats, [0,365], 2)

??? Output argument "res" (and maybe others) not assigned during

call to "/home/downey/rats.m (rats)".

Error in ==> rats at 2

a = 0.01;

Error in ==> funfun/private/odearguments at 110

f0 = feval(ode,t0,y0,args{:}); % ODE15I sets args{1} to yp0.

Error in ==> ode45 at 173

[neq, tspan, ntspan, next, t0, tfinal, tdir, y0, f0, odeArgs,

odeFcn, ...

This might be a scary message, but if you read the first line and ignore the rest,
you’ll get the idea.

Yet another mistake that people make with ode45 is leaving out the brackets on
the second argument. In that case, MATLAB thinks there are four arguments,
and you get
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>> ode45(@rats, 0, 365, 2)

??? Error using ==> funfun/private/odearguments

When the first argument to ode45 is a function handle, the

tspan argument must have at least two elements.

Error in ==> ode45 at 173

[neq, tspan, ntspan, next, t0, tfinal, tdir, y0, f0, odeArgs,

odeFcn, ...

Again, if you read the first line, you should be able to figure out the problem
(tspan stands for “time span”, which we have been calling the interval).

8.8 Stiffness

There is yet another problem you might encounter, but if it makes you feel
better, it might not be your fault: the problem you are trying to solve might be
stiff*.

I won’t give a technical explanation of stiffness here, except to say that for some
problems (over some intervals with some initial conditions) the time step needed
to control the error is very small, which means that the computation takes a
long time. Here’s one example:

df

dt
= f2 − f3

If you solve this ODE with the initial condition f(0) = δ over the interval from
0 to 2/δ, with δ = 0.01, you should see something like this:
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After the transition from 0 to 1, the time step is very small and the computation
goes slowly. For smaller values of δ, the situation is even worse.

*The following discussion is based partly on an article from Mathworks available at http:
//www.mathworks.com/company/newsletters/news_notes/clevescorner/may03_cleve.html
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In this case, the problem is easy to fix: instead of ode45 you can use ode23s,
an ODE solver that tends to perform well on stiff problems (that’s what the “s”
stands for).

In general, if you find that ode45 is taking a long time, you might want to try
one of the stiff solvers. It won’t always solve the problem, but if the problem is
stiffness, the improvement can be striking.

Exercise 8.1 Write a rate function for this ODE and use ode45 to solve it
with the given initial condition and interval. Start with δ = 0.1 and decrease it
by multiples of 10. If you get tired of waiting for a computation to complete,
you can press the Stop button in the Figure window or press Control-C in the
Command Window.

Now replace ode45 with ode23s and try again!

8.9 Glossary

differential equation (DE): An equation that relates the derivatives of an
unknown function.

ordinary DE: A DE in which all derivatives are taken with respect to the
same variable.

partial DE: A DE that includes derivatives with respect to more than one
variable

first order (ODE): A DE that includes only first derivatives.

linear: A DE that includes no products or powers of the function and its deriva-
tives.

time step: The interval in time between successive estimates in the numerical
solution of a DE.

first order (numerical method): A method whose error is expected to halve
when the time step is halved.

adaptive: A method that adjusts the time step to control error.

stiffness: A characteristic of some ODEs that makes some ODE solvers run
slowly (or generate bad estimates). Some ODE solvers, like ode23s, are
designed to work on stiff problems.

parameter: A value that appears in a model to quantify some physical aspect
of the scenario being modeled.
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8.10 Exercises

Exercise 8.2 Suppose that you are given an 8 ounce cup of coffee at 90 ◦C and
a 1 ounce container of cream at room temperature, which is 20 ◦C. You have
learned from bitter experience that the hottest coffee you can drink comfortably
is 60 ◦C.

Assuming that you take cream in your coffee, and that you would like to start
drinking as soon as possible, are you better off adding the cream immediately or
waiting? And if you should wait, then how long?

To answer this question, you have to model the cooling process of a hot liquid in
air. Hot coffee transfers heat to the environment by conduction, radiation, and
evaporative cooling. Quantifying these effects individually would be challenging
and unnecessary to answer the question as posed.

As a simplification, we can use Newton’s Law of Cooling�:

df

dt
= −r(f − e)

where f is the temperature of the coffee as a function of time and df/dt is its
time derivative; e is the temperature of the environment, which is a constant
in this case, and r is a parameter (also constant) that characterizes the rate of
heat transfer.

It would be easy to estimate r for a given coffee cup by making a few measure-
ments over time. Let’s assume that that has been done and r has been found to
be 0.001 in units of inverse seconds, 1/s.

� Using mathematical notation, write the rate function, g, as a function of
y, where y is the temperature of the coffee at a particular point in time.

� Create an M-file named coffee and write a function called coffee that
takes no input variables and returns no output value. Put a simple state-
ment like x=5 in the body of the function and invoke coffee() from the
Command Window.

� Add a function called rate func that takes t and y and computes g(t, y).
Notice that in this case g does not actually depend on t; nevertheless, your
function has to take t as the first input argument in order to work with
ode45.

Test your function by adding a line like rate func(0,90) to coffee, the
call coffee from the Command Window.

�http://en.wikipedia.org/wiki/Heat_conduction
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� Once you get rate func(0,90) working, modify coffee to use ode45 to
compute the temperature of the coffee (ignoring the cream) for 60 minutes.
Confirm that the coffee cools quickly at first, then more slowly, and reaches
room temperature (approximately) after about an hour.

� Write a function called mix func that computes the final temperature of a
mixture of two liquids. It should take the volumes and temperatures of the
liquids as parameters.

In general, the final temperature of a mixture depends on the specific heat
of the two substances�. But if we make the simplifying assumption that
coffee and cream have the same density and specific heat, then the final
temperature is (v1y1 + v2y2)/(v1 + v2), where v1 and v2 are the volumes
of the liquids, and y1 and y2 are their temperatures.

Add code to coffee to test mix func.

� Use mix func and ode45 to compute the time until the coffee is drinkable
if you add the cream immediately.

� Modify coffee so it takes an input variable t that determines how many
seconds the coffee is allowed to cool before adding the cream, and returns
the temperature of the coffee after mixing.

� Use fzero to find the time t that causes the temperature of the coffee after
mixing to be 60 ◦C.

� What do these results tell you about the answer to the original question?
Is the answer what you expected? What simplifying assumptions does this
answer depend on? Which of them do you think has the biggest effect? Do
you think it is big enough to affect the outcome? Overall, how confident
are you that this model can give a definitive answer to this question? What
might you do to improve it?

�http://en.wikipedia.org/wiki/Heat_capacity
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Chapter 9

Systems of ODEs

9.1 Matrices

A matrix is a two-dimensional version of a vector. Like a vector, it contains
elements that are identified by indices. The difference is that the elements are
arranged in rows and columns, so it takes two indices to identify an element.

One of many ways to create a matrix is the magic function, which returns a
“magic” matrix with the given size:

>> M = magic(3)

M = 8 1 6

3 5 7

4 9 2

If you don’t know the size of a matrix, you can use whos to display it:

>> whos

Name Size Bytes Class

M 3x3 72 double array

Or the size function, which returns a vector:

>> V = size(M)

V = 3 3

The first element is the number of rows, the second is the number of columns.

To read an element of a matrix, you specify the row and column numbers:

>> M(1,2)

ans = 1
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>> M(2,1)

ans = 3

When you are working with matrices, it takes some effort to remember which
index comes first, row or column. I find it useful to repeat “row, column”
to myself, like a mantra. You might also find it helpful to remember “down,
across,” or the abbreviation RC.

Another way to create a matrix is to enclose the elements in brackets, with
semi-colons between rows:

>> D = [1,2,3 ; 4,5,6]

D = 1 2 3

4 5 6

>> size(D)

ans = 2 3

9.2 Row and column vectors

Although it is useful to think in terms of scalars, vectors and matrices, from
MATLAB’s point of view, everything is a matrix. A scalar is just a matrix that
happens to have one row and one column:

>> x = 5;

>> size(x)

ans = 1 1

And a vector is a matrix with only one row:

>> R = 1:5;

>> size(R)

ans = 1 5

Well, some vectors, anyway. Actually, there are two kind of vectors. The ones
we have seen so far are called row vectors, because the elements are arranged
in a row; the other kind are column vectors, where the elements are in a single
column.

One way to create a column vector is to create a matrix with only one element
per row:

>> C = [1;2;3]
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C =

1

2

3

>> size(C)

ans = 3 1

The difference between row and column vectors is important in linear algebra,
but for most basic vector operations, it doesn’t matter. When you index the
elements of a vector, you don’t have to know what kind it is:

>> R(2)

ans = 2

>> C(2)

ans = 2

9.3 The transpose operator

The transpose operator, which looks remarkably like an apostrophe, computes
the transpose of a matrix, which is a new matrix that has all of the elements
of the original, but with each row transformed into a column (or you can think
of it the other way around).

In this example:

>> D = [1,2,3 ; 4,5,6]

D = 1 2 3

4 5 6

D has two rows, so its transpose has two columns:

>> Dt = D'

Dt = 1 4

2 5

3 6

Exercise 9.1 What effect does the transpose operator have on row vectors,
column vectors, and scalars?
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9.4 Lotka-Voltera

The Lotka-Voltera model describes the interactions between two species in an
ecosystem, a predator and its prey. A common example is rabbits and foxes.

The model is governed by the following system of differential equations:

Rt = aR− bRF

Ft = ebRF − cF

where

� R is the population of rabbits,

� F is the population of foxes,

� a is the natural growth rate of rabbits in the absence of predation,

� c is the natural death rate of foxes in the absence of prey,

� b is the death rate of rabbits per interaction with a fox,

� e is the efficiency of turning eaten rabbits into foxes.

At first glance you might think you could solve these equations by calling ode45

once to solve for R as a function of time and once to solve for F . The problem is
that each equation involves both variables, which is what makes this a system
of equations and not just a list of unrelated equations. To solve a system, you
have to solve the equations simultaneously.

Fortunately, ode45 can handle systems of equations. The difference is that the
initial condition is a vector that contains initial values R(0) and F (0), and the
output is a matrix that contains one column for R and one for F .

And here’s what the rate function looks like with the parameters a = 0.1,
b = 0.01, c = 0.1 and e = 0.2:

function res = lotka(t, V)

% unpack the elements of V

r = V(1);

f = V(2);

% set the parameters

a = 0.1;

b = 0.01;

c = 0.1;

e = 0.2;
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% compute the derivatives

drdt = a*r - b*r*f;

dfdt = e*b*r*f - c*f;

% pack the derivatives into a vector

res = [drdt; dfdt];

end

As usual, the first input variable is time. The second input variable is a vector
with two elements, R(t) and F (t). I gave it a capital letter to remind me that it
is a vector. The body of the function includes four paragraphs, each explained
by a comment.

The first paragraph unpacks the vector by copying the elements into scalar
variables. This isn’t necessary, but giving names to these values helps me re-
member what’s what. It also makes the third paragraph, where we compute the
derivatives, resemble the mathematical equations we were given, which helps
prevent errors.

The second paragraph sets the parameters that describe the reproductive rates
of rabbits and foxes, and the characteristics of their interactions. If we were
studying a real system, these values would come from observations of real ani-
mals, but for this example I chose values that yield interesting results.

The last paragraph packs the computed derivatives back into a vector. When
ode45 calls this function, it provides a vector as input and expects to get a
vector as output.

Sharp-eyed readers will notice something different about this line:

res = [drdt; dfdt];

The semi-colon between the elements of the vector is not an error. It is necessary
in this case because ode45 requires the result of this function to be a column
vector.

Now we can run ode45 like this:

ode45(@lotka, [0, 365], [100, 10])

As always, the first argument is a function handle, the second is the time interval,
and the third is the initial condition. The initial condition is a vector: the first
element is the number of rabbits at t = 0, the second element is the number of
foxes.

The order of these elements (rabbits and foxes) is up to you, but you have to be
consistent. That is, the initial conditions you provide when you call ode45 have
to be the same as the order, inside lotka, where you unpack the input vector
and repack the output vector. MATLAB doesn’t know what these values mean;
it is up to you as the programmer to keep track.

But if you get the order right, you should see something like this:
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The x-axis is time in days; the y-axis is population. The top curve shows the
population of rabbits; the bottom curve shows foxes. This result is one of several
patterns this system can fall into, depending on the starting conditions and the
parameters. As an exercise, try experimenting with different values.

9.5 What can go wrong?

The output vector from the rate function has to be a column vector; otherwise
you get

??? Error using ==> funfun/private/odearguments

LOTKA must return a column vector.

Error in ==> ode45 at 173

[neq, tspan, ntspan, next, t0, tfinal, tdir, y0, f0, odeArgs,

odeFcn, ...

Which is pretty good as error messages go. It’s not clear why it needs to be a
column vector, but that’s not our problem.

Another possible error is reversing the order of the elements in the initial con-
ditions, or the vectors inside lotka. Again, MATLAB doesn’t know what the
elements are supposed to mean, so it can’t catch errors like this; it will just
produce incorrect results.

9.6 Output matrices

As we saw before, if you call ode45 without assigning the results to variables, it
plots the results. If you assign the results to variables, it suppresses the figure.
Here’s what that looks like:

>> [T, M] = ode45(@lotka, [0, 365], [100, 10]);
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You can think of the left side of this assignment as a vector of variables.

As in previous examples, T is a vector of time values where ode45 made esti-
mates. But unlike previous examples, the second output variable is a matrix
containing one column for each variable (in this case, R and F ) and one row for
each time value.

>> size(M)

ans = 185 2

This structure—one column per variable—is a common way to use matrices.
plot understands this structure, so if you do this:

>> plot(T, M)

MATLAB understands that it should plot each column from M versus T.

You can copy the columns of M into other variables like this:

>> R = M(:, 1);

>> F = M(:, 2);

In this context, the colon represents the range from 1 to end, so M(:, 1) means
“all the rows, column 1” and M(:, 2) means “all the rows, column 2.”

>> size(R)

ans = 185 1

>> size(F)

ans = 185 1

So R and F are column vectors.

If you plot these vectors against each other, like this

>> plot(R, F)

You get a phase plot that looks like this:
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Each point on this plot represents a certain number of rabbits (on the x axis)
and a certain number of foxes (on the y axis).

Since these are the only two variables in the system, each point in this plane
describes the complete state of the system.

Over time, the state moves around the plane; this figure shows the path traced
by the state during the time interval. This path is called a trajectory.

Since the behavior of this system is periodic, the resulting trajectory is a loop.

If there are 3 variables in the system, we need 3 dimensions to show the state
of the system, so the trajectory is a 3-D curve. You can use plot3 to trace
trajectories in 3 dimensions, but for 4 or more variables, you are on your own.

9.7 Glossary

row vector: In MATLAB, a matrix that has only one row.

column vector: A matrix that has only one column.

transpose: An operation that transforms the rows of a matrix into columns
(or the other way around, if you prefer).

system of equations: A set of equations written in terms of a set of variables
such that the equations are intertangled.

paragraph: A chunk of code that makes up part of a function, usually with
an explanatory comment.

unpack: To copy the elements of a vector into a set of variables.

pack: To copy values from a set of variables into a vector.

state: If a system can be described by a set of variables, the values of those
variables are called the state of the system.

phase plot: A plot that shows the state of a system as point in the space of
possible states.

trajectory: A path in a phase plot that shows how the state of a system
changes over time.

9.8 Exercises

Exercise 9.2 Based on the examples we have seen so far, you would think that
all ODEs describe population as a function of time, but that’s not true.
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According to the Wikipedia*, “The Lorenz attractor, introduced by Edward
Lorenz in 1963, is a non-linear three-dimensional deterministic dynamical sys-
tem derived from the simplified equations of convection rolls arising in the dy-
namical equations of the atmosphere. For a certain set of parameters the system
exhibits chaotic behavior and displays what is today called a strange attractor...”

The system is described by this system of differential equations:

xt = σ(y − x) (9.1)

yt = x(r − z)− y (9.2)

zt = xy − bz (9.3)

Common values for the parameters are σ = 10, b = 8/3 and r = 28.

Use ode45 to estimate a solution to this system of equations.

1. The first step is to write a function named lorenz that takes t and V as
input variables, where the components of V are understood to be the current
values of x, y and z. It should compute the corresponding derivatives and
return them in a single column vector.

2. The next step is to test your function by calling it from the command line
with values like t = 0, x = 1, y = 2 and z = 3? Once you get your function
working, you should make it a silent function before calling ode45.

3. Assuming that Step 2 works, you can use ode45 to estimate the solution
for the time interval t0 = 0, te = 30 with the initial condition x = 1, y = 2
and z = 3.

4. Use plot3 to plot the trajectory of x, y and z.

*http://en.wikipedia.org/wiki/Lorenz_attractor
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Chapter 10

Second-order systems

10.1 Nested functions

In the Section 7.1, we saw an example of an M-file with more than one function:

function res = duck()

error = error_func(10)

end

function res = error_func(h)

rho = 0.3; % density in g / cm^3

r = 10; % radius in cm

res = ...

end

Because the first function ends before the second begins, they are at the same
level of indentation. Functions like these are parallel, as opposed to nested.
A nested function is defined inside another, like this:

function res = duck()

error = error_func(10)

function res = error_func(h)

rho = 0.3; % density in g / cm^3

r = 10; % radius in cm

res = ...

end

end

The top-level function, duck, is the outer function and error func is an inner
function.

Nesting functions is useful because the variables of the outer function can be
accessed from the inner function. This is not possible with parallel functions.
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In this example, using a nested function makes it possible to move the parame-
ters rho and r out of error func.

function res = duck(rho)

r = 10;

error = error_func(10)

function res = error_func(h)

res = ...

end

end

Both rho and r can be accessed from error func. By making rho an input
argument, we made it easier to test duck with different parameter values.

10.2 Newtonian motion

Newton’s second law of motion is often written like this

F = ma

where F is the net force acting on a object, m is the mass of the object, and
a is the resulting acceleration of the object. In a simple case where the object
is moving along a straight line, F and a are scalars, but in general they are
vectors.

Even more generally, if F and a vary in time, then they can be thought of as
functions that return vectors; that is, F is a function and the result of evaluating
F (t) is a vector that describes the net force at time t. So a more explicit way
to write Newton’s law is

∀t : ~F (t) = m~a(t)

The arrangement of this equation suggests that if you know m and a you can
compute force, which is true, but in most physical simulations it is the other
way around. Based on a physical model, you know F and m, and compute a.

So if you know acceleration, a, as a function of time, how do you find the position
of the object, p? Well, we know that acceleration is the second derivative of
position, so we can write a differential equation

ptt = a

Where a and p are functions of time that return vectors, and ptt is the second
time derivative of p.



10.3 Freefall 115

Because this equation includes a second derivative, it is a second-order ODE.
ode45 can’t solve this equation in this form, but by introducing a new variable,
v, for velocity, we can rewrite it as a system of first-order ODEs.

pt = v

vt = a

The first equation says that the first derivative of p is v; the second says that
the derivative of v is a.

10.3 Freefall

Let’s start with a simple example, an object in freefall in a vacuum (where
there’s no air resistance). Near the surface of the earth, the acceleration of
gravity is g = −9.8 m/s2, where the minus sign indicates that gravity pulls
down.

If the object falls straight down (in the same direction as gravity), we can de-
scribe its position with a scalar value, altitude. So this will be a one-dimensional
problem, at least for now.

Here is a rate function we can use with ode45 to solve this problem:

function res = freefall(t, X)

p = X(1); % the first element is position

v = X(2); % the second element is velocity

dpdt = v;

dvdt = acceleration(t, p, v);

res = [dpdt; dvdt]; % pack the results in a column vector

end

function res = acceleration(t, p, v)

g = -9.8; % acceleration of gravity in m/s^2

res = g;

end

The first function is the rate function. It gets t and X as input variables, where
the elements of X are understood to be position and velocity. The return value
from freefall is a (column) vector that contains the derivatives of position
and velocity, which are velocity and acceleration, respectively.

Computing pt is easy because we are given velocity as an element of X. The only
thing we have to compute is acceleration, which is what the second function
does.
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acceleration computes acceleration as a function of time, position and velocity.
In this example, the net acceleration is a constant, so we don’t really have to
include all this information yet, but we will soon.

Here’s how to run ode45 with this rate function:

>> ode45(@freefall, [0, 30], [4000, 0])

As always, the first argument is the function handle, the second is the time
interval (30 seconds) and the third is the initial condition: in this case, the
initial altitude is 4000 meters and the initial velocity is 0. So you can think of
the “object” a a skydiver jumping out of an airplane at about 12,000 feet.

Here’s what the result looks like:
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The bottom line shows velocity starting at zero and dropping linearly. The
top line shows position starting at 4000 m and dropping parabolically (but
remember that this parabola is a function of time, not a ballistic trajectory).

Notice that ode45 doesn’t know where the ground is, so the skydiver keeps going
through zero into negative altitude. We will address this issue later.

10.4 Air resistance

To make this simulation more realistic, we can add air resistance. For large
objects moving quickly through air, the force due to air resistance, called “drag,”
is proportional to v2:

Fdrag = cv2

Where c is a drag constant that depends on the density of air, the cross-sectional
area of the object and the surface properties of the object. For purposes of this
problem, let’s say that c = 0.2.
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To convert from force to acceleration, we have to know mass, so let’s say that
the skydiver (with equipment) weighs 75 kg.

Here’s a version of acceleration that takes air resistance into account (you
don’t have to make any changes in freefall:

function res = acceleration(t, p, v)

a_grav = -9.8; % acceleration of gravity in m/s^2

c = 0.2; % drag constant

m = 75; % mass in kg

f_drag = c * v^2; % drag force in N

a_drag = f_drag / m; % drag acceleration in m/s^2

res = a_grav + a_drag; % total acceleration

end

The sign of the drag force (and acceleration) is positive as long as the object is
falling, the direction of the drag force is up. The net acceleration is the sum of
gravity and drag. Be careful when you are working with forces and accelerations;
make sure you only add forces to forces or accelerations to accelerations. In my
code, I use comments to remind myself what units the values are in. That helps
me avoid nonsense like adding forces to accelerations.

Here’s what the result looks like with air resistance:
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Big difference! With air resistance, velocity increases until the drag acceleration
equals g; after that, velocity is a constant, known as “terminal velocity,” and
position decreases linearly (and much more slowly than it would in a vacuum).
To examine the results more closely, we can assign them to variables

>> [T, M] = ode45(@freefall, [0, 30], [4000, 0]);

And then read the terminal position and velocity:

>> M(end,1)

ans = 2.4412e+03 % altitude in meters
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>> M(end,2)

ans = -60.6143 % velocity in m/s

Exercise 10.1 Increase the mass of the skydiver, and confirm that terminal
velocity increases. This relationship is the source of the intuition that heavy
objects fall faster; in air, they do!

10.5 Parachute!

In the previous section, we saw that the terminal velocity of a 75kg skydiver is
about 60 m/s, which is about 130 mph. If you hit the ground at that speed,
you would almost certainly be killed. That’s where parachutes come in.

Exercise 10.2 Modify acceleration so that after 30 seconds of free-fall the
skydiver deploys a parachute, which (almost) instantly increases the drag con-
stant to 2.7.

What is the terminal velocity now? How long (after deployment) does it take to
reach the ground?

10.6 Two dimensions

So far we have used ode45 for a system of first-order equations and for a single
second-order equation. The next logical step is a system of second-order equa-
tions, and the next logical example is a projectile. A “projectile” is an object
propelled through space, usually toward, and often to the detriment of, a target.

If a projectile stays in a plane, we can think of the system as two-dimensional,
with x representing the horizontal distance traveled and y representing the
height or altitude. So now instead of a skydiver, think of a circus performer
being fired out of a cannon.

According to the Wikipedia*, the record distance for a human cannonball is
56.5 meters (almost 186 feet).

Here is a general framework for computing the trajectory of a projectile in two
dimensions using ode45:

function res = projectile(t, W)

P = W(1:2);

V = W(3:4);

dPdt = V;

*http://en.wikipedia.org/wiki/Human_cannonball
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dVdt = acceleration(t, P, V);

res = [dPdt; dVdt];

end

function res = acceleration(t, P, V)

g = -9.8; % acceleration of gravity in m/s^2

res = [0; g];

end

The second argument of the rate function is a vector, W, with four elements. The
first two are assigned to P, which represents position; the last two are assigned
to V, which represents velocity. P and V are vectors with elements for the x and
y components.

The result from acceleration is also a vector; ignoring air resistance (for now),
the acceleration in the x direction is 0; in the y direction it’s g. Other than that,
this code is similar to what we saw in Section 10.3.

If we launch the human projectile from an initial height of 3 meters, with ve-
locities 40 m/s and 30 m/s in the x and y directions, the ode45 call looks like
this:

ode45(@projectile, [0,10], [0, 3, 40, 30]);

And the result looks like this:
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You might have to think a little to figure out which line is which. It looks like
the flight time is about 6 seconds.

Exercise 10.3 Extract the x and y components of position, plot the trajectory
of the projectile, and estimate the distance traveled.

Exercise 10.4 Add air resistance to this simulation. In the skydiver scenario,
we estimated that the drag constant was 0.2, but that was based on the assump-
tion that the skydiver is falling flat. A human cannonball, flying head-first,
probably has a drag constant closer to 0.1. What initial velocity is needed to
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achieve the record flight distance of 65.6 meters? Hint: what is the optimal
launch angle?

10.7 What could go wrong?

What could go wrong? Well, vertcat for one. To explain what that means,
I’ll start with catenation, which is the operation of joining two matrices into
a larger matrix. “Vertical catenation” joins the matrices by stacking them on
top of each other; “horizontal catenation” lays them side by side.

Here’s an example of horizontal catenation with row vectors:

>> x = 1:3

x = 1 2 3

>> y = 4:5

y = 4 5

>> z = [x, y]

z = 1 2 3 4 5

Inside brackets, the comma operator performs horizontal catenation. The ver-
tical catenation operator is the semi-colon. Here is an example with matrices:

>> X = zeros(2,3)

X = 0 0 0

0 0 0

>> Y = ones(2,3)

Y = 1 1 1

1 1 1

>> Z = [X; Y]

Z = 0 0 0

0 0 0

1 1 1

1 1 1

These operations only work if the matrices are the same size along the dimension
where they are glued together. If not, you get:

>> a = 1:3
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a = 1 2 3

>> b = a'

b = 1

2

3

>> c = [a, b]

??? Error using ==> horzcat

All matrices on a row in the bracketed expression must have the

same number of rows.

>> c = [a; b]

??? Error using ==> vertcat

All rows in the bracketed expression must have the same

number of columns.

In this example, a is a row vector and b is a column vector, so they can’t be
catenated in either direction.

Reading the error messages, you probably guessed that horzcat is the function
that performs horizontal catenation, and likewise with vertcat and vertical
catenation.

These operations are relevant to projectile because of the last line, which
packs dPdt and dVdt into the output variable:

function res = projectile(t, W)

P = W(1:2);

V = W(3:4);

dPdt = V;

dVdt = acceleration(t, P, V);

res = [dPdt; dVdt];

end

As long as both dPdt and dVdt are column vectors, the semi-colon performs
vertical catenation, and the result is a column vector with four elements. But
if either of them is a row vector, that’s trouble.

ode45 expects the result from projectile to be a column vector, so if you are
working with ode45, it is probably a good idea to make everything a column
vector.

In general, if you run into problems with horzcat and vertcat, use size to
display the dimensions of the operands, and make sure you are clear on which
way your vectors go.
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10.8 Glossary

parallel functions: Two or more functions defined side-by-side, so that one
ends before the next begins.

nested function: A function defined inside another function.

outer function: A function that contains another function definition.

inner function: A function defined inside another function definition. The
inner function can access the variables of the outer function.

catenation: The operation of joining two matrices end-to-end to form a new
matrix.

10.9 Exercises

Exercise 10.5 The flight of a baseball is governed by three forces: gravity,
drag due to air resistance, and Magnus force due to spin. If we ignore wind and
Magnus force, the path of the baseball stays in a plane, so we can model it as a
projectile in two dimensions.

A simple model of the drag of a baseball is:

Fd = −1

2
ρ v2 A Cd V̂

where Fd is a vector that represents the force on the baseball due to drag, Cd

is the drag coefficient (0.3 is a reasonable choice), ρ is the density of air (1.3
kg/m3 at sea level), A is the cross sectional area of the baseball (0.0042 m2), v
is the magnitude of the velocity vector, and V̂ is a unit vector in the direction
of the velocity vector. The mass of the baseball is 0.145 kg.

For more information about drag, see http: // en. wikipedia. org/ wiki/

Drag_ ( physics) .

� Write a function that takes the initial velocity of the baseball and the
launch angle as input variables, uses ode45 to compute the trajectory,
and returns the range (horizontal distance in flight) as an output variable.

� Write a function that takes the initial velocity of the baseball as an input
variable, computes the launch angle that maximizes the range, and returns
the optimal angle and range as output variables. How does the optimal
angle vary with initial velocity?

� When the Red Sox won the World Series in 2007, they played the Colorado
Rockies at their home field in Denver, Colorado. Find an estimate of the
density of air in the Mile High City. What effect does this have on drag?
Make a prediction about what effect this will have on the optimal launch
angle, and then use your simulation to test your prediction.
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� The Green Monster in Fenway Park is about 12 m high and about 97 m
from home plate along the left field line. What is the minimum speed a
ball must leave the bat in order to clear the monster (assuming it goes off
at the optimal angle)? Do you think it is possible for a person to stand on
home plate and throw a ball over the Green Monster?

� The actual drag on a baseball is more complicated than what is captured by
our simple model. In particular, the drag coefficient varies with velocity.
You can get some of the details from The Physics of Baseball�; you also
might find information on the web. Either way, specify a more realistic
model of drag and modify your program to implement it. How big is the
effect on your computed ranges? How big is the effect on the optimal
angles?

�Robert K. Adair, Harper Paperbacks, 3rd Edition, 2002.
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Chapter 11

Optimization and

Interpolation

11.1 ODE Events

Normally when you call ode45 you have to specify a start time and an end
time. But in many cases, you don’t know ahead of time when the simulation
should end. Fortunately MATLAB provides a mechanism for dealing with this
problem. The bad news is that it is a little awkward. Here’s how it works:

1. Before calling ode45 you use odeset to create an object called options

that contains values that control how ode45 works:

options = odeset('Events', @events);

In this case, the name of the option is Events and the value is a function
handle. When ode45 runs, it will invoke events after each timestep.
You can call this function anything you want, but the name events is
conventional.

2. The function you provide has to take the same input variables as your
rate function. For example, here is an event function that would work
with projectile from Section 10.6

function [value,isterminal,direction] = events(t,X)

value = X(2); % Extract the current height.

isterminal = 1; % Stop the integration if height crosses zero.

direction = -1; % But only if the height is decreasing.

end
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events returns three output variables:

value determines when an event occurs. In this case value gets the second
element of X, which is understood to be the height of the projectile. An
“event” is a point in time when this value passes through 0.

direction determines whether an event occurs when value is increasing
(direction=1), decreasing (direction=-1, or both direction=0.

isterminal determines what happens when an event occurs. If
isterminal=1, the event is “terminal” and the simulation stops. If
isterminal=0, the simulation continues, but ode45 does some additional
work to make sure that the solution in the vicinity of the event is accurate,
and that one of the estimated values in the result is at the time of the
event.

3. When you call ode45, you pass options as a fourth argument:

ode45(@projectile, [0,10], [0, 3, 40, 30], options);

Exercise 11.1 How would you modify events to stop when the height of the
projectile falls through 3m?

11.2 Optimization

In Exercise 10.5, you were asked to find the optimal launch angle for a batted
ball. “Optimal” is a fancy way of saying “best;” what that means depends on
the problem. For the Green Monster Problem—finding the optimal angle for
hitting a home run in Fenway Park, the meaning of “optimal” is not obvious.

It is tempting to choose the angle that yields the longest range (distance from
home plate when it lands). But in this case we are trying to clear a 12m wall,
so maybe we want the angle that yields the longest range when the ball falls
through 12m.

Although either definition would be good enough for most purposes, neither is
quite right. In this case the “optimal” angle is the one that yields the greatest
height at the point where the ball reaches the wall, which is 97m from home
plate.

So the first step in any optimization problem is to define what “optimal” means.
The second step is to define a range of values where you want to search. In this
case the range of feasible values is between 0 degrees (parallel to the ground)
and 90 degrees (straight up). We expect the optimal angle to be near 45 degrees,
but we might not be sure how far from 45 degrees to look. To play it safe, we
could start with the widest feasible range.

The simplest way to search for an optimal value is to run the simulation with a
wide range of values and choose the one that yields the best result. This method
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is not very efficient, especially in a case like this where computing the distance
in flight is expensive.

A better algorithm is a Golden Section Search.

11.3 Golden section search

To present the Golden Section Search, I will start with a simplified version I’ll
call a Silver Section Search. The basic idea is similar to the methods for zero-
finding we saw in Section 6.5. In the case of zero-finding, we had a picture like
this:

x1, f(x1)

x2, f(x2)

We are given a function, f , that we can evaluate, and we want to find a root of
f ; that is, a value of x that makes f(x) = 0. If we can find a value, x1, that
makes f(x1) positive and another value, x2, that makes f(x2) negative, then
there has to be a root in between (as long as f is continuous). In this case we
say that x1 and x2 “bracket” the root.

The algorithm proceeds by choosing a third value, x3, between x1 and x2 and
then evaluating y = f(x3). If y is positive, we can form a new pair, (x3, x2),
that brackets the root. If y is negative then the pair (x1, x3) brackets the root.
Either way the size of the bracket gets smaller, so our estimate of the location
of the root gets better.

So that was root-finding. The Golden Section Search is similar, but we have to
start with three values, and the picture looks like this:

x1 x3x2
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This diagram shows that we have evaluated f in three places, x1, x2 and x3,
and found that x2 yields the highest value. If f is continuous, then there has
to be at least one local maximum between x1 and x3, so we would say that the
triple (x1, x2, x3) brackets a maximum.

The next step is to choose a fourth point, x4, and evaluate f(x4). There are
two possible outcomes, depending on whether f(x4) is greater than f(x2):

x1 x3x2 x4 x1 x3x2 x4

If f(x4) is less than than f(x2) (shown on the left), then the new triple
(x1, x2, x4) brackets the maximum. If f(x4) is greater than f(x2) (shown on
the right), then (x2, x4, x3) brackets the maximum. Either way the range gets
smaller and our estimate of the optimal value of x gets better.

This method works for almost any value of x4, but some choices are better than
others. In the example, I chose to bisect the bigger of the ranges (x1, x2) and
(x2, x3).

Here’s what that looks like in MATLAB:

function res = optimize(V)

x1 = V(1);

x2 = V(2);

x3 = V(3);

fx1 = height_func(x1);

fx2 = height_func(x2);

fx3 = height_func(x3);

for i=1:50

if x3-x2 > x2-x1

x4 = (x2+x3) / 2;

fx4 = height_func(x4);

if fx4 > fx2

x1 = x2; fx1 = fx2;

x2 = x4; fx2 = fx4;

else

x3 = x4; fx3 = fx4;

end
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else

x4 = (x1+x2) / 2;

fx4 = height_func(x4);

if fx4 > fx2

x3 = x2; fx3 = fx2;

x2 = x4; fx2 = fx4;

else

x1 = x4; fx1 = fx4;

end

end

if abs(x3-x1) < 1e-2

break

end

end

res = [x1 x2 x3];

end

The input variable is a vector that contains three values that bracket a max-
imum; in this case they are angles in degrees. optimize starts by evaluating
height func for each of the three values. We assume that height func returns
the quantity we want to optimize; for the Green Monster Problem it is the
height of the ball when it reaches the wall.

Each time through the for loop the function chooses a value of x4, evaluates
height func, and then updates the triplet x1, x2 and x3 according to the
results.

After the update, it computes the range of the bracket, x3-x1, and checks
whether it is small enough. If so, it breaks out of the loop and returns the
current triplet as a result. In the worst case the loop executes 50 times.

Exercise 11.2 I call this algorithm a Silver Section Search because it is
almost as good as a Golden Section Search. Read the Wikipedia page
about the Golden Section Search (http: // en. wikipedia. org/ wiki/ Golden_
section_ search ) and then modify this code to implement it.

Exercise 11.3 You can write functions that take function handles as input
variables, just as fzero and ode45 do. For example, handle func takes a func-
tion handle called func and calls it, passing pi as an argument.

function res = handle_func(func)

func(pi)

end

You can call handle func from the Command Window and pass different func-
tion handles as arguments:

>> handle_func(@sin)
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ans = 0

>> handle_func(@cos)

ans = -1

Modify optimize so that it takes a function handle as an input variable and
uses it as the function to be optimized.

Exercise 11.4 The MATLAB function fminsearch takes a function handle
and searches for a local minimum. Read the documentation for fminsearch and
use it to find the optimal launch angle of a baseball with a given velocity.

11.4 Discrete and continuous maps

When you solve an ODE analytically, the result is a function, which you can
think of as a continuous map. When you use an ODE solver, you get two vectors
(or a vector and a matrix), which you can think of as a discrete map.

For example, in Section 8.4, we used the following rate function to estimate the
population of rats as a function of time:

function res = rats(t, y)

a = 0.01;

omega = 2 * pi / 365;

res = a * y * (1 + sin(omega * t));

end

The result from ode45 is two vectors:

>> [T, Y] = ode45(@rats, [0, 365], 2);

T contains the time values where ode45 estimated the population; Y contains
the population estimates.

Now suppose we would like to know the population on the 180th day of the
year. We could search T for the value 180:

>> find(T==180)

ans = Empty matrix: 0-by-1

But there is no guarantee that any particular value appears in T. We can find
the index where T crosses 180:

>> I = find(T>180); I(1)

ans = 23
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I gets the indices of all elements of T greater than 180, so I(1) is the index of
the first one.

Then we find the corresponding value from Y:

>> [T(23), Y(23)]

ans = 184.3451 40.3742

That gives us a coarse estimate of the population on Day 180. If we wanted to
do a little better, we could also find the last value before Day 180:

>> [T(22), Y(22)]

ans = 175.2201 36.6973

So the population on Day 180 was between 36.6973 and 40.3742.

But where in this range is the best estimate? A simple option is to choose
whichever time value is closer to 180 and use the corresponding population
estimate. In the example, that’s not a great choice because the time value we
want is right in the middle.

11.5 Interpolation

A better option is to draw a straight line between the two points that bracket
Day 180 and use the line to estimate the value in between. This process is called
linear interpolation, and MATLAB provides a function named interp1 that
does it:

>> pop = interp1(T, Y, 180)

pop = 38.6233

The first two arguments specify a discrete map from the values in T to the values
in Y. The third argument is the time value where we want to interpolate. The
result is what we expected, about halfway between the values that bracket it.

interp1 can also take a fourth argument that specifies what kind of interpola-
tion you want. The default is ’linear’, which does linear interpolation. Other
choices include ’spline’ which uses a spline curve to fit two points on either
side, and ’cubic’, which uses piecewise cubic Hermite interpolation.

>> pop = interp1(T, Y, 180, 'spline')

pop = 38.6486

>> pop = interp1(T, Y, 180, 'cubic')

pop = 38.6491
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In this case we expect the spline and cubic interpolations to be better than linear,
because they use more of the data, and we know the function isn’t linear. But
we have no reason to expect the spline to be more accurate than the cubic, or
the other way around. Fortunately, they are not very different.

We can also use interp1 to project the rat population out beyond the values
in T:

>> [T(end), Y(end)]

ans = 365.0000 76.9530

>> pop = interp1(T, Y, 370, 'cubic')

pop = 80.9971

This process is called extrapolation. For time values near 365, extrapolation
may be reasonable, but as we go farther into the “future,” we expect them to
be less accurate. For example, here is the estimate we get by extrapolating for
a whole year:

>> pop = interp1(T, Y, 365*2, 'cubic')

pop = -4.8879e+03

And that’s wrong. So very wrong.

11.6 Interpolating the inverse function

We have used interp1 to find population as a function of time; by reversing
the roles of T and Y, we can also interpolate time as a function of population.
For example, we might want to know how long it takes the population to reach
20.

>> interp1(Y, T, 20)

ans = 133.4128

This use of interp1 might be confusing if you think of the arguments as x and
y. You might find it helpful to think of them as the range and domain of a map
(where the third argument is an element of the range).

The following plot shows f (Y plotted as a function of T) and the inverse of f
(T plotted as a function of Y).
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In this case we can use interp1 either way because f is a single-valued map-
ping, which means that for each value in the domain, there is only one value in
the range that maps to it.

If we reduce the food supply so that the rat population decreases during the
winter, we might see something like this:
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We can still use interp1 to map from T to Y:

>> interp1(T, Y, 260)

ans = 15.0309

So on Day 260, the population is about 15, but if we ask on what day the
population was 15, there are two possible answers, 172.44 and 260.44. If we try
to use interp1, we get the wrong answer:

>> interp1(Y, T, 15)

ans = 196.3833 % WRONG

On Day 196, the population is actually 16.8, so interp1 isn’t even close! The
problem is that T as a function of Y is a multivalued mapping; for some values
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in the range there are more than one values in the domain. This causes interp1
to fail. I can’t find any documentation for this limitation, so that’s pretty bad.

11.7 Field mice

As we’ve seen, one use of interpolation is to interpret the results of a numerical
computation; another is to fill in the gaps between discrete measurements.

For example*, suppose that the population of field mice is governed by this rate
equation:

g(t, y) = ay − b(t)y1.7

where t is time in months, y is population, a is a parameter that characterizes
population growth in the absence of limitations, and b is a function of time that
characterizes the effect of the food supply on the death rate.

Although b appears in the equation as a continuous function, we might not know
b(t) for all t. Instead, we might only have discrete measurements:

t b(t)

- ----

0 0.0070

1 0.0036

2 0.0011

3 0.0001

4 0.0004

5 0.0013

6 0.0028

7 0.0043

8 0.0056

If we use ode45 to solve the differential equation, then we don’t get to choose
the values of t where the rate function (and therefore b) gets evaluated. We
need to provide a function that can evaluate b everywhere:

function res = interpolate_b(t)

T = 0:8;

B = [70 36 11 1 4 13 28 43 56] * 1e-4;

res = interp1(T, B, t);

end

Abstractly, this function uses a discrete map to implement a continuous map.

*This example is adapted from Gerald and Wheatley, Applied Numerical Analysis, Fourth
Edition, Addison-Wesley, 1989.
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Exercise 11.5 Write a rate function that uses interpolate b to evaluate g
and then use ode45 to compute the population of field mice from t = 0 to t = 8
with an initial population of 100 and a = 0.9.

Then modify interpolate b to use spline interpolation and run ode45 again to
see how much effect the interpolation has on the results.

11.8 Glossary

interpolation: Estimating the value of a function using known values on either
side.

extrapolation: Estimating the value of a function using known values that
don’t bracket the desired value.

single-valued mapping: A mapping where each value in the range maps to a
single value in the domain.

multivalued mapping: A mapping where at least one value in the range maps
to more than one value in the domain.

11.9 Exercises

Exercise 11.6 A golf ball� hit with backspin generates lift, which might in-
crease the range, but the energy that goes into generating spin probably comes
at the cost of lower initial velocity. Write a simulation of the flight of a golf ball
and use it to find the launch angle and allocation of spin and initial velocity (for
a fixed energy budget) that maximizes the horizontal range of the ball in the air.

The lift of a spinning ball is due to the Magnus force�, which is perpendicular to
the axis of spin and the path of flight. The coefficient of lift is proportional to
the spin rate; for a ball spinning at 3000 rpm it is about 0.1. The coefficient of
drag of a golf ball is about 0.2 as long as the ball is moving faster than 20 m/s.

�See http://en.wikipedia.org/wiki/Golf_ball.
�See http://en.wikipedia.org/wiki/Magnus_effect.
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Chapter 12

Vectors as vectors

12.1 What’s a vector?

The word “vector” means different things to different people. In MATLAB, a
vector is a matrix that has either one row or one column. So far we have used
MATLAB vectors to represent

sequences: A sequence is a set of values identified by integer indices; it is
natural to store the elements of the sequence as elements of a MATLAB
vector.

state vectors: A state vector is a set of values that describes the state of a
physical system. When you call ode45, you give it in the initial conditions
in a state vector. Then when ode45 calls your rate function, it gives you
a state vector.

discrete maps: If you have two vectors with the same length, you can think of
them as a mapping from the elements of one vector to the corresponding
elements of the other. For example, in Section 8.5, the results from ode45

are vectors, T and Y, that represent a mapping from the time values in T

to the population values in Y.

In this chapter we will see another use of MATLAB vectors: representing spatial
vectors. A spatial vector is a value that represents a multidimensional physical
quantity like position, velocity, acceleration or force*.

These quantities cannot be described with a single number because they contain
multiple components. For example, in a 3-dimensional Cartesian coordinate
space, it takes three numbers to specify a position in space; they are usually
called x, y and z coordinates. As another example, in 2-dimensional polar

*See http://en.wikipedia.org/wiki/Vector_(spatial).
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coordinates, you can specify a velocity with two numbers, a magnitude and an
angle, often called r and θ.

It is convenient to represent spatial vectors using MATLAB vectors because
MATLAB knows how to perform most of the vector operations you need for
physical modeling. For example, suppose that you are given the velocity of a
baseball in the form of a MATLAB vector with two elements, vx and vy, which
are the components of velocity in the x and y directions.

>> V = [30, 40] % velocity in m/s

And suppose you are asked to compute the total acceleration of the ball due to
drag and gravity. In math notation, the force due to drag is

Fd = −1

2
ρ v2 A Cd V̂

where V is a spatial vector representing velocity, v is the magnitude of the
velocity (sometimes called “speed”), and V̂ is a unit vector in the direction of
the velocity vector. The other terms, ρ, A and Cd, are scalars.

The magnitude of a vector is the square root of the sum of the squares of the
elements. You could compute it with hypotenuse from Section 5.5, or you could
use the MATLAB function norm (norm is another name� for the magnitude of
a vector):

>> v = norm(V)

v = 50

V̂ is a unit vector, which means it should have norm 1, and it should point in
the same direction as V . The simplest way to compute it is to divide V by its
own norm.

>> Vhat = V / v

Vhat = 0.6 0.8

Then we can confirm that the norm of V̂ is 1:

>> norm(Vhat)

ans = 1

To compute Fd we just multiply the scalar terms by V̂ .

Fd = - 1/2 * C * rho * A * v^2 * Vhat

Similarly, we can compute acceleration by dividing the vector Fd by the scalar
m.

Ad = Fd / m

�Magnitude is also called “length” but I will avoid that term because it gets confused with
the length function, which returns the number of elements in a MATLAB vector.
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To represent the acceleration of gravity, we create a vector with two components:

Ag = [0; -9.8]

The x component of gravity is 0; the y component is −9.8m/s2.

Finally we compute total acceleration by adding vector quantities:

A = Ag + Ad;

One nice thing about this computation is that we didn’t have to think much
about the components of the vectors. By treating spatial vectors as basic quan-
tities, we can express complex computations concisely.

12.2 Dot and cross products

Multiplying a vector by a scalar is a straightforward operation; so is adding two
vectors. But multiplying two vectors is more subtle. It turns out that there are
two vector operations that resemble multiplication: dot product and cross
product.

The dot product of vectors A and B is a scalar:

d = ab cos θ

where a is the magnitude of A, b is the magnitude of B, and θ is the angle
between the vectors. We already know how to compute magnitudes, and you
could probably figure out how to compute θ, but you don’t have to. MATLAB
provides a function, dot, that computes dot products.

d = dot(A, B)

dot works in any number of dimensions, as long as A and B have the same
number of elements.

If one of the operands is a unit vector, you can use the dot product to compute
the component of a vector A that is in the direction of a unit vector, î:

s = dot(A, ihat)

In this example, s is the scalar projection of A onto î. The vector projection
is the vector that has magnitude s in the direction of î:

V = dot(A, ihat) * ihat

The cross product of vectors A and B is a vector whose direction is perpendicular
to A and B and whose magnitude is

c = ab sin θ

where (again) a is the magnitude of A, b is the magnitude of B, and θ is the
angle between the vectors. MATLAB provides a function, cross, that computes
cross products.
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C = cross(A, B)

cross only works for 3-dimensional vectors; the result is a 3-dimensional vector.

A common use of cross is to compute torques. If you represent a moment arm
R and a force F as 3-dimensional vectors, then the torque is just

Tau = cross(R, F)

If the components of R are in meters and the components of F are in Newtons,
then the torques in Tau are in Newton-meters.

12.3 Celestial mechanics

Modeling celestial mechanics is a good opportunity to compute with spatial
vectors. Imagine a star with mass m1 at a point in space described by the
vector P1, and a planet with mass m2 at point P2. The magnitude of the
gravitational force� between them is

fg = G
m1m2

r2

where r is the distance between them and G is the universal gravitational con-
stant, which is about 6.67× 10−11Nm2/kg2. Remember that this is the appro-
priate value of G only if the masses are in kilograms, distances in meters, and
forces in Newtons.

The direction of the force on the star at P1 is in the direction toward P2. We
can compute relative direction by subtracting vectors; if we compute R = P2 -

P1, then the direction of R is from P1 to P2.

The distance between the planet and star is the length of R:

r = norm(R)

The direction of the force on the star is R̂:

rhat = R / r

Exercise 12.1 Write a sequence of MATLAB statements that computes F12,
a vector that represents the force on the star due to the planet, and F21, the
force on the planet due to the star.

Exercise 12.2 Encapsulate these statements in a function named
gravity force func that takes P1, m1, P2, and m2 as input variables
and returns F12.

Exercise 12.3 Write a simulation of the orbit of Jupiter around the Sun. The
mass of the Sun is about 2.0 × 1030 kg. You can get the mass of Jupiter, its
distance from the Sun and orbital velocity from http: // en. wikipedia. org/

wiki/ Jupiter . Confirm that it takes about 4332 days for Jupiter to orbit the
Sun.

�See http://en.wikipedia.org/wiki/Gravity
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12.4 Animation

Animation is a useful tool for checking the results of a physical model. If
something is wrong, animation can make it obvious. There are two ways to do
animation in MATLAB. One is to use getframe to capture a series of images
and movie to play them back. The more informal way is to draw a series of
plots. Here is an example I wrote for Exercise 12.3:

function animate_func(T,M)

% animate the positions of the planets, assuming that the

% columns of M are x1, y1, x2, y2.

X1 = M(:,1);

Y1 = M(:,2);

X2 = M(:,3);

Y2 = M(:,4);

minmax = [min([X1;X2]), max([X1;X2]), min([Y1;Y2]), max([Y1;Y2])];

for i=1:length(T)

clf;

axis(minmax);

hold on;

draw_func(X1(i), Y1(i), X2(i), Y2(i));

drawnow;

end

end

The input variables are the output from ode45, a vector T and a matrix M. The
columns of M are the positions and velocities of the Sun and Jupiter, so X1 and
Y1 get the coordinates of the Sun; X2 and Y2 get the coordinates of Jupiter.

minmax is a vector of four elements which is used inside the loop to set the
axes of the figure. This is necessary because otherwise MATLAB scales the
figure each time through the loop, so the axes keep changing, which makes the
animation hard to watch.

Each time through the loop, animate func uses clf to clear the figure and axis

to reset the axes. hold on makes it possible to put more than one plot onto the
same axes (otherwise MATLAB clears the figure each time you call plot).

Each time through the loop, we have to call drawnow so that MATLAB actually
displays each plot. Otherwise it waits until you finish drawing all the figures
and then updates the display.

draw func is the function that actually makes the plot:

function draw_func(x1, y1, x2, y2)

plot(x1, y1, 'r.', 'MarkerSize', 50);

plot(x2, y2, 'b.', 'MarkerSize', 20);

end
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The input variables are the position of the Sun and Jupiter. draw func uses
plot to draw the Sun as a large red marker and Jupiter as a smaller blue one.

Exercise 12.4 To make sure you understand how animate func works, try
commenting out some of the lines to see what happens.

One limitation of this kind of animation is that the speed of the animation
depends on how fast your computer can generate the plots. Since the results
from ode45 are usually not equally spaced in time, your animation might slow
down where ode45 takes small time steps and speed up where the time step is
larger.

There are two ways to fix this problem:

1. When you call ode45 you can give it a vector of points in time where it
should generate estimates. Here is an example:

end_time = 1000;

step = end_time/200;

[T, M] = ode45(@rate_func, [0:step:end_time], W);

The second argument is a range vector that goes from 0 to 1000 with a
step size determined by step. Since step is end time/200, there will be
about 200 rows in T and M (201 to be precise).

This option does not affect the accuracy of the results; ode45 still uses
variable time steps to generate the estimates, but then it interpolates them
before returning the results.

2. You can use pause to play the animation in real time. After drawing each
frame and calling drawnow, you can compute the time until the next frame
and use pause to wait:

dt = T(i+1) - T(i);

pause(dt);

A limitation of this method is that it ignores the time required to draw
the figure, so it tends to run slow, especially if the figure is complex or the
time step is small.

Exercise 12.5 Use animate func and draw func to vizualize your simulation
of Jupiter. Modify it so it shows one day of simulated time in 0.001 seconds of
real time—one revolution should take about 4.3 seconds.

12.5 Conservation of Energy

A useful way to check the accuracy of an ODE solver is to see whether it
conserves energy. For planetary motion, it turns out that ode45 does not.



12.6 What is a model for? 143

The kinetic energy of a moving body is mv2/2; the kinetic energy of a solar
system is the total kinetic energy of the planets and sun. The potential energy
of a sun with mass m1 and a planet with mass m2 and a distance r between
them is

U = −G
m1m2

r

Exercise 12.6 Write a function called energy func that takes the output of
your Jupiter simulation, T and M, and computes the total energy (kinetic and
potential) of the system for each estimated position and velocity. Plot the result
as a function of time and confirm that it decreases over the course of the sim-
ulation. Your function should also compute the relative change in energy, the
difference between the energy at the beginning and end, as a percentage of the
starting energy.

You can reduce the rate of energy loss by decreasing ode45’s tolerance option
using odeset (see Section 11.1):

options = odeset('RelTol', 1e-5);

[T, M] = ode45(@rate_func, [0:step:end_time], W, options);

The name of the option is RelTol for “relative tolerance.” The default value is
1e-3 or 0.001. Smaller values make ode45 less “tolerant,” so it does more work
to make the errors smaller.

Exercise 12.7 Run ode45 with a range of values for RelTol and confirm that
as the tolerance gets smaller, the rate of energy loss decreases.

Exercise 12.8 Run your simulation with one of the other ODE solvers MAT-
LAB provides and see if any of them conserve energy.

12.6 What is a model for?

In Section 7.2 I defined a “model” as a simplified description of a physical
system, and said that a good model lends itself to analysis and simulation, and
makes predictions that are good enough for the intended purpose.

Since then, we have seen a number of examples; now we can say more about
what models are for. The goals of a model tend to fall into three categories.

prediction: Some models make predictions about physical systems. As a sim-
ple example, the duck model in Exercise 6.2 predicts the level a duck floats
at. At the other end of the spectrum, global climate models try to predict
the weather tens or hundreds of years in the future.
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design: Models are useful for engineering design, especially for testing the fea-
sibility of a design and for optimization. For example, in Exercise 11.6
you were asked to design the golf swing with the perfect combination of
launch angle, velocity and spin.

explanation: Models can answer scientific questions. For example, the Lotka-
Volterra model in Section 9.4 offers a possible explanation of the dynamics
of animal populations systems in terms of interactions between predator
and prey species.

The exercises at the end of this chapter include one model of each type.

12.7 Glossary

spatial vector: A value that represents a multidimensional physical quantity
like position, velocity, acceleration or force.

norm: The magnitude of a vector. Sometimes called “length,” but not to be
confused with the number of elements in a MATLAB vector.

unit vector: A vector with norm 1, used to indicate direction.

dot product: A scalar product of two vectors, proportional to the norms of
the vectors and the cosine of the angle between them.

cross product: A vector product of two vectors with norm proportional to the
norms of the vectors and the sine of the angle between them, and direction
perpendicular to both.

projection: The component of one vector that is in the direction of the other
(might be used to mean “scalar projection” or “vector projection”).

12.8 Exercises

Exercise 12.9 If you put two identical bowls of water into a freezer, one at
room temperature and one boiling, which one freezes first?

Hint: you might want to do some research on the Mpemba effect.

Exercise 12.10 You have been asked to design a new skateboard ramp; unlike
a typical skateboard ramp, this one is free to pivot about a support point. Skate-
boarders approach the ramp on a flat surface and then coast up the ramp; they
are not allowed to put their feet down while on the ramp. If they go fast enough,
the ramp will rotate and they will gracefully ride down the rotating ramp. Tech-
nical and artistic display will be assessed by the usual panel of talented judges.
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Your job is to design a ramp that will allow a rider to accomplish this feat, and
to create a physical model of the system, a simulation that computes the behavior
of a rider on the ramp, and an animation of the result.

Exercise 12.11 A binary star system contains two stars orbiting each other
and sometimes planets that orbit one or both stars§. In a binary system, some
orbits are “stable” in the sense that a planet can stay in orbit without crashing
into one of the stars or flying off into space.

Simulation is a useful tool for investigating the nature of these orbits, as in Hol-
man, M.J. and P.A. Wiegert, 1999, “Long-Term Stability of Planets in Binary
Systems,” Astronomical Journal 117, available from http: // citeseer. ist.

psu. edu/ 358720. html .

Read this paper and then modify your planetary simulation to replicate or extend
the results.

§See http://en.wikipedia.org/wiki/Binary_star.
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Preface

Figure 1. exmgui provides a starting point for some of the experiments.

Welcome to Experiments with MATLAB. This is not a conventional book. It
is currently available only via the Internet, at no charge, from

http://www.mathworks.com/moler

There may eventually be a hardcopy edition, but not right away.
Although Matlab is now a full fledged Technical Computing Environment,

it started in the late 1970s as a simple “Matrix Laboratory”. We want to build
on this laboratory tradition by describing a series of experiments involving applied
mathematics, technical computing, and Matlab programming.

iii
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We expect that you already know something about high school level material
in geometry, algebra, and trigonometry. We will introduce ideas from calculus,
matrix theory, and ordinary differential equations, but we do not assume that you
have already taken courses in the subjects. In fact, these experiments are useful
supplements to such courses.

We also expect that you have some experience with computers, perhaps with
word processors or spread sheets. If you know something about programming in
languages like C or Java, that will be helpful, but not required. We will introduce
Matlab by way of examples. Many of the experiments involve understanding and
modifying Matlab scripts and functions that we have already written.

You should have access to Matlab and to our exm toolbox, the collection
of programs and data that are described in Experiments with MATLAB. We hope
you will not only use these programs, but will read them, understand them, modify
them, and improve them. The exm toolbox is the apparatus in our “Laboratory”.

You will want to have Matlab handy. For information about the Student
Version, see

http://www.mathworks.com/academia/student_version

For an introduction to the mechanics of using Matlab, see the videos at

http://www.mathworks.com/academia/student_version/start.html

For documentation, including “Getting Started”, see

http://www.mathworks.com/access/helpdesk/help/techdoc/matlab.html

For user contributed programs, programming contests, and links into the world-wide
Matlab community, check out

http://www.mathworks.com/matlabcentral

To get started, download the exm toolbox, use pathtool to add exm to the
Matlab path, and run exmgui to generate figure 1. You can click on the icons to
preview some of the experiments.

You will want to make frequent use of the Matlab help and documentation
facilities. To quickly learn how to use the command or function named xxx, enter

help xxx

For more extensive information about xxx, use

doc xxx

We hope you will find the experiments interesting, and that you will learn
how to use Matlab along the way. Each chapter concludes with a “Recap” section
that is actually an executable Matlab program. For example, you can review the
Magic Squares chapter by entering

magic_recap
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Better yet, enter

edit magic_recap

and run the program cell-by-cell by simultaneously pressing the Ctrl-Shift-Enter
keys.

A fairly new Matlab facility is the publish command. You can get a nicely
formatted web page about magic_recap with

publish magic_recap

If you want to concentrate on learning Matlab, make sure you read, run, and
understand the recaps.

Cleve Moler
October 4, 2011



Chapter 1

Iteration

Iteration is a key element in much of technical computation. Examples involving the
Golden Ratio introduce the Matlab assignment statement, for and while loops,
and the plot function.

Start by picking a number, any number. Enter it into Matlab by typing

x = your number

This is a Matlab assignment statement. The number you chose is stored in the
variable x for later use. For example, if you start with

x = 3

Matlab responds with

x =

3

Next, enter this statement

x = sqrt(1 + x)

The abbreviation sqrt is the Matlab name for the square root function. The
quantity on the right,

√
1 + x, is computed and the result stored back in the variable

x, overriding the previous value of x.
Somewhere on your computer keyboard, probably in the lower right corner,

you should be able to find four arrow keys. These are the command line editing keys.
The up-arrow key allows you to recall earlier commands, including commands from

Copyright c© 2011 Cleve Moler
MatlabR© is a registered trademark of MathWorks, Inc.TM

October 4, 2011

1



2 Chapter 1. Iteration

previous sessions, and the other arrows keys allow you to revise these commands.
Use the up-arrow key, followed by the enter or return key, to iterate, or repeatedly
execute, this statement:

x = sqrt(1 + x)

Here is what you get when you start with x = 3.

x =

3

x =

2

x =

1.7321

x =

1.6529

x =

1.6288

x =

1.6213

x =

1.6191

x =

1.6184

x =

1.6181

x =

1.6181

x =

1.6180

x =

1.6180

These values are 3,
√
1 + 3,

√

1 +
√
1 + 3,

√

1 +
√

1 +
√
1 + 3, and so on. After

10 steps, the value printed remains constant at 1.6180. Try several other starting
values. Try it on a calculator if you have one. You should find that no matter where
you start, you will always reach 1.6180 in about ten steps. (Maybe a few more will
be required if you have a very large starting value.)

Matlab is doing these computations to accuracy of about 16 decimal digits,
but is displaying only five. You can see more digits by first entering

format long

and repeating the experiment. Here are the beginning and end of 30 steps starting
at x = 3.

x =

3
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x =

2

x =

1.732050807568877

x =

1.652891650281070

....

x =

1.618033988749897

x =

1.618033988749895

x =

1.618033988749895

After about thirty or so steps, the value that is printed doesn’t change any more.
You have computed one of the most famous numbers in mathematics, φ, the
Golden Ratio.

In Matlab, and most other programming languages, the equals sign is the
assignment operator. It says compute the value on the right and store it in the
variable on the left. So, the statement

x = sqrt(1 + x)

takes the current value of x, computes sqrt(1 + x), and stores the result back in
x.

In mathematics, the equals sign has a different meaning.

x =
√
1 + x

is an equation. A solution to such an equation is known as a fixed point. (Be careful
not to confuse the mathematical usage of fixed point with the computer arithmetic
usage of fixed point.)

The function f(x) =
√
1 + x has exactly one fixed point. The best way to

find the value of the fixed point is to avoid computers all together and solve the
equation using the quadratic formula. Take a look at the hand calculation shown
in figure 1.1. The positive root of the quadratic equation is the Golden Ratio.

φ =
1 +

√
5

2
.

You can have Matlab compute φ directly using the statement

phi = (1 + sqrt(5))/2

With format long, this produces the same value we obtained with the fixed point
iteration,

phi =

1.618033988749895



4 Chapter 1. Iteration

Figure 1.1. Compute the fixed point by hand.

−1 0 1 2 3 4
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 1.2. A fixed point at φ = 1.6180.

Figure 1.2 is our first example of Matlab graphics. It shows the intersection
of the graphs of y = x and y =

√
1 + x. The statement

x = -1:.02:4;

generates a vector x containing the numbers from -1 to 4 in steps of .02. The
statements

y1 = x;

y2 = sqrt(1+x);

plot(x,y1,’-’,x,y2,’-’,phi,phi,’o’)
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produce a figure that has three components. The first two components are graphs
of x and

√
1 + x. The ’-’ argument tells the plot function to draw solid lines. The

last component in the plot is a single point with both coordinates equal to φ. The
’o’ tells the plot function to draw a circle.

The Matlab plot function has many variations, including specifying other
colors and line types. You can see some of the possibilities with

help plot

φ

φ − 1

1

1

Figure 1.3. The golden rectangle.

The Golden Ratio shows up in many places in mathematics; we’ll see several
in this book. The Golden Ratio gets its name from the golden rectangle, shown in
figure 1.3. The golden rectangle has the property that removing a square leaves a
smaller rectangle with the same shape. Equating the aspect ratios of the rectangles
gives a defining equation for φ:

1

φ
=
φ− 1

1
.

Multiplying both sides of this equation by φ produces the same quadratic polynomial
equation that we obtained from our fixed point iteration.

φ2 − φ− 1 = 0.

The up-arrow key is a convenient way to repeatedly execute a single statement,
or several statements, separated by commas or semicolons, on a single line. Two
more powerful constructs are the for loop and the while loop. A for loop executes
a block of code a prescribed number of times.

x = 3

for k = 1:31

x = sqrt(1 + x)

end
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produces 32 lines of output, one from the initial statement and one more each time
through the loop.

A while loop executes a block of code an unknown number of times. Termi-
nation is controlled by a logical expression, which evaluates to true or false. Here
is the simplest while loop for our fixed point iteration.

x = 3

while x ~= sqrt(1+x)

x = sqrt(1+x)

end

This produces the same 32 lines of output as the for loop. However, this code is
open to criticism for two reasons. The first possible criticism involves the termi-
nation condition. The expression x ~= sqrt(1+x) is the Matlab way of writing
x �= √

1 + x. With exact arithmetic, x would never be exactly equal to sqrt(1+x),
the condition would always be true, and the loop would run forever. However, like
most technical computing environments, Matlab does not do arithmetic exactly.
In order to economize on both computer time and computer memory, Matlab uses
floating point arithmetic. Eventually our program produces a value of x for which
the floating point numbers x and sqrt(1+x) are exactly equal and the loop termi-
nates. Expecting exact equality of two floating point numbers is a delicate matter.
It works OK in this particular situation, but may not work with more complicated
computations.

The second possible criticism of our simple while loop is that it is inefficient. It
evaluates sqrt(1+x) twice each time through the loop. Here is a more complicated
version of the while loop that avoids both criticisms.

x = 3

y = 0;

while abs(x-y) > eps(x)

y = x;

x = sqrt(1+x)

end

The semicolons at the ends of the assignment statements involving y indicate that
no printed output should result. The quantity eps(x), is the spacing of the floating
point numbers near x. Mathematically, the Greek letter ε, or epsilon, often rep-
resents a “small” quantity. This version of the loop requires only one square root
calculation per iteration, but that is overshadowed by the added complexity of the
code. Both while loops require about the same execution time. In this situation, I
prefer the first while loop because it is easier to read and understand.

Help and Doc
Matlab has extensive on-line documentation. Statements like

help sqrt

help for
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provide brief descriptions of commands and functions. Statements like

doc sqrt

doc for

provide more extensive documentation in a separate window.
One obscure, but very important, help entry is about the various punctuation

marks and special characters used by Matlab. Take a look now at

help punct

doc punct

You will probably want to return to this information as you learn more about
Matlab.

Numbers
Numbers are formed from the digits 0 through 9, an optional decimal point, a
leading + or - sign, an optional e followed by an integer for a power of 10 scaling,
and an optional i or j for the imaginary part of a complex number. Matlab also
knows the value of π. Here are some examples of numbers.

42

9.6397238

6.0221415e23

-3+4i

pi

Assignment statements and names
A simple assignment statement consists of a name, an = sign, and a number. The
names of variables, functions and commands are formed by a letter, followed by any
number of upper and lower case letters, digits and underscores. Single character
names, like x and N, and anglicized Greek letters, like pi and phi, are often used
to reflect underlying mathematical notation. Non-mathematical programs usually
employ long variable names. Underscores and a convention known as camel casing
are used to create variable names out of several words.

x = 42

phi = (1+sqrt(5))/2

Avogadros_constant = 6.0221415e23

camelCaseComplexNumber = -3+4i

Expressions
Power is denoted by ^ and has precedence over all other arithmetic operations.
Multiplication and division are denoted by *, /, and \ and have precedence over
addition and subtraction, Addition and subtraction are denoted by + and - and
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have lowest precedence. Operations with equal precedence are evaluated left to
right. Parentheses delineate subexpressions that are evaluated first. Blanks help
readability, but have no effect on precedence.

All of the following expressions have the same value. If you don’t already
recognize this value, you can ask Google about its importance in popular culture.

3*4 + 5*6

3 * 4+5 * 6

2*(3 + 4)*3

-2^4 + 10*29/5

3\126

52-8-2

Recap
%% Iteration Chapter Recap

% This is an executable program that illustrates the statements

% introduced in the Iteration chapter of "Experiments in MATLAB".

% You can run it by entering the command

%

% iteration_recap

%

% Better yet, enter

%

% edit iteration_recap

%

% and run the program cell-by-cell by simultaneously

% pressing the Ctrl-Shift-Enter keys.

%

% Enter

%

% publish iteration_recap

%

% to see a formatted report.

%% Help and Documentation

% help punct

% doc punct

%% Format

format short

100/81

format long

100/81

format short
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format compact

%% Names and assignment statements

x = 42

phi = (1+sqrt(5))/2

Avogadros_constant = 6.0221415e23

camelCaseComplexNumber = -3+4i

%% Expressions

3*4 + 5*6

3 * 4+5 * 6

2*(3 + 4)*3

-2^4 + 10*29/5

3\126

52-8-2

%% Iteration

% Use the up-arrow key to repeatedly execute

x = sqrt(1+x)

x = sqrt(1+x)

x = sqrt(1+x)

x = sqrt(1+x)

%% For loop

x = 42

for k = 1:12

x = sqrt(1+x);

disp(x)

end

%% While loop

x = 42;

k = 1;

while abs(x-sqrt(1+x)) > 5e-5

x = sqrt(1+x);

k = k+1;

end

k

%% Vector and colon operator

k = 1:12

x = (0.0: 0.1: 1.00)’

%% Plot

x = -pi: pi/256: pi;

y = tan(sin(x)) - sin(tan(x));
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z = 1 + tan(1);

plot(x,y,’-’, pi/2,z,’ro’)

xlabel(’x’)

ylabel(’y’)

title(’tan(sin(x)) - sin(tan(x))’)

%% Golden Spiral

golden_spiral(4)

Exercises

1.1 Expressions. Use Matlab to evaluate each of these mathematical expressions.

432 −34 sin 1

4(3
2) (−3)4 sin 1◦

(43)
2 4

√−3 sin π
3

4
√
32 −2−4/3 (arcsin 1)/π

You can get started with

help ^

help sin

1.2 Temperature conversion.
(a) Write a Matlab statement that converts temperature in Fahrenheit, f, to Cel-
sius, c.

c = something involving f

(b) Write a Matlab statement that converts temperature in Celsius, c, to Fahren-
heit, f.

f = something involving c

1.3 Barn-megaparsec. A barn is a unit of area employed by high energy physicists.
Nuclear scattering experiments try to “hit the side of a barn”. A parsec is a unit
of length employed by astronomers. A star at a distance of one parsec exhibits
a trigonometric parallax of one arcsecond as the Earth orbits the Sun. A barn-
megaparsec is therefore a unit of volume – a very long skinny volume.

A barn is 10−28 square meters.
A megaparsec is 106 parsecs.
A parsec is 3.262 light-years.
A light-year is 9.461 · 1015 meters.
A cubic meter is 106 milliliters.
A milliliter is 1

5 teaspoon.
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Express one barn-megaparsec in teaspoons. In Matlab, the letter e can be used
to denote a power of 10 exponent, so 9.461 · 1015 can be written 9.461e15.

1.4 Complex numbers. What happens if you start with a large negative value of x
and repeatedly iterate

x = sqrt(1 + x)

1.5 Comparison. Which is larger, πφ or φπ?

1.6 Solving equations. The best way to solve

x =
√
1 + x

or

x2 = 1 + x

is to avoid computers all together and just do it yourself by hand. But, of course,
Matlab and most other mathematical software systems can easily solve such equa-
tions. Here are several possible ways to do it with Matlab. Start with

format long

phi = (1 + sqrt(5))/2

Then, for each method, explain what is going on and how the resulting x differs
from phi and the other x’s.

% roots

help roots

x1 = roots([1 -1 -1])

% fsolve

help fsolve

f = @(x) x-sqrt(1+x)

p = @(x) x^2-x-1

x2 = fsolve(f, 1)

x3 = fsolve(f, -1)

x4 = fsolve(p, 1)

x5 = fsolve(p, -1)

% solve (requires Symbolic Toolbox or Student Version)

help solve

help syms

syms x

x6 = solve(’x-sqrt(1+x)=0’)

x7 = solve(x^2-x-1)
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1.7 Symbolic solution. If you have the Symbolic Toolbox or Student Version, explain
what the following program does.

x = sym(’x’)

length(char(x))

for k = 1:10

x = sqrt(1+x)

length(char(x))

end

1.8 Fixed points. Verify that the Golden Ratio is a fixed point of each of the following
equations.

φ =
1

φ− 1

φ =
1

φ
+ 1

Use each of the equations as the basis for a fixed point iteration to compute φ. Do
the iterations converge?

1.9 Another iteration. Before you run the following program, predict what it will
do. Then run it.

x = 3

k = 1

format long

while x ~= sqrt(1+x^2)

x = sqrt(1+x^2)

k = k+1

end

1.10 Another fixed point. Solve this equation by hand.

x =
1√

1 + x2

How many iterations does the following program require? How is the final value of
x related to the Golden Ratio φ?

x = 3

k = 1

format long

while x ~= 1/sqrt(1+x^2)

x = 1/sqrt(1+x^2)

k = k+1

end
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1.11 cos(x). Find the numerical solution of the equation

x = cosx

in the interval [0, π2 ], shown in figure 1.4.

0 0.5 1 1.5
0

0.5

1

1.5

Figure 1.4. Fixed point of x = cos(x).
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−6

−4

−2

0

2

4

6

Figure 1.5. Three fixed points of x = tan(x)

1.12 tan(x). Figure 1.5 shows three of the many solutions to the equation

x = tanx

One of the solutions is x = 0. The other two in the plot are near x = ±4.5. If
we did a plot over a large range, we would see solutions in each of the intervals
[(n− 1

2 )π, (n+ 1
2 )π] for integer n.

(a) Does this compute a fixed point?

x = 4.5
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for k = 1:30

x = tan(x)

end

(b) Does this compute a fixed point? Why is the “ + pi” necessary?

x = pi

while abs(x - tan(x)) > eps(x)

x = atan(x) + pi

end

1.13 Summation. Write a mathematical expression for the quantity approximated
by this program.

s = 0;

t = Inf;

n = 0;

while s ~= t

n = n+1;

t = s;

s = s + 1/n^4;

end

s

1.14 Why. The first version of Matlab written in the late 1970’s, had who, what,
which, and where commands. So it seemed natural to add a why command. Check
out today’s why command with

why

help why

for k = 1:40, why, end

type why

edit why

As the help entry says, please embellish or modify the why function to suit your
own tastes.

1.15Wiggles. A glimpse atMatlab plotting capabilities is provided by the function

f = @(x) tan(sin(x)) - sin(tan(x))

This uses the ’@’ sign to introduce a simple function. You can learn more about the
’@’ sign with help function_handle.

Figure 1.6 shows the output from the statement

ezplot(f,[-pi,pi])
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Figure 1.6. A wiggly function.

(The function name ezplot is intended to be pronounced “Easy Plot”. This pun
doesn’t work if you learned to pronounce “z” as “zed”.) You can see that the
function is very flat near x = 0, oscillates infinitely often near x = ±π/2 and is
nearly linear near x = ±π.

You can get more control over the plot with code like this.

x = -pi:pi/256:pi;

y = f(x);

plot(x,y)

xlabel(’x’)

ylabel(’y’)

title(’A wiggly function’)

axis([-pi pi -2.8 2.8])

set(gca,’xtick’,pi*(-3:1/2:3))

(a) What is the effect of various values of n in the following code?

x = pi*(-2:1/n:2);

comet(x,f(x))

(b) This function is bounded. A numeric value near its maximum can be found
with

max(y)

What is its analytic maximum? (To be precise, I should ask ”What is the function’s
supremum?”)

1.16 Graphics. We use a lot of computer graphics in this book, but studying Mat-
lab graphics programming is not our primary goal. However, if you are curious, the
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script that produces figure 1.3 is goldrect.m. Modify this program to produce a
graphic that compares the Golden Rectangle with TV screens having aspect ratios
4:3 and 16:9.

1.17 Golden Spiral

Figure 1.7. A spiral formed from golden rectangles and inscribed quarter circles.

Our program golden_spiral displays an ever-expanding sequence of golden
rectangles with inscribed quarter circles. Check it out.
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Fibonacci Numbers

Fibonacci numbers introduce vectors, functions and recursion.

Leonardo Pisano Fibonacci was born around 1170 and died around 1250 in
Pisa in what is now Italy. He traveled extensively in Europe and Northern Africa.
He wrote several mathematical texts that, among other things, introduced Europe
to the Hindu-Arabic notation for numbers. Even though his books had to be tran-
scribed by hand, they were widely circulated. In his best known book, Liber Abaci,
published in 1202, he posed the following problem:

A man puts a pair of rabbits in a place surrounded on all sides by a wall.
How many pairs of rabbits can be produced from that pair in a year if it
is supposed that every month each pair begets a new pair which from the
second month on becomes productive?

Today the solution to this problem is known as the Fibonacci sequence, or
Fibonacci numbers. There is a small mathematical industry based on Fibonacci
numbers. A search of the Internet for “Fibonacci” will find dozens of Web sites and
hundreds of pages of material. There is even a Fibonacci Association that publishes
a scholarly journal, the Fibonacci Quarterly.

A simulation of Fibonacci’s problem is provided by our exm program rabbits.
Just execute the command

rabbits

and click on the pushbuttons that show up. You will see something like figure 2.1.
If Fibonacci had not specified a month for the newborn pair to mature, he

would not have a sequence named after him. The number of pairs would simply

Copyright c© 2011 Cleve Moler
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Figure 2.1. Fibonacci’s rabbits.

double each month. After n months there would be 2n pairs of rabbits. That’s a
lot of rabbits, but not distinctive mathematics.

Let fn denote the number of pairs of rabbits after n months. The key fact is
that the number of rabbits at the end of a month is the number at the beginning
of the month plus the number of births produced by the mature pairs:

fn = fn−1 + fn−2.

The initial conditions are that in the first month there is one pair of rabbits and in
the second there are two pairs:

f1 = 1, f2 = 2.

The following Matlab function, stored in a file fibonacci.m with a .m suffix,
produces a vector containing the first n Fibonacci numbers.

function f = fibonacci(n)

% FIBONACCI Fibonacci sequence

% f = FIBONACCI(n) generates the first n Fibonacci numbers.
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f = zeros(n,1);

f(1) = 1;

f(2) = 2;

for k = 3:n

f(k) = f(k-1) + f(k-2);

end

With these initial conditions, the answer to Fibonacci’s original question about the
size of the rabbit population after one year is given by

fibonacci(12)

This produces

1

2

3

5

8

13

21

34

55

89

144

233

The answer is 233 pairs of rabbits. (It would be 4096 pairs if the number doubled
every month for 12 months.)

Let’s look carefully at fibonacci.m. It’s a good example of how to create a
Matlab function. The first line is

function f = fibonacci(n)

The first word on the first line says fibonacci.m is a function, not a script. The
remainder of the first line says this particular function produces one output result,
f, and takes one input argument, n. The name of the function specified on the first
line is not actually used, because Matlab looks for the name of the file with a .m

suffix that contains the function, but it is common practice to have the two match.
The next two lines are comments that provide the text displayed when you ask for
help.

help fibonacci

produces

FIBONACCI Fibonacci sequence

f = FIBONACCI(n) generates the first n Fibonacci numbers.
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The name of the function is in uppercase because historically Matlab was case
insensitive and ran on terminals with only a single font. The use of capital letters
may be confusing to some first-time Matlab users, but the convention persists. It
is important to repeat the input and output arguments in these comments because
the first line is not displayed when you ask for help on the function.

The next line

f = zeros(n,1);

creates an n-by-1 matrix containing all zeros and assigns it to f. In Matlab, a
matrix with only one column is a column vector and a matrix with only one row is
a row vector.

The next two lines,

f(1) = 1;

f(2) = 2;

provide the initial conditions.
The last three lines are the for statement that does all the work.

for k = 3:n

f(k) = f(k-1) + f(k-2);

end

We like to use three spaces to indent the body of for and if statements, but other
people prefer two or four spaces, or a tab. You can also put the entire construction
on one line if you provide a comma after the first clause.

This particular function looks a lot like functions in other programming lan-
guages. It produces a vector, but it does not use any of the Matlab vector or
matrix operations. We will see some of these operations soon.

Here is another Fibonacci function, fibnum.m. Its output is simply the nth
Fibonacci number.

function f = fibnum(n)

% FIBNUM Fibonacci number.

% FIBNUM(n) generates the nth Fibonacci number.

if n <= 1

f = 1;

else

f = fibnum(n-1) + fibnum(n-2);

end

The statement

fibnum(12)

produces

ans =

233
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The fibnum function is recursive. In fact, the term recursive is used in both
a mathematical and a computer science sense. In mathematics, the relationship
fn = fn−1 + fn−2 is a recursion relation In computer science, a function that calls
itself is a recursive function.

A recursive program is elegant, but expensive. You can measure execution
time with tic and toc. Try

tic, fibnum(24), toc

Do not try

tic, fibnum(50), toc

Fibonacci Meets Golden Ratio
The Golden Ratio φ can be expressed as an infinite continued fraction.

φ = 1 +
1

1 + 1
1+ 1

1+···

.

To verify this claim, suppose we did not know the value of this fraction. Let

x = 1 +
1

1 + 1
1+ 1

1+···

.

We can see the first denominator is just another copy of x. In other words.

x = 1 +
1

x

This immediately leads to

x2 − x− 1 = 0

which is the defining quadratic equation for φ,
Our exm function goldfract generates a Matlab string that represents the

first n terms of the Golden Ratio continued fraction. Here is the first section of
code in goldfract.

p = ’1’;

for k = 2:n

p = [’1 + 1/(’ p ’)’];

end

display(p)

We start with a single ’1’, which corresponds to n = 1. We then repeatedly make
the current string the denominator in a longer string.

Here is the output from goldfract(n) when n = 7.

1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1))))))
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You can see that there are n-1 plus signs and n-1 pairs of matching parentheses.
Let φn denote the continued fraction truncated after n terms. φn is a rational

approximation to φ. Let’s express φn as a conventional fracton, the ratio of two
integers

φn =
pn
qn

p = 1;

q = 0;

for k = 2:n

t = p;

p = p + q;

q = t;

end

Now compare the results produced by goldfract(7) and fibonacci(7). The
first contains the fraction 21/13 while the second ends with 13 and 21. This is not
just a coincidence. The continued fraction for the Golden Ratio is collapsed by
repeating the statement

p = p + q;

while the Fibonacci numbers are generated by

f(k) = f(k-1) + f(k-2);

In fact, if we let φn denote the golden ratio continued fraction truncated at n terms,
then

φn =
fn
fn−1

In the infinite limit, the ratio of successive Fibonacci numbers approaches the golden
ratio:

lim
n→∞

fn
fn−1

= φ.

To see this, compute 40 Fibonacci numbers.

n = 40;

f = fibonacci(n);

Then compute their ratios.

r = f(2:n)./f(1:n-1)

This takes the vector containing f(2) through f(n) and divides it, element by
element, by the vector containing f(1) through f(n-1). The output begins with
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2.00000000000000

1.50000000000000

1.66666666666667

1.60000000000000

1.62500000000000

1.61538461538462

1.61904761904762

1.61764705882353

1.61818181818182

and ends with

1.61803398874990

1.61803398874989

1.61803398874990

1.61803398874989

1.61803398874989

Do you see why we chose n = 40? Compute

phi = (1+sqrt(5))/2

r - phi

What is the value of the last element?
The first few of these ratios can also be used to illustrate the rational output

format.

format rat

r(1:10)

ans =

2

3/2

5/3

8/5

13/8

21/13

34/21

55/34

89/55

The population of Fibonacci’s rabbit pen doesn’t double every month; it is
multiplied by the golden ratio every month.

An Analytic Expression
It is possible to find a closed-form solution to the Fibonacci number recurrence
relation. The key is to look for solutions of the form

fn = cρn
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for some constants c and ρ. The recurrence relation

fn = fn−1 + fn−2

becomes

cρn = cρn−1 + cρn−2

Dividing both sides by cρn−2 gives

ρ2 = ρ+ 1.

We’ve seen this equation in the chapter on the Golden Ratio. There are two possible
values of ρ, namely φ and 1− φ. The general solution to the recurrence is

fn = c1φ
n + c2(1− φ)n.

The constants c1 and c2 are determined by initial conditions, which are now
conveniently written

f0 = c1 + c2 = 1,

f1 = c1φ+ c2(1− φ) = 1.

One of the exercises asks you to use the Matlab backslash operator to solve this
2-by-2 system of simultaneous linear equations, but it is may be easier to solve the
system by hand:

c1 =
φ

2φ− 1
,

c2 = − (1− φ)

2φ− 1
.

Inserting these in the general solution gives

fn =
1

2φ− 1
(φn+1 − (1− φ)n+1).

This is an amazing equation. The right-hand side involves powers and quo-
tients of irrational numbers, but the result is a sequence of integers. You can check
this with Matlab.

n = (1:40)’;

f = (phi.^(n+1) - (1-phi).^(n+1))/(2*phi-1)

f = round(f)

The .^ operator is an element-by-element power operator. It is not necessary to
use ./ for the final division because (2*phi-1) is a scalar quantity. Roundoff error
prevents the results from being exact integers, so the round function is used to
convert floating point quantities to nearest integers. The resulting f begins with

f =

1
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2

3

5

8

13

21

34

and ends with

5702887

9227465

14930352

24157817

39088169

63245986

102334155

165580141

Recap
%% Fibonacci Chapter Recap

% This is an executable program that illustrates the statements

% introduced in the Fibonacci Chapter of "Experiments in MATLAB".

% You can access it with

%

% fibonacci_recap

% edit fibonacci_recap

% publish fibonacci_recap

%% Related EXM Programs

%

% fibonacci.m

% fibnum.m

% rabbits.m

%% Functions

% Save in file sqrt1px.m

%

% function y = sqrt1px(x)

% % SQRT1PX Sample function.

% % Usage: y = sqrt1px(x)

%

% y = sqrt(1+x);

%% Create vector

n = 8;
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f = zeros(1,n)

t = 1:n

s = [1 2 3 5 8 13 21 34]

%% Subscripts

f(1) = 1;

f(2) = 2;

for k = 3:n

f(k) = f(k-1) + f(k-2);

end

f

%% Recursion

% function f = fibnum(n)

% if n <= 1

% f = 1;

% else

% f = fibnum(n-1) + fibnum(n-2);

% end

%% Tic and Toc

format short

tic

fibnum(24);

toc

%% Element-by-element array operations

f = fibonacci(5)’

fpf = f+f

ftf = f.*f

ff = f.^2

ffdf = ff./f

cosfpi = cos(f*pi)

even = (mod(f,2) == 0)

format rat

r = f(2:5)./f(1:4)

%% Strings

hello_world
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Exercises

2.1 Rabbits. Explain what our rabbits simulation demonstrates. What do the
different figures and colors on the pushbuttons signify?

2.2 Waltz. Which Fibonacci numbers are even? Why?

2.3 Primes. Use the Matlab function isprime to discover which of the first 40
Fibonacci numbers are prime. You do not need to use a for loop. Instead, check
out

help isprime

help logical

2.4 Backslash. Use the Matlab backslash operator to solve the 2-by-2 system of
simultaneous linear equations

c1 + c2 = 1,
c1φ+ c2(1− φ) = 1

for c1 and c2. You can find out about the backslash operator by taking a peek at
the Linear Equations chapter, or with the commands

help \

help slash

2.5 Logarithmic plot. The statement

semilogy(fibonacci(18),’-o’)

makes a logarithmic plot of Fibonacci numbers versus their index. The graph is
close to a straight line. What is the slope of this line?

2.6 Execution time. How does the execution time of fibnum(n) depend on the
execution time for fibnum(n-1) and fibnum(n-2)? Use this relationship to obtain
an approximate formula for the execution time of fibnum(n) as a function of n.
Estimate how long it would take your computer to compute fibnum(50). Warning:
You probably do not want to actually run fibnum(50).

2.7 Overflow. What is the index of the largest Fibonacci number that can be rep-
resented exactly as a Matlab double-precision quantity without roundoff error?
What is the index of the largest Fibonacci number that can be represented approx-
imately as a Matlab double-precision quantity without overflowing?

2.8 Slower maturity. What if rabbits took two months to mature instead of one?
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The sequence would be defined by

g1 = 1,

g2 = 1,

g3 = 2

and, for n > 3,

gn = gn−1 + gn−3

(a) Modify fibonacci.m and fibnum.m to compute this sequence.
(b) How many pairs of rabbits are there after 12 months?
(c) gn ≈ γn. What is γ?
(d) Estimate how long it would take your computer to compute fibnum(50) with
this modified fibnum.

2.9 Mortality. What if rabbits took one month to mature, but then died after six
months. The sequence would be defined by

dn = 0, n <= 0

d1 = 1,

d2 = 1

and, for n > 2,

dn = dn−1 + dn−2 − dn−7

(a) Modify fibonacci.m and fibnum.m to compute this sequence.
(b) How many pairs of rabbits are there after 12 months?
(c) dn ≈ δn. What is δ?
(d) Estimate how long it would take your computer to compute fibnum(50) with
this modified fibnum.

2.10 Hello World. Programming languages are traditionally introduced by the
phrase ”hello world”. An script in exm that illustrates some features in Matlab is
available with

hello_world

Explain what each of the functions and commands in hello_world do.

2.11 Fibonacci power series. The Fibonacci numbers, fn, can be used as coefficients
in a power series defining a function of x.

F (x) =
∞
∑

n=1

fnx
n

= x+ 2x2 + 3x3 + 5x4 + 8x5 + 13x6 + ...
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Our function fibfun1 is a first attempt at a program to compute this series. It sim-
ply involves adding an accumulating sum to fibonacci.m. The header of fibfun1.m
includes the help entries.

function [y,k] = fibfun1(x)

% FIBFUN1 Power series with Fibonacci coefficients.

% y = fibfun1(x) = sum(f(k)*x.^k).

% [y,k] = fibfun1(x) also gives the number of terms required.

The first section of code initializes the variables to be used. The value of n is the
index where the Fibonacci numbers overflow.

\excise

\emph{Fibonacci power series}.

The Fibonacci numbers, $f_n$, can be used as coefficients in a

power series defining a function of $x$.

\begin{eqnarray*}

F(x) & = & \sum_{n = 1}^\infty f_n x^n \\

& = & x + 2 x^2 + 3 x^3 + 5 x^4 + 8 x^5 + 13 x^6 + ...

\end{eqnarray*}

Our function #fibfun1# is a first attempt at a program to

compute this series. It simply involves adding an accumulating

sum to #fibonacci.m#.

The header of #fibfun1.m# includes the help entries.

\begin{verbatim}

function [y,k] = fibfun1(x)

% FIBFUN1 Power series with Fibonacci coefficients.

% y = fibfun1(x) = sum(f(k)*x.^k).

% [y,k] = fibfun1(x) also gives the number of terms required.

The first section of code initializes the variables to be used. The value of n is the
index where the Fibonacci numbers overflow.

n = 1476;

f = zeros(n,1);

f(1) = 1;

f(2) = 2;

y = f(1)*x + f(2)*x.^2;

t = 0;

The main body of fibfun1 implements the Fibonacci recurrence and includes a test
for early termination of the loop.

for k = 3:n

f(k) = f(k-1) + f(k-2);

y = y + f(k)*x.^k;

if y == t

return

end



30 Chapter 2. Fibonacci Numbers

t = y;

end

There are several objections to fibfun1. The coefficient array of size 1476
is not actually necessary. The repeated computation of powers, x^k, is inefficient
because once some power of x has been computed, the next power can be obtained
with one multiplication. When the series converges the coefficients f(k) increase
in size, but the powers x^k decrease in size more rapidly. The terms f(k)*x^k

approach zero, but huge f(k) prevent their computation.
A more efficient and accurate approach involves combining the computation

of the Fibonacci recurrence and the powers of x. Let

pk = fkx
k

Then, since

fk+1x
k+1 = fkx

k + fk−1x
k−1

the terms pk satisfy

pk+1 = pkx+ pk−1x
2

= x(pk + xpk−1)

This is the basis for our function fibfun2. The header is essentially the same
as fibfun1

function [yk,k] = fibfun2(x)

% FIBFUN2 Power series with Fibonacci coefficients.

% y = fibfun2(x) = sum(f(k)*x.^k).

% [y,k] = fibfun2(x) also gives the number of terms required.

The initialization.

pkm1 = x;

pk = 2*x.^2;

ykm1 = x;

yk = 2*x.^2 + x;

k = 0;

And the core.

while any(abs(yk-ykm1) > 2*eps(yk))

pkp1 = x.*(pk + x.*pkm1);

pkm1 = pk;

pk = pkp1;

ykm1 = yk;

yk = yk + pk;

k = k+1;

end
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There is no array of coefficients. Only three of the pk terms are required for each
step. The power function ^ is not necessary. Computation of the powers is incor-
porated in the recurrence. Consequently, fibfun2 is both more efficient and more
accurate than fibfun1.

But there is an even better way to evaluate this particular series. It is possible
to find a analytic expression for the infinite sum.

F (x) =

∞
∑

n=1

fnx
n

= x+ 2x2 + 3x3 + 5x4 + 8x5 + ...

= x+ (1 + 1)x2 + (2 + 1)x3 + (3 + 2)x4 + (5 + 3)x5 + ...

= x+ x2 + x(x+ 2x2 + 3x3 + 5x4 + ...) + x2(x+ 2x2 + 3x3 + ...)

= x+ x2 + xF (x) + x2F (x)

So

(1− x− x2)F (x) = x+ x2

Finally

F (x) =
x+ x2

1− x− x2

It is not even necessary to have a .m file. A one-liner does the job.

fibfun3 = @(x) (x + x.^2)./(1 - x - x.^2)

Compare these three fibfun’s.
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Chapter 4

Matrices

Matlab began as a matrix calculator.

The Cartesian coordinate system was developed in the 17th century by the
French mathematician and philosopher René Descartes. A pair of numbers corre-
sponds to a point in the plane. We will display the coordinates in a vector of length
two. In order to work properly with matrix multiplication, we want to think of the
vector as a column vector, So

x =

(

x1
x2

)

denotes the point x whose first coordinate is x1 and second coordinate is x2. When
it is inconvenient to write a vector in this vertical form, we can anticipate Matlab
notation and use a semicolon to separate the two components,

x = ( x1; x2 )

For example, the point labeled x in figure 4.1 has Cartesian coordinates

x = ( 2; 4 )

Arithmetic operations on the vectors are defined in natural ways. Addition is
defined by

x+ y =

(

x1
x2

)

+

(

y1
y2

)

=

(

x1 + y1
x2 + y2

)

Multiplication by a single number, or scalar, is defined by

sx =

(

sx1
sx2

)

Copyright c© 2011 Cleve Moler
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A 2-by-2 matrix is an array of four numbers arranged in two rows and two
columns.

A =

(

a1,1 a1,2
a2,1 a2,2

)

or

A = ( a1,1 a1,2; a2,1 a2,2 )

For example

A =

(

4 −3
−2 1

)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

x

Ax

Figure 4.1. Matrix multiplication transforms lines through x to lines through Ax.

Matrix-vector multiplication by a 2-by-2 matrix A transforms a vector x to a
vector Ax, according to the definition

Ax =

(

a1,1x1 + a1,2x2
a2,1x1 + a2,2x2

)

For example
(

4 −3
−2 1

)(

2
4

)

=

(

4 · 2− 3 · 4
−2 · 2 + 1 · 4

)

=

( −4
0

)

The point labeled x in figure 4.1 is transformed to the point labeled Ax. Matrix-
vector multiplications produce linear transformations. This means that for scalars
s and t and vectors x and y,

A(sx+ ty) = sAx+ tAy
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This implies that points near x are transformed to points near Ax and that straight
lines in the plane through x are transformed to straight lines through Ax.

Our definition of matrix-vector multiplication is the usual one involving the
dot product of the rows of A, denoted ai,:, with the vector x.

Ax =

(

a1,: · x
a2,: · x

)

An alternate, and sometimes more revealing, definition uses linear combinations of
the columns of A, denoted by a:,j .

Ax = x1a:,1 + x2a:,2

For example
(

4 −3
−2 1

)(

2
4

)

= 2

(

4
−2

)

+ 4

( −3
1

)

=

( −4
0

)

The transpose of a column vector is a row vector, denoted by xT . The trans-
pose of a matrix interchanges its rows and columns. For example,

xT = ( 2 4 )

AT =

(

4 −2
−3 1

)

Vector-matrix multiplication can be defined by

xTA = ATx

That is pretty cryptic, so if you have never seen it before, you might have to ponder
it a bit.

Matrix-matrix multiplication, AB, can be thought of as matrix-vector multi-
plication involving the matrixA and the columns vectors from B, or as vector-matrix
multiplication involving the row vectors from A and the matrix B. It is important
to realize that AB is not the same matrix as BA.

Matlab started its life as “Matrix Laboratory”, so its very first capabilities
involved matrices and matrix multiplication. The syntax follows the mathematical
notation closely. We use square brackets instead of round parentheses, an asterisk
to denote multiplication, and x’ for the transpose of x. The foregoing example
becomes

x = [2; 4]

A = [4 -3; -2 1]

A*x

This produces

x =

2

4
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A =

4 -3

-2 1

ans =

-4

0

The matrices A’*A and A*A’ are not the same.

A’*A =

20 -14

-14 10

while

A*A’ =

25 -11

-11 5

The matrix

I =

(

1 0
0 1

)

is the 2-by-2 identity matrix. It has the important property that for any 2-by-2
matrix A,

IA = AI = A

Originally, Matlab variable names were not case sensitive, so i and I were
the same variable. Since i is frequently used as a subscript, an iteration index,
and sqrt(-1), we could not use I for the identity matrix. Instead, we chose to use
the sound-alike word eye. Today, Matlab is case sensitive and has many users
whose native language is not English, but we continue to use eye(n,n) to denote
the n-by-n identity. (The Metro in Washington, DC, uses the same pun – “I street”
is “eye street” on their maps.)

2-by-2 Matrix Transformations
The exm toolbox includes a function house. The statement

X = house

produces a 2-by-11 matrix,

X =

-6 -6 -7 0 7 6 6 -3 -3 0 0

-7 2 1 8 1 2 -7 -7 -2 -2 -7

The columns of X are the Cartesian coordinates of the 11 points shown in figure 4.2.
Do you remember the “dot to dot” game? Try it with these points. Finish off by
connecting the last point back to the first. The house in figure 4.2 is constructed
from X by
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Figure 4.2. Connect the dots.

dot2dot(X)

We want to investigate how matrix multiplication transforms this house. In
fact, if you have your computer handy, try this now.

wiggle(X)

Our goal is to see how wiggle works.
Here are four matrices.

A1 =

1/2 0

0 1

A2 =

1 0

0 1/2

A3 =

0 1

1/2 0

A4 =

1/2 0

0 -1

Figure 4.3 uses matrix multiplication A*X and dot2dot(A*X) to show the effect of
the resulting linear transformations on the house. All four matrices are diagonal
or antidiagonal, so they just scale and possibly interchange the coordinates. The
coordinates are not combined in any way. The floor and sides of the house remain at
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Figure 4.3. The effect of multiplication by scaling matrices.

right angles to each other and parallel to the axes. The matrix A1 shrinks the first
coordinate to reduce the width of the house while the height remains unchanged.
The matrix A2 shrinks the second coordinate to reduce the height, but not the width.
The matrix A3 interchanges the two coordinates while shrinking one of them. The
matrix A4 shrinks the first coordinate and changes the sign of the second.

The determinant of a 2-by-2 matrix

A =

(

a1,1 a1,2
a2,1 a2,2

)

is the quantity

a1,1a2,2 − a1,2a2,1

In general, determinants are not very useful in practical computation because they
have atrocious scaling properties. But 2-by-2 determinants can be useful in under-
standing simple matrix properties. If the determinant of a matrix is positive, then
multiplication by that matrix preserves left- or right-handedness. The first two of
our four matrices have positive determinants, so the door remains on the left side
of the house. The other two matrices have negative determinants, so the door is
transformed to the other side of the house.

The Matlab function rand(m,n) generates an m-by-n matrix with random
entries between 0 and 1. So the statement
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R = 2*rand(2,2) - 1

generates a 2-by-2 matrix with random entries between -1 and 1. Here are four of
them.

R1 =

0.0323 -0.6327

-0.5495 -0.5674

R2 =

0.7277 -0.5997

0.8124 0.7188

R3 =

0.1021 0.1777

-0.3633 -0.5178

R4 =

-0.8682 0.9330

0.7992 -0.4821
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Figure 4.4. The effect of multiplication by random matrices.
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Figure 4.4 shows the effect of multiplication by these four matrices on the house.
Matrices R1 and R4 have large off-diagonal entries and negative determinants, so
they distort the house quite a bit and flip the door to the right side. The lines are still
straight, but the walls are not perpendicular to the floor. Linear transformations
preserve straight lines, but they do not necessarily preserve the angles between those
lines. Matrix R2 is close to a rotation, which we will discuss shortly. Matrix R3 is
nearly singular ; its determinant is equal to 0.0117. If the determinant were exactly
zero, the house would be flattened to a one-dimensional straight line.

The following matrix is a plane rotation.

G(θ) =

(

cos θ − sin θ
sin θ cos θ

)

We use the letter G because Wallace Givens pioneered the use of plane rotations
in matrix computation in the 1950s. Multiplication by G(θ) rotates points in the
plane through an angle θ. Figure 4.5 shows the effect of multiplication by the plane
rotations with θ = 15◦, 45◦, 90◦, and 215◦.
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Figure 4.5. The affect of multiplication by plane rotations though 15◦,
45◦, 90◦, and 215◦.

G15 =

0.9659 -0.2588
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0.2588 0.9659

G45 =

0.7071 -0.7071

0.7071 0.7071

G90 =

0 -1

1 0

G215 =

-0.8192 0.5736

-0.5736 -0.8192

You can see that G45 is fairly close to the random matrix R2 seen earlier and that
its effect on the house is similar.

Matlab generates a plane rotation for angles measured in radians with

G = [cos(theta) -sin(theta); sin(theta) cos(theta)]

and for angles measured in degrees with

G = [cosd(theta) -sind(theta); sind(theta) cosd(theta)]

Our exm toolbox function wiggle uses dot2dot and plane rotations to pro-
duce an animation of matrix multiplication. Here is wiggle.m, without the Handle
Graphics commands.

function wiggle(X)

thetamax = 0.1;

delta = .025;

t = 0;

while true

theta = (4*abs(t-round(t))-1) * thetamax;

G = [cos(theta) -sin(theta); sin(theta) cos(theta)]

Y = G*X;

dot2dot(Y);

t = t + delta;

end

Since this version does not have a stop button, it would run forever. The variable t
advances steadily by increment of delta. As t increases, the quantity t-round(t)

varies between −1/2 and 1/2, so the angle θ computed by

theta = (4*abs(t-round(t))-1) * thetamax;

varies in a sawtooth fashion between -thetamax and thetamax. The graph of θ as
a function of t is shown in figure 4.6. Each value of θ produces a corresponding
plane rotation G(θ). Then



54 Chapter 4. Matrices

0 0.5 1 1.5 2 2.5 3 3.5 4

−0.1

0

0.1

Figure 4.6. Wiggle angle θ

Y = G*X;

dot2dot(Y)

applies the rotation to the input matrix X and plots the wiggling result.

Vectors and Matrices
Here is a quick look at a few of the many Matlab operations involving vectors
and matrices. Try to predict what output will be produced by each of the following
statements. You can see if you are right by using cut and paste to execute the
statement, or by running

matrices_recap

Vectors are created with square brackets.

v = [0 1/4 1/2 3/4 1]

Rows of a matrix are separated by semicolons or new lines.

A = [8 1 6; 3 5 7; 4 9 2]

There are several functions that create matrices.

Z = zeros(3,4)

E = ones(4,3)

I = eye(4,4)

M = magic(3)

R = rand(2,4)

[K,J] = ndgrid(1:4)

A colon creates uniformly spaced vectors.

v = 0:0.25:1

n = 10

y = 1:n

A semicolon at the end of a line suppresses output.

n = 1000;

y = 1:n;
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Matrix arithmetic
Matrix addition and subtraction are denoted by + and - . The operations

A + B

and

A - B

require A and B to be the same size, or to be scalars, which are 1-by-1 matrices.
Matrix multiplication, denoted by *, follows the rules of linear algebra. The

operation

A * B

requires the number of columns of A to equal the number of row B, that is

size(A,2) == size(B,1)

Remember that A*B is usually not equal to B*A

If p is an integer scalar, the expression

A^p

denotes repeated multiplication of A by itself p times.
The use of the matrix division operations in Matlab,

A \ B

and

A / B

is discussed in our “Linear Equations” chapter

Array arithmetic
.

We usually try to distinguish between matrices, which behave according to
the rules of linear algebra, and arrays, which are just rectangular collections of
numbers.

Element-by-element operations array operations are denoted by + , - , .* , ./
, . and .^ . For array multiplication A.*B is equal to B.*A

K.*J

v.^2

An apostrophe denotes the transpose of a real array and the complex conjugate
transpose of a complex array.

v = v’

inner_prod = v’*v

outer_prod = v*v’

Z = [1 2; 3+4i 5]’

Z = [1 2; 3+4i 5].’
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Figure 4.7. The cover of Gilbert Strang’s textbook shows a quilt by Chris Curtis.

Further Reading
Of the dozens of good books on matrices and linear algebra, we would like to
recommend one in particular.

Gilbert Strang, Introduction to Linear Algebra, Wellesley-Cambridge
Press, Wellesley, MA, 2003.
http://www.wellesleycambridge.com

Besides its excellent technical content and exposition, it has a terrific cover. The
house that we have used throughout this chapter made its debut in Strang’s book
in 1993. The cover of the first edition looked something like our figure 4.4. Chris
Curtis saw that cover and created a gorgeous quilt. A picture of the quilt has
appeared on the cover of all subsequent editions of the book.

Recap
%% Matrices Chapter Recap
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% This is an executable program that illustrates the statements

% introduced in the Matrices Chapter of "Experiments in MATLAB".

% You can access it with

%

% matrices_recap

% edit matrices_recap

% publish matrices_recap

%

% Related EXM Programs

%

% wiggle

% dot2dot

% house

% hand

%% Vectors and matrices

x = [2; 4]

A = [4 -3; -2 1]

A*x

A’*A

A*A’

%% Random matrices

R = 2*rand(2,2)-1

%% Build a house

X = house

dot2dot(X)

%% Rotations

theta = pi/6 % radians

G = [cos(theta) -sin(theta); sin(theta) cos(theta)]

theta = 30 % degrees

G = [cosd(theta) -sind(theta); sind(theta) cosd(theta)]

subplot(1,2,1)

dot2dot(G*X)

subplot(1,2,2)

dot2dot(G’*X)

%% More on Vectors and Matrices

% Vectors are created with square brackets.

v = [0 1/4 1/2 3/4 1]

% Rows of a matrix are separated by semicolons or new lines.
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A = [8 1 6; 3 5 7; 4 9 2]

A = [8 1 6

3 5 7

4 9 2]

%% Creating matrices

Z = zeros(3,4)

E = ones(4,3)

I = eye(4,4)

M = magic(3)

R = rand(2,4)

[K,J] = ndgrid(1:4)

%% Colons and semicolons

% A colon creates uniformally spaced vectors.

v = 0:0.25:1

n = 10

y = 1:n

% A semicolon at the end of a line suppresses output.

n = 1000;

y = 1:n;

%% Matrix arithmetic.

% Addition and subtraction, + and -, are element-by-element.

% Multiplication, *, follows the rules of linear algebra.

% Power, ^, is repeated matrix multiplication.

KJ = K*J

JK = J*K

%% Array arithmetic

% Element-by-element operations are denoted by

% + , - , .* , ./ , .\ and .^ .

K.*J

v.^2

%% Transpose

% An apostrophe denotes the transpose of a real array
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% and the complex conjugate transpose of a complex array.

v = v’

inner_prod = v’*v

outer_prod = v*v’

Z = [1 2; 3+4i 5]’

Z = [1 2; 3+4i 5].’

Exercises

4.1 Multiplication.
(a) Which 2-by-2 matrices have A2 = I?
(b) Which 2-by-2 matrices have ATA = I?
(c) Which 2-by-2 matrices have ATA = AAT ?

4.2 Inverse. Let

A =

(

3 4
2 3

)

Find a matrix X so that AX = I.

4.3 Powers. Let

A =

(

0.99 0.01
−0.01 1.01

)

What is An?

4.4 Powers. Let

A =

(

1 1
1 0

)

What is An?

4.5 Parametrized product. Let

A =

(

1 2
x 3

)(

4 5
6 7

)

Which elements of A depend upon x? Is it possible to choose x so that A = AT ?

4.6 Product of two symmetric matrices. It turns out that any matrix is the product
of two symmetric matrices. Let

A =

(

3 4
8 10

)
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Express A as the product of two symmetric matrices.

4.7 Givens rotations.
(a) What is the determinant of G(θ)?
(b) Explain why G(θ)2 = G(2θ).
(c) Explain why G(θ)n = G(nθ).

4.8 X8. Find a real 2-by-2 matrix X so that X8 = −I.

4.9 GT . What is the effect on points in the plane of multiplication by G(θ)T ?

4.10 ̂G. (a) What is the effect on points in the plane of multiplication by

̂G(θ) =

(

cos θ sin θ
sin θ − cos θ

)

(b) What is the determinant of ̂G(θ)?

(c) What happens if you modify wiggle.m to use ̂G instead of G?

4.11 Goldie. What does the function goldie in the exm toolbox do?

4.12 Transform a hand. Repeat the experiments in this chapter with

X = hand

instead of

X = house

Figure 4.8 shows

dot2dot(hand)

4.13 Mirror image. Find a 2-by-2 matrix R so that

dot2dot(house)

and

dot2dot(R*house)

as well as

dot2dot(hand)

and

dot2dot(R*hand)
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Figure 4.8. A hand.

are mirror images of each other.

4.14 Transform your own hand. Repeat the experiments in this chapter using a plot
of your own hand. Start with

figure(’position’,get(0,’screensize’))

axes(’position’,[0 0 1 1])

axis(10*[-1 1 -1 1])

[x,y] = ginput;

Place your hand on the computer screen. Use the mouse to select a few dozen points
outlining your hand. Terminate the ginput with a carriage return. You might find
it easier to trace your hand on a piece of paper and then put the paper on the
computer screen. You should be able to see the ginput cursor through the paper.

The data you have collected forms two column vectors with entries in the
range from -10 to 10. You can arrange the data as two rows in a single matrix with

H = [x y]’;

Then you can use

dot2dot(H)

dot2dot(A*H)

wiggle(H)

and so on.
You can save your data in the file myhand.mat with

save myhand H

and retrieve it in a later Matlab session with

load myhand
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4.15 Wiggler. Make wiggler.m, your own version of wiggle.m, with two sliders
that control the speed and amplitude. In the initialization, replace the statements

thetamax = 0.1;

delta = .025;

with

thetamax = uicontrol(’style’,’slider’,’max’,1.0, ...

’units’,’normalized’,’position’,[.25 .01 .25 .04]);

delta = uicontrol(’style’,’slider’,’max’,.05, ...

’units’,’normalized’,’position’,[.60 .01 .25 .04]);

The quantities thetamax and delta are now the handles to the two sliders. In the
body of the loop, replace thetamax by

get(thetamax,’value’);

and replace delta by

get(delta,’value’);

Demonstrate your wiggler on the house and the hand.



Chapter 5

Linear Equations

The most important task in technical computing.

I am thinking of two numbers. Their average is 3. What are the numbers?
Please remember the first thing that pops into your head. I will get back to this
problem in a few pages.

Solving systems of simultaneous linear equations is the most important task
in technical computing. It is not only important in its own right, it is also a fun-
damental, and often hidden, component of other more complicated computational
tasks.

The very simplest linear equations involve only one unknown. Solve

7x = 21

The answer, of course, is

x =
21

7
= 3

Now solve

ax = b

The answer, of course, is

x =
b

a

But what if a = 0? Then we have to look at b. If b �= 0 then there is no value
of x that satisfies

0x = b

Copyright c© 2011 Cleve Moler
MatlabR© is a registered trademark of MathWorks, Inc.TM

October 4, 2011
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The solution does not exist. On the other hand, if b = 0 then any value of x satisfies

0x = 0

The solution is not unique. Mathematicians have been thinking about existence
and uniqueness for centuries. We will see that these concepts are also important in
modern technical computing.

Here is a toy story problem.

Alice buys three apples, a dozen bananas, and one cantaloupe for $2.36.
Bob buys a dozen apples and two cantaloupes for $5.26. Carol buys two
bananas and three cantaloupes for $2.77. How much do single pieces of
each fruit cost?

Let x1, x2, and x3 denote the unknown price of each fruit. We have three equations
in three unknowns.

3x1 + 12x2 + x3 = 2.36

12x1 + 2x3 = 5.26

2x2 + 3x3 = 2.77

Because matrix-vector multiplication has been defined the way it has, these equa-
tions can be written

⎛

⎝

3 12 1
12 0 2
0 2 3

⎞

⎠

⎛

⎝

x1
x2
x3

⎞

⎠ =

⎛

⎝

2.36
5.27
2.77

⎞

⎠

Or, simply

Ax = b

where A is a given 3-by-3 matrix, b is a given 3-by-1 column vector, and x is a
3-by-1 column vector with unknown elements.

We want to solve this equation. If you know anything about matrices, you
know that the equation can be solved using A−1, the inverse of A,

x = A−1b

This is a fine concept theoretically, but not so good computationally We don’t really
need A−1, we just want to find x.

If you do not know anything about matrices, you might be tempted to divide
both sides of the equation by A.

x =
b

A

This is a terrible idea theoretically – you can’t divide by matrices – but it is the
beginning of a good idea computationally.

To find the solution to a linear system of equations with Matlab, start by
entering the matrix of coefficients.
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A = [3 12 1; 12 0 2; 0 2 3]

Since all the elements of A are integers, the matrix is printed with an integer format.

A =

3 12 1

12 0 2

0 2 3

Next, enter the right hand side as a column vector.

b = [2.36 5.26 2.77]’

The elements of b are not integers, so the default format shows four digits after the
decimal point.

b =

2.3600

5.2600

2.7700

Matlab has an output format intended for financial calculations, like this fruit
price calculation. The command

format bank

changes the output to show only two digits after the decimal point.

b =

2.36

5.26

2.77

In Matlab the solution to the linear system of equations

Ax = b

is found using the backslash operator.

x = A\b

Think of this as “dividing” both sides of the equation by A. The result is

x =

0.29

0.05

0.89

This gives us the solution to our story problem – apples cost 29 cents each, bananas
are a nickel each, and cantaloupes are 89 cents each.

Very rarely, systems of linear equations come in the form

xA = b

where b and x are row vectors. In this case, the solution is found using the forward
slash operator.
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x = b/A

The two operations A\b and b/A are sometimes called left and right matrix division.
In both cases, the coefficient matrix is in the “denominator”. For scalars, left and
right division are the same thing. The quantities 7\21 and 21/7 are both equal to
3.

Singular matrix
Let’s change our story problem a bit. Assume now that Carol buys six apples and
one cantaloupe for $2.77. The coefficient matrix and right hand side become

A =

3 12 1

12 0 2

6 0 1

and

b =

2.36

5.26

2.77

At first glance, this does not look like much of a change. However,

x = A\b

produces

Warning: Matrix is singular to working precision.

x =

NaN

-Inf

Inf

Inf and -Inf stand for plus and minus infinity and result from division of nonzero
numbers by zero. NaN stands for “Not-a-Number” and results from doing arithmetic
involving infinities.

The source of the difficulty is that the new information about Carol’s purchase
is inconsistent with the earlier information about Alice’s and Bob’s purchases. We
have said that Carol bought exactly half as much fruit as Bob. But she paid 2.77
when half of Bob’s payment would have been only 2.63. The third row of A is equal
to one-half of the second row, but b(3) is not equal to one-half of b(2). For this
particular matrix A and vector b, the solution to the linear system of equations
Ax = b does not exist.

What if we make Carol’s purchase price consistent with Bob’s? We leave A

unchanged and revise b with

b(3) = 2.63
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so

b =

2.36

5.26

2.63

Now we do not have enough information. Our last two equations are scalar multiples
of each other.

12x1 + 2x3 = 5.26

6x1 + x3 = 2.63

One possible solution is the solution to the original problem.

x =

0.29

0.05

0.89

A*x =

2.36

5.26

2.63

But we can pick an arbitrary value for any component of the solution and then use
the first equation and one of the last two equations to compute the other compo-
nents. The result is a solution to all three equations. For example, here is a solution
with its third component equal to zero.

y = A(1:2,1:2)\b(1:2);

y(3) = 0

y =

0.44

0.09

0.00

A*y =

2.36

5.26

2.63

There are infinitely many more.
For this particular matrix A and vector b, the solution to Ax = b is not

unique. The family of possible solutions is generated by the null vector of A. This
is a nonzero vector z for which

Az = 0

The general form of the solution is one particular solution, say our vector x, plus
any arbitrary parameter times the null vector. For any value of t the vector

y = x+ tz
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is a solution to

Ay = b

In Matlab

z = null(A)

A*z

t = rand

y = x + t*z

A*y

You can see that A*z is zero and A*y is equal to b.

“Their average is three.”
Let’s return to the question that I asked you to consider at the beginning of this
chapter. I’m thinking of two numbers. Their average is three. What are the
numbers?

What popped into your head? You probably realized that I hadn’t given you
enough information. But you must have thought of some solution. In my experi-
ence, the most frequent response is “2 and 4”. Let’s see what Matlab responds.

My problem is one linear equation in two unknowns The matrix and right
hand side are

A = [1/2 1/2]

b = 3

We want to solve Ax = b. This is now an underdetermined system. There are fewer
equations than unknowns, so there are infinitely many solutions.

Backslash offers one possible solution

x = A\b

x =

6

0

I bet you didn’t think of this solution.
If we try inv(A)*b we get an error message because rectangular matrices do

not have inverses. But there is something called the pseudoinverse. We can try
that.

x = pinv(A)*b

x =

3

3
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Did that solution occur to you?
These two x’s are just two members of the infinite family of solutions. If we

wanted Matlab to find the [2 4]’ solution, we would have to pose a problem
where the solution is constrained to be a pair of integers, close to each other, but
not equal. It is possible to solve such problems, but that would take us too far
afield.

My Rules.
This chapter illustrates two fundamental facts about technical computing.

• The hardest quantities to compute are ones that do not exist.

• The next hardest are ones that are not unique.

Recap
%% Linear Equations Chapter Recap

% This is an executable program that illustrates the statements

% introduced in the Linear Equations Chapter of "Experiments in MATLAB".

% You can access it with

%

% linear_recap

% edit linear_recap

% publish linear_recap

%% Backslash

format bank

A = [3 12 1; 12 0 2; 0 2 3]

b = [2.36 5.26 2.77]’

x = A\b

%% Forward slash

x = b’/A’

%% Inconsistent singular system

A(3,:) = [6 0 1]

A\b

%% Consistent singular system

b(3) = 2.63

%% One particular solution

x = A(1:2,1:2)\b(1:2);

x(3) = 0

A*x
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%% Null vector

z = null(A)

A*z

%% General solution

t = rand % Arbitrary parameter

y = x + t*z

A*y

Exercises

5.1 Two-by-two. Use backslash to try to solve each of these systems of equations.
Indicate if the solution exists, and if it unique.

(a)
(

1 0
0 2

)

x =

( −1
2

)

(b)
(

1 2
3 4

)

x =

(

1
1

)

(c)
(

1 2
3 6

)

x =

(

1
2

)

(d)
(

1 2
3 6

)

x =

(

1
3

)

5.2 Three-by-three. Use backslash to try to solve each of these systems of equations.
Indicate if the solution exists, and if it unique.

(a)
⎛

⎝

1 0 0
0 2 0
0 0 3

⎞

⎠x =

⎛

⎝

1
1
1

⎞

⎠

(b)
⎛

⎝

9 −36 30
−36 192 −180
30 −180 180

⎞

⎠x =

⎛

⎝

1
0
0

⎞

⎠
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(c)
⎛

⎝

1 2 3
4 12 6
7 8 12

⎞

⎠x =

⎛

⎝

3
12
15

⎞

⎠

(d)
⎛

⎝

8 1 6
3 5 7
4 9 2

⎞

⎠x =

⎛

⎝

1
1
1

⎞

⎠

(e)
⎛

⎝

1 2 3
4 5 6
7 8 9

⎞

⎠x =

⎛

⎝

1
1
1

⎞

⎠

(f)
⎛

⎝

1 2 3
4 5 6
7 8 9

⎞

⎠x =

⎛

⎝

1
0
0

⎞

⎠

5.3 Null vector. Find a nonzero solution z to
⎛

⎝

1 2 3
4 5 6
7 8 9

⎞

⎠ z =

⎛

⎝

0
0
0

⎞

⎠

5.4 Matrix equations. Backslash can be used to solve matrix equations of the form

AX = B

where B has several colums. Do you recognize the solution to the following equa-
tion?

⎛

⎝

53 −52 23
−22 8 38
−7 68 −37

⎞

⎠X =

⎛

⎝

360 0 0
0 360 0
0 0 360

⎞

⎠

5.5 More Fruit. Alice buys four apples, two dozen bananas, and two cantaloupes
for $4.14. Bob buys a dozen apples and two cantaloupes for $5.26. Carol buys a
half dozen bananas and three cantaloupes for $2.97. How much do single pieces of
each fruit cost? (You might want to set format bank.)

5.6 Truss. Figure 5.1 depicts a plane truss having 13 members (the numbered lines)
connecting 8 joints (the numbered circles). The indicated loads, in tons, are applied
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1 2 5 6 8

3 4 7

1 3 5 7 9 11 12

2 6 10 13

4 8

10 15 20

Figure 5.1. A plane truss.

at joints 2, 5, and 6, and we want to determine the resulting force on each member
of the truss.

For the truss to be in static equilibrium, there must be no net force, hor-
izontally or vertically, at any joint. Thus, we can determine the member forces
by equating the horizontal forces to the left and right at each joint, and similarly
equating the vertical forces upward and downward at each joint. For the eight
joints, this would give 16 equations, which is more than the 13 unknown factors
to be determined. For the truss to be statically determinate, that is, for there to
be a unique solution, we assume that joint 1 is rigidly fixed both horizontally and
vertically and that joint 8 is fixed vertically. Resolving the member forces into hor-
izontal and vertical components and defining α = 1/

√
2, we obtain the following

system of equations for the member forces fi:

Joint 2: f2 = f6,

f3 = 10;

Joint 3: αf1 = f4 + αf5,

αf1 + f3 + αf5 = 0;

Joint 4: f4 = f8,

f7 = 0;

Joint 5: αf5 + f6 = αf9 + f10,

αf5 + f7 + αf9 = 15;

Joint 6: f10 = f13,

f11 = 20;

Joint 7: f8 + αf9 = αf12,

αf9 + f11 + αf12 = 0;

Joint 8: f13 + αf12 = 0.

Solve this system of equations to find the vector f of member forces.
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5.7 Circuit. Figure 5.2 is the circuit diagram for a small network of resistors.

1
2

3

4

5

r23 r34

r45r25

r13

r12 r14

r35

vs

i1

i2 i3

i4

Figure 5.2. A resistor network.

There are five nodes, eight resistors, and one constant voltage source. We want
to compute the voltage drops between the nodes and the currents around each of
the loops.

Several different linear systems of equations can be formed to describe this
circuit. Let vk, k = 1, . . . , 4, denote the voltage difference between each of the
first four nodes and node number 5 and let ik, k = 1, . . . , 4, denote the clockwise
current around each of the loops in the diagram. Ohm’s law says that the voltage
drop across a resistor is the resistance times the current. For example, the branch
between nodes 1 and 2 gives

v1 − v2 = r12(i2 − i1).

Using the conductance, which is the reciprocal of the resistance, gkj = 1/rkj , Ohm’s
law becomes

i2 − i1 = g12(v1 − v2).

The voltage source is included in the equation

v3 − vs = r35i4.

Kirchhoff’s voltage law says that the sum of the voltage differences around
each loop is zero. For example, around loop 1,

(v1 − v4) + (v4 − v5) + (v5 − v2) + (v2 − v1) = 0.

Combining the voltage law with Ohm’s law leads to the loop equations for the
currents:

Ri = b.

Here i is the current vector,

i =

⎛

⎜

⎝

i1
i2
i3
i4

⎞

⎟

⎠
,
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b is the source voltage vector,

b =

⎛

⎜

⎝

0
0
0
vs

⎞

⎟

⎠
,

and R is the resistance matrix,

⎛

⎜

⎝

r25 + r12 + r14 + r45 −r12 −r14 −r45
−r12 r23 + r12 + r13 −r13 0
−r14 −r13 r14 + r13 + r34 −r34
−r45 0 −r34 r35 + r45 + r34

⎞

⎟

⎠
.

Kirchhoff’s current law says that the sum of the currents at each node is zero.
For example, at node 1,

(i1 − i2) + (i2 − i3) + (i3 − i1) = 0.

Combining the current law with the conductance version of Ohm’s law leads to the
nodal equations for the voltages:

Gv = c.

Here v is the voltage vector,

v =

⎛

⎜

⎝

v1
v2
v3
v4

⎞

⎟

⎠
,

c is the source current vector,

c =

⎛

⎜

⎝

0
0

g35vs
0

⎞

⎟

⎠
,

and G is the conductance matrix,

⎛

⎜

⎝

g12 + g13 + g14 −g12 −g13 −g14
−g12 g12 + g23 + g25 −g23 0
−g13 −g23 g13 + g23 + g34 + g35 −g34
−g14 0 −g34 g14 + g34 + g45

⎞

⎟

⎠
.

You can solve the linear system obtained from the loop equations to compute
the currents and then use Ohm’s law to recover the voltages. Or you can solve
the linear system obtained from the node equations to compute the voltages and
then use Ohm’s law to recover the currents. Your assignment is to verify that these
two approaches produce the same results for this circuit. You can choose your own
numerical values for the resistances and the voltage source.
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Fractal Fern

The fractal fern involves 2-by-2 matrices.

The programs fern and finitefern in the exm toolbox produce the Fractal
Fern described by Michael Barnsley in Fractals Everywhere [?]. They generate and
plot a potentially infinite sequence of random, but carefully choreographed, points
in the plane. The command

fern

runs forever, producing an increasingly dense plot. The command

finitefern(n)

generates n points and a plot like Figure 6.1. The command

finitefern(n,’s’)

shows the generation of the points one at a time. The command

F = finitefern(n);

generates, but does not plot, n points and returns an array of zeros and ones for
use with sparse matrix and image-processing functions.

The exm toolbox also includes fern.jpg, a 768-by-1024 color image with half
a million points that you can view with a browser or a paint program. You can also
view the file with

F = imread(’fern.png’);

image(F)

Copyright c© 2011 Cleve Moler
MatlabR© is a registered trademark of MathWorks, Inc.TM
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Figure 6.1. Fractal fern.

If you like the image, you might even choose to make it your computer desktop
background. However, you should really run fern on your own computer to see the
dynamics of the emerging fern in high resolution.

The fern is generated by repeated transformations of a point in the plane. Let
x be a vector with two components, x1 and x2, representing the point. There are
four different transformations, all of them of the form

x→ Ax+ b,

with different matrices A and vectors b. These are known as affine transformations.
The most frequently used transformation has

A =

(

0.85 0.04
−0.04 0.85

)

, b =

(

0
1.6

)

.

This transformation shortens and rotates x a little bit, then adds 1.6 to its second
component. Repeated application of this transformation moves the point up and to
the right, heading toward the upper tip of the fern. Every once in a while, one of
the other three transformations is picked at random. These transformations move
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the point into the lower subfern on the right, the lower subfern on the left, or the
stem.

Here is the complete fractal fern program.

function fern

%FERN MATLAB implementation of the Fractal Fern

%Michael Barnsley, Fractals Everywhere, Academic Press,1993

%This version runs forever, or until stop is toggled.

%See also: FINITEFERN.

shg

clf reset

set(gcf,’color’,’white’,’menubar’,’none’, ...

’numbertitle’,’off’,’name’,’Fractal Fern’)

x = [.5; .5];

h = plot(x(1),x(2),’.’);

darkgreen = [0 2/3 0];

set(h,’markersize’,1,’color’,darkgreen,’erasemode’,’none’);

axis([-3 3 0 10])

axis off

stop = uicontrol(’style’,’toggle’,’string’,’stop’, ...

’background’,’white’);

drawnow

p = [ .85 .92 .99 1.00];

A1 = [ .85 .04; -.04 .85]; b1 = [0; 1.6];

A2 = [ .20 -.26; .23 .22]; b2 = [0; 1.6];

A3 = [-.15 .28; .26 .24]; b3 = [0; .44];

A4 = [ 0 0 ; 0 .16];

cnt = 1;

tic

while ~get(stop,’value’)

r = rand;

if r < p(1)

x = A1*x + b1;

elseif r < p(2)

x = A2*x + b2;

elseif r < p(3)

x = A3*x + b3;

else

x = A4*x;

end

set(h,’xdata’,x(1),’ydata’,x(2));

cnt = cnt + 1;

drawnow
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end

t = toc;

s = sprintf(’%8.0f points in %6.3f seconds’,cnt,t);

text(-1.5,-0.5,s,’fontweight’,’bold’);

set(stop,’style’,’pushbutton’,’string’,’close’, ...

’callback’,’close(gcf)’)

Let’s examine this program a few statements at a time.

shg

stands for “show graph window.” It brings an existing graphics window forward,
or creates a new one if necessary.

clf reset

resets most of the figure properties to their default values.

set(gcf,’color’,’white’,’menubar’,’none’, ...

’numbertitle’,’off’,’name’,’Fractal Fern’)

changes the background color of the figure window from the default gray to white
and provides a customized title for the window.

x = [.5; .5];

provides the initial coordinates of the point.

h = plot(x(1),x(2),’.’);

plots a single dot in the plane and saves a handle, h, so that we can later modify
the properties of the plot.

darkgreen = [0 2/3 0];

defines a color where the red and blue components are zero and the green component
is two-thirds of its full intensity.

set(h,’markersize’,1,’color’,darkgreen,’erasemode’,’none’);

makes the dot referenced by h smaller, changes its color, and specifies that the image
of the dot on the screen should not be erased when its coordinates are changed. A
record of these old points is kept by the computer’s graphics hardware (until the
figure is reset), but Matlab itself does not remember them.

axis([-3 3 0 10])

axis off

specifies that the plot should cover the region

−3 ≤ x1 ≤ 3, 0 ≤ x2 ≤ 10,

but that the axes should not be drawn.
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stop = uicontrol(’style’,’toggle’,’string’,’stop’, ...

’background’,’white’);

creates a toggle user interface control, labeled ’stop’ and colored white, in the
default position near the lower left corner of the figure. The handle for the control
is saved in the variable stop.

drawnow

causes the initial figure, including the initial point, to actually be plotted on the
computer screen.

The statement

p = [ .85 .92 .99 1.00];

sets up a vector of probabilities. The statements

A1 = [ .85 .04; -.04 .85]; b1 = [0; 1.6];

A2 = [ .20 -.26; .23 .22]; b2 = [0; 1.6];

A3 = [-.15 .28; .26 .24]; b3 = [0; .44];

A4 = [ 0 0 ; 0 .16];

define the four affine transformations. The statement

cnt = 1;

initializes a counter that keeps track of the number of points plotted. The statement

tic

initializes a stopwatch timer. The statement

while ~get(stop,’value’)

begins a while loop that runs as long as the ’value’ property of the stop toggle is
equal to 0. Clicking the stop toggle changes the value from 0 to 1 and terminates
the loop.

r = rand;

generates a pseudorandom value between 0 and 1. The compound if statement

if r < p(1)

x = A1*x + b1;

elseif r < p(2)

x = A2*x + b2;

elseif r < p(3)

x = A3*x + b3;

else

x = A4*x;

end
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picks one of the four affine transformations. Because p(1) is 0.85, the first trans-
formation is chosen 85% of the time. The other three transformations are chosen
relatively infrequently.

set(h,’xdata’,x(1),’ydata’,x(2));

changes the coordinates of the point h to the new (x1, x2) and plots this new point.
But get(h,’erasemode’) is ’none’, so the old point also remains on the screen.

cnt = cnt + 1;

counts one more point.

drawnow

tells Matlab to take the time to redraw the figure, showing the new point along
with all the old ones. Without this command, nothing would be plotted until stop
is toggled.

end

matches the while at the beginning of the loop. Finally,

t = toc;

reads the timer.

s = sprintf(’%8.0f points in %6.3f seconds’,cnt,t);

text(-1.5,-0.5,s,’fontweight’,’bold’);

displays the elapsed time since tic was called and the final count of the number of
points plotted. Finally,

set(stop,’style’,’pushbutton’,’string’,’close’, ...

’callback’,’close(gcf)’)

changes the control to a push button that closes the window.

Recap
%% Fern Chapter Recap

% This is an executable program that illustrates the statements

% introduced in the Fern Chapter of "Experiments in MATLAB".

% You can access it with

%

% fern_recap

% edit fern_recap

% publish fern_recap

%

% Related EXM programs

%
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% fern

% finitefern

%% fern.jpg

F = imread(’fern.png’);

image(F)

%% A few graphics commands

shg

clf reset

set(gcf,’color’,’white’)

x = [.5; .5];

h = plot(x(1),x(2),’.’);

darkgreen = [0 2/3 0];

set(h,’markersize’,1,’color’,darkgreen,’erasemode’,’none’);

set(h,’xdata’,x(1),’ydata’,x(2));

axis([-3 3 0 10])

axis off

stop = uicontrol(’style’,’toggle’,’string’,’stop’,’background’,’white’);

drawnow

cnt = 12345;

t = 5.432;

s = sprintf(’%8.0f points in %6.3f seconds’,cnt,t);

text(-1.5,-0.5,s,’fontweight’,’bold’);

set(stop,’style’,’pushbutton’,’string’,’close’,’callback’,’close(gcf)’)

Exercises

6.1 Fern color. Change the fern color scheme to use pink on a black background.
Don’t forget the stop button.

6.2 Flip the fern. Flip the fern by interchanging its x- and y-coordinates.

6.3 Erase mode.
(a) What happens if you resize the figure window while the fern is being generated?
Why?

(b) The exm program finitefern can be used to produce printed output of the
fern. Explain why printing is possible with finitefern.m but not with fern.m.

6.4 Fern stem.
(a) What happens to the fern if you change the only nonzero element in the matrix
A4?
(b) What are the coordinates of the lower end of the fern’s stem?
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6.5 Fern tip. The coordinates of the point at the upper tip end of the fern can
be computed by solving a certain 2-by-2 system of simultaneous linear equations.
What is that system and what are the coordinates of the tip?

6.6 Trajectories. The fern algorithm involves repeated random choices from four
different formulas for advancing the point. If the kth formula is used repeatedly
by itself, without random choices, it defines a deterministic trajectory in the (x, y)
plane. Modify finitefern.m so that plots of each of these four trajectories are
superimposed on the plot of the fern. Start each trajectory at the point (−1, 5).
Plot o’s connected with straight lines for the steps along each trajectory. Take as
many steps as are needed to show each trajectory’s limit point. You can superimpose
several plots with

plot(...)

hold on

plot(...)

plot(...)

hold off

6.7 Sierpinski’s triangle. Modify fern.m or finitefern.m so that it produces Sier-
pinski’s triangle. Start at

x =

(

0
0

)

.

At each iterative step, the current point x is replaced with Ax+b, where the matrix
A is always

A =

(

1/2 0
0 1/2

)

and the vector b is chosen at random with equal probability from among the three
vectors

b =

(

0
0

)

, b =

(

1/2
0

)

, and b =

(

1/4√
3/4

)

.
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Exponential Function

The function ez.

I hope you have a live Matlab and the exm functions handy. Enter the
statement

expgui

Click on the blue line with your mouse. Move it until the green line is on top of the
blue line. What is the resulting value of a?

The exponential function is denoted mathematically by et and in Matlab by
exp(t). This function is the solution to the world’s simplest, and perhaps most
important, differential equation,

ẏ = ky

This equation is the basis for any mathematical model describing the time evolution
of a quantity with a rate of production that is proportional to the quantity itself.
Such models include populations, investments, feedback, and radioactivity. We
are using t for the independent variable, y for the dependent variable, k for the
proportionality constant, and

ẏ =
dy

dt

for the rate of growth, or derivative, with respect to t. We are looking for a function
that is proportional to its own derivative.

Let’s start by examining the function

y = 2t

Copyright c© 2011 Cleve Moler
MatlabR© is a registered trademark of MathWorks, Inc.TM

October 4, 2011
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Figure 8.1. The blue curve is the graph of y = 2t. The green curve is the
graph of the rate of growth, ẏ = dy/dt.

We know what 2t means if t is an integer, 2t is the t-th power of 2.

2−1 = 1/2, 20 = 1, 21 = 1, 22 = 4, ...

We also know what 2t means if t = p/q is a rational number, the ratio of two
integers, 2p/q is the q-th root of the p-th power of 2.

21/2 =
√
2 = 1.4142...,

25/3 =
3
√
25 = 3.1748...,

2355/113 =
113
√
2355 = 8.8250...

In principal, for floating point arithmetic, this is all we need to know. All floating
point numbers are ratios of two integers. We do not have to be concerned yet about
the definition of 2t for irrational t. If Matlab can compute powers and roots, we
can plot the graph of 2t, the blue curve in figure 8.1

What is the derivative of 2t? Maybe you have never considered this question,
or don’t remember the answer. (Be careful, it is not t2t−1.) We can plot the
graph of the approximate derivative, using a step size of something like 0.0001. The
following code produces figure 8.1, the graphs of both y = 2t and its approximate
derivative, ẏ.

t = 0:.01:2;

h = .00001;

y = 2.^t;

ydot = (2.^(t+h) - 2.^t)/h;

plot(t,[y; ydot])

The graph of the derivative has the same shape as the graph of the original
function. Let’s look at their ratio, ẏ(t)/y(t).
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Figure 8.2. The ratio, ẏ/y.

plot(t,ydot./y)

axis([0 2 .5 .9])

We see that the ratio of the derivative to the function, shown in figure 8.2, has a
constant value, ẏ/y = 0.6931..., that does not depend upon t .

Now, if you are following along with a live Matlab, repeat the preceding
calculations with y = 3t instead of y = 2t. You should find that the ratio is again
independent of t. This time ẏ/y = 1.0986.... Better yet, experiment with expgui.

If we take any value a and look at y = at, we find that, numerically at least,
the ratio ẏ/y is constant. In other words, ẏ is proportional to y. If a = 2, the
proportionality constant is less than one. If a = 3, the proportionality constant is
greater than one. Can we find an a so that ẏ/y is actually equal to one? If so, we
have found a function that is equal to its own derivative.

The approximate derivative of the function y(t) = at is

ẏ(t) =
at+h − at

h

This can be factored and written

ẏ(t) =
ah − 1

h
at

So the ratio of the derivative to the function is

ẏ(t)

y(t)
=
ah − 1

h

The ratio depends upon h, but not upon t. If we want the ratio to be equal to 1,
we need to find a so that

ah − 1

h
= 1
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Solving this equation for a, we find

a = (1 + h)1/h

The approximate derivative becomes more accurate as h goes to zero, so we are
interested in the value of

(1 + h)1/h

as h approaches zero. This involves taking numbers very close to 1 and raising
them to very large powers. The surprising fact is that this limiting process defines
a number that turns out to be one of the most important quantities in mathematics

e = lim
h→0

(1 + h)1/h

Here is the beginning and end of a table of values generated by repeatedly cutting
h in half.

format long

format compact

h = 1;

while h > 2*eps

h = h/2;

e = (1 + h)^(1/h);

disp([h e])

end

0.500000000000000 2.250000000000000

0.250000000000000 2.441406250000000

0.125000000000000 2.565784513950348

0.062500000000000 2.637928497366600

0.031250000000000 2.676990129378183

0.015625000000000 2.697344952565099

... ...

0.000000000000014 2.718281828459026

0.000000000000007 2.718281828459036

0.000000000000004 2.718281828459040

0.000000000000002 2.718281828459043

0.000000000000001 2.718281828459044

0.000000000000000 2.718281828459045

The last line of output involves a value of h that is not zero, but is so small that it
prints as a string of zeros. We are actually computing

(1 + 2−51)2
51

which is

(1 +
1

2251799813685248
)2251799813685248
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The result gives us the numerical value of e correct to 16 significant decimal digits.
It’s easy to remember the repeating pattern of the first 10 significant digits.

e = 2.718281828...

Let’s derive a more useful representation of the exponential function. Start
by putting t back in the picture.

et = ( lim
h→0

(1 + h)1/h)t

= lim
h→0

(1 + h)t/h

Here is the Binomial Theorem.

(a+ b)n = an + nan−1b+
n(n− 1)

2!
an−2b2 +

n(n− 1)(n− 2)

3!
an−3b3 + ...

If n is an integer, this terminates after n+1 terms with bn. But if n is not an integer,
the expansion is an infinite series. Apply the binonimial theorem with a = 1, b = h
and n = t/h.

(1 + h)t/h = 1 + (t/h)h+
(t/h)(t/h− 1)

2!
h2 +

(t/h)(t/h− 1)(t/h− 2)

3!
h3 + ...

= 1 + t+
t(t− h)

2!
+
t(t− h)(t− 2h)

3!
+ ...

Now let h go to zero. We get the power series for the exponential function.

et = 1 + t+
t2

2!
+
t3

3!
+ ...+

tn

n!
+ ...

This series is a rigorous mathematical definition that applies to any t, positive or
negative, rational or irrational, real or complex. The n + 1-st term is tn/n!. As
n increases, the tn in the numerator is eventually overwhelmed by the n! in the
denominator, so the terms go to zero fast enough that the infinite series converges.

It is almost possible to use this power series for actual computation of et. Here
is an experimental Matlab program.

function s = expex(t)

% EXPEX Experimental version of EXP(T)

s = 1;

term = 1;

n = 0;

r = 0;

while r ~= s

r = s;

n = n + 1;

term = (t/n)*term;

s = s + term;

end



102 Chapter 8. Exponential Function

Notice that there are no powers or factorials. Each term is obtained from the
previous one using the fact that

tn

n!
=
t

n

tn−1

(n− 1)!

The potentially infinite loop is terminated when r == s, that is when the floating
point values of two successive partial sums are equal.

There are “only” two things wrong with this program – its speed and its
accuracy. The terms in the series increase as long as |t/n| ≥ 1, then decrease after
n reaches the point where |t/n| < 1. So if |t| is not too large, say |t| < 2, everything
is OK; only a few terms are required and the sum is computed accurately. But
larger values of t require more terms and the program requires more time. This is
not a very serious defect if t is real and positive. The series converges so rapidly
that the extra time is hardly noticeable.

However, if t is real and negative the computed result may be inaccurate. The
terms alternate in sign and cancel each other in the sum to produce a small value
for et. Take, for example, t = −20. The true value of e−20 is roughly 2 · 10−9.
Unfortunately, the largest terms in the series are (−20)19/19! and (−20)20/20!,
which are opposite in sign and both of size 4 · 107. There is 16 orders of magnitude
difference between the size of the largest terms and the size of the final sum. With
only 16 digits of accuracy, we lose everything. The computed value obtained from
expex(-20) is completely wrong.

For real, negative t it is possible to get an accurate result from the power
series by using the fact that

et =
1

e−t

For complex t, there is no such easy fix for the accuracy difficulties of the power
series.

In contrast to its more famous cousin, π, the actual numerical value of e is
not very important. It’s the exponential function

et

that’s important. In fact, Matlab doesn’t have the value of e built in. Nevertheless,
we can use

e = expex(1)

to compute an approximate value for e. Only seventeen terms are required to get
floating point accuracy.

e = 2.718281828459045

After computing e, you could then use e^t, but exp(t) is preferable.

Logarithms
The logarithm is the inverse function of the exponential. If

y = et
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then

loge(y) = t

The function loge(y) is known as the natural logarithm and is often denoted by ln y.
More generally, if

y = at

then

loga(y) = t

The function log10(y) is known as the common logarithm. Matlab uses log(y),
log10(y), and log2(y) for loge(y), log10(y), and log2(y).

Exponential Growth
The term exponential growth is often used informally to describe any kind of rapid
growth. Mathematically, the term refers to any time evolution, y(t), where the rate
of growth is proportional to the quantity itself.

ẏ = ky

The solution to this equation is determined for all t by specifying the value of y at
one particular t, usually t = 0.

y(0) = y0

Then

y(t) = y0e
kt

Suppose, at time t = 0, we have a million E. coli bacteria in a test tube under
ideal laboratory conditions. Twenty minutes later each bacterium has fissioned to
produce another one. So at t = 20, the population is two million. Every 20 minutes
the population doubles. At t = 40, it’s four million. At t = 60, it’s eight million.
And so on. The population, measured in millions of cells, y(t), is

y(t) = 2t/20

Let k = ln 2/20 = .0347. Then, with t measured in minutes and the population y(t)
measured in millions, we have

ẏ = ky, y(0) = 1

Consequently

y(t) = ekt

This is exponential growth, but it cannot go on forever. Eventually, the growth rate
is affected by the size of the container. Initially at least, the size of the population
is modelled by the exponential function.
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Suppose, at time t = 0, you invest $1000 in a savings account that pays 5%
interest, compounded yearly. A year later, at t = 1, the bank adds 5% of $1000
to your account, giving you y(1) = 1050. Another year later you get 5% of 1050,
which is 52.50, giving y(2) = 1102.50. If y(0) = 1000 is your initial investment,
r = 0.05 is the yearly interest rate, t is measured in years, and h is the step size for
the compound interest calculation, we have

y(t+ h) = y(t) + rhy(t)

What if the interest is compounded monthly instead of yearly? At the end of the
each month, you get .05/12 times your current balance added to your account. The
same equation applies, but now with h = 1/12 instead of h = 1. Rewrite the
equation as

y(t+ h)− y(t)

h
= ry(t)

and let h tend to zero. We get

ẏ(t) = ry(t)

This defines interest compounded continuously. The evolution of your investment
is described by

y(t) = y(0)ert

Here is a Matlab program that tabulates the growth of $1000 invested at 5% over
a 20 year period , with interest compounded yearly, monthly, and continuously.

format bank

r = 0.05;

y0 = 1000;

for t = 0:20

y1 = (1+r)^t*y0;

y2 = (1+r/12)^(12*t)*y0;

y3 = exp(r*t)*y0;

disp([t y1 y2 y3])

end

The first few and last few lines of output are

t yearly monthly continuous

0 1000.00 1000.00 1000.00

1 1050.00 1051.16 1051.27

2 1102.50 1104.94 1105.17

3 1157.63 1161.47 1161.83

4 1215.51 1220.90 1221.40

5 1276.28 1283.36 1284.03

.. ....... ....... .......

16 2182.87 2221.85 2225.54
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17 2292.02 2335.52 2339.65

18 2406.62 2455.01 2459.60

19 2526.95 2580.61 2585.71

20 2653.30 2712.64 2718.28

Compound interest actually qualifies as exponential growth, although with modest
interest rates, most people would not use that term.

Let’s borrow money to buy a car. We’ll take out a $20,000 car loan at 10%
per year interest, make monthly payments, and plan to pay off the loan in 3 years.
What is our monthly payment, p? Each monthly transaction adds interest to our
current balance and subtracts the monthly payment.

y(t+ h) = y(t) + rhy(t)− p

= (1 + rh)y(t)− p

Apply this repeatedly for two, three, then n months.

y(t+ 2h) = (1 + rh)y(t+ h)− p

= (1 + rh)2y(t)− ((1 + rh) + 1)p

y(t+ 3h) = (1 + rh)3y(t)− ((1 + rh)2 + (1 + rh) + 1)p

y(t+ nh) = (1 + rh)ny(0)− ((1 + rh)n−1 + ...+ (1 + rh) + 1)p

= (1 + rh)ny(0)− ((1 + rh)n − 1)/(1 + rh− 1)p

Solve for p

p = (1 + rh)n/((1 + rh)n − 1)rhy0

Use Matlab to evaluate this for our car loan.

y0 = 20000

r = .10

h = 1/12

n = 36

p = (1+r*h)^n/((1+r*h)^n-1)*r*h*y0

We find the monthly payment would be

p = 645.34

If we didn’t have to pay interest on the loan and just made 36 monthly payments,
they would be

y0/n

= 555.56

It’s hard to think about continuous compounding for a loan because we would have
to figure out how to make infinitely many infinitely small payments.
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Complex exponential
What do we mean by ez if z is complex? The behavior is very different from et for
real t, but equally interesting and important.

Let’s start with a purely imaginary z and set z = iθ where θ is real. We then
make the definition

eiθ = cos θ + i sin θ

This formula is remarkable. It defines the exponential function for an imaginary
argument in terms of trig functions of a real argument. There are several reasons
why this is a reasonable defintion. First of all, it behaves like an exponential should.
We expect

eiθ+iψ = eiθeiψ

This behavior is a consequence of the double angle formulas for trig functions.

cos(θ + ψ) = cos θ cosψ − sin θ sinψ

sin(θ + ψ) = cos θ sinψ + sin θ cosψ

Secondly, derivatives should be have as expected.

d

dθ
eiθ = ieiθ

d2

dθ2
eiθ = i2eiθ = −eiθ

In words, the second derivative should be the negative of the function itself. This
works because the same is true of the trig functions. In fact, this could be the basis
for the defintion because the initial conditions are correct.

e0 = 1 = cos 0 + i sin 0

The power series is another consideration. Replace t by iθ in the power series for
et. Rearranging terms gives the power series for cos θ and sin θ.

For Matlab especially, there is an important connection between multiplica-
tion by a complex exponential and the rotation matrices that we considered in the
chapter on matrices. Let w = x+ iy be any other complex number. What is eiθw
? Let u and v be the result of the 2-by-2 matrix multiplication

(

u
v

)

=

(

cos θ − sin θ
sin θ cos θ

)(

x
y

)

Then

eiθw = u+ iv

This says that multiplication of a complex number by eiθ corresponds to a rotation
of that number in the complex plane by an angle θ.
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Figure 8.3. Two plots of eiθ.

When the Matlab plot function sees a complex vector as its first argument,
it understands the components to be points in the complex plane. So the octagon
in the left half of figure 8.3 can be defined and plotted using eiθ with

theta = (1:2:17)’*pi/8

z = exp(i*theta)

p = plot(z);

The quantity p is the handle to the plot. This allows us to complete the graphic
with

set(p,’linewidth’,4,’color’,’red’)

axis square

axis off

An exercise asks you to modify this code to produce the five-pointed star in the
right half of the figure.

Once we have defined eiθ for real θ, it is clear how to define ez for a general
complex z = x+ iy,

ez = ex+iy

= exeiy

= ex(cos y + i sin y)

Finally, setting z = iπ, we get a famous relationship involving three of the
most important quantities in mathematics, e, i, and π

eiπ = −1

Let’s check that Matlab and the Symbolic Toolbox get this right.

>> exp(i*pi)

ans =

-1.0000 + 0.0000i
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>> exp(i*sym(pi))

ans =

-1

Recap
%% Exponential Chapter Recap

% This is an executable program that illustrates the statements

% introduced in the Exponential Chapter of "Experiments in MATLAB".

% You can access it with

%

% exponential_recap

% edit exponential_recap

% publish exponential_recap

%

% Related EXM programs

%

% expgui

% wiggle

%% Plot a^t and its approximate derivative

a = 2;

t = 0:.01:2;

h = .00001;

y = 2.^t;

ydot = (2.^(t+h) - 2.^t)/h;

plot(t,[y; ydot])

%% Compute e

format long

format compact

h = 1;

while h > 2*eps

h = h/2;

e = (1 + h)^(1/h);

disp([h e])

end

%% Experimental version of exp(t)

t = rand

s = 1;

term = 1;

n = 0;

r = 0;

while r ~= s
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r = s;

n = n + 1;

term = (t/n)*term;

s = s + term;

end

exp_of_t = s

%% Value of e

e = expex(1)

%% Compound interest

fprintf(’ t yearly monthly continuous\n’)

format bank

r = 0.05;

y0 = 1000;

for t = 0:20

y1 = (1+r)^t*y0;

y2 = (1+r/12)^(12*t)*y0;

y3 = exp(r*t)*y0;

disp([t y1 y2 y3])

end

%% Payments for a car loan

y0 = 20000

r = .10

h = 1/12

n = 36

p = (1+r*h)^n/((1+r*h)^n-1)*r*h*y0

%% Complex exponential

theta = (1:2:17)’*pi/8

z = exp(i*theta)

p = plot(z);

set(p,’linewidth’,4,’color’,’red’)

axis square off

%% Famous relation between e, i and pi

exp(i*pi)

%% Use the Symbolic Toolbox

exp(i*sym(pi))
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Exercises

8.1 e cubed. The value of e3 is close to 20. How close? What is the percentage
error?

8.2 expgui.
(a) With expgui, the graph of y = at, the blue line, always intercepts the y-axis at
y = 1. Where does the graph of dy/dx, the green line, intercept the y-axis?
(b) What happens if you replace plot by semilogy in expgui?

8.3 Computing e.
(a) If we try to compute (1+h)1/h for small values of h that are inverse powers of 10,
it doesn’t work very well. Since inverse powers of 10 cannot be represented exactly
as binary floating point numbers, the portion of h that effectively gets added to 1
is different than the value involved in the computation of 1/h. That’s why we used
inverse powers of 2 in the computation shown in the text. Try this:

format long

format compact

h = 1;

while h > 1.e-15

h = h/10;

e = (1 + h)^(1/h);

disp([h e])

end

How close do you get to computing the correct value of e?
(b) Now try this instead:

format long

format compact

h = 1;

while h > 1.e-15

h = h/10;

e = (1 + h)^(1/(1+h-1));

disp([h e])

end

How well does this work? Why?

8.4 expex. Modify expex by inserting

disp([term s])

as the last statement inside the while loop. Change the output you see at the
command line.
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format compact

format long

Explain what you see when you try expex(t) for various real values of t.

expex(.001)

expex(-.001)

expex(.1)

expex(-.1)

expex(1)

expex(-1)

Try some imaginary values of t.

expex(.1i)

expex(i)

expex(i*pi/3)

expex(i*pi)

expex(2*i*pi)

Increase the width of the output window, change the output format and try larger
values of t.

format long e

expex(10)

expex(-10)

expex(10*pi*i)

8.5 Instrument expex. Investigate both the cost and the accuracy of expex. Modify
expex so that it returns both the sum s and the number of terms required n. Assess
the relative error by comparing the result from expex(t) with the result from the
built-in function exp(t).

relerr = abs((exp(t) - expex(t))/exp(t))

Make a table showing that the number of terms required increases and the relative
error deteriorates for large t, particularly negative t.

8.6 Complex wiggle. Revise wiggle and dot2dot to create wigglez and dot2dotz

that use multiplication by eiθ instead of multiplication by two-by-two matrices. The
crux of wiggle is

G = [cos(theta) sin(theta); -sin(theta) cos(theta)];

Y = G*X;

dot2dot(Y);

In wigglez this will become

w = exp(i*theta)*z;

dot2dotz(w)
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You can use wigglez with a scaled octogon.

theta = (1:2:17)’*pi/8

z = exp(i*theta)

wigglez(8*z)

Or, with our house expressed as a complex vector.

H = house;

z = H(1,:) + i*H(2,:);

wigglez(z)

8.7 Make the star. Recreate the five-pointed star in the right half of figure 8.3. The
points of the star can be traversed in the desired order with

theta = (0:3:15)’*(2*pi/5) + pi/2



Chapter 13

Mandelbrot Set

Fractals, topology, complex arithmetic and fascinating computer graphics.

Benoit Mandelbrot was a Polish/French/American mathematician who has
spent most of his career at the IBM Watson Research Center in Yorktown Heights,
N.Y. He coined the term fractal and published a very influential book, The Fractal
Geometry of Nature, in 1982. An image of the now famous Mandelbrot set appeared
on the cover of Scientific American in 1985. This was about the time that computer
graphical displays were becoming widely available. Since then, the Mandelbrot set
has stimulated deep research topics in mathematics and has also been the basis for
an uncountable number of graphics projects, hardware demos, and Web pages.

To get in the mood for the Mandelbrot set, consider the region in the complex
plane of trajectories generated by repeated squaring,

zk+1 = z2k, k = 0, 1, ...

For which initial values z0 does this sequence remain bounded as k → ∞? It is
easy to see that this set is simply the unit disc, |z0| <= 1, shown in figure 13.1.
If |z0| <= 1, the sequence zk remains bounded. But if |z0| > 1, the sequence is
unbounded. The boundary of the unit disc is the unit circle, |z0| = 1. There is
nothing very difficult or exciting here.

The definition is the Mandelbrot set is only slightly more complicated. It
involves repeatedly adding in the initial point. The Mandelbrot set is the region in
the complex plane consisting of the values z0 for which the trajectories defined by

zk+1 = z2k + z0, k = 0, 1, ...

remain bounded at k → ∞. That’s it. That’s the entire definition. It’s amazing
that such a simple definition can produce such fascinating complexity.

Copyright c© 2011 Cleve Moler
MatlabR© is a registered trademark of MathWorks, Inc.TM
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Figure 13.1. The unit disc is shown in red. The boundary is simply the
unit circle. There is no intricate fringe.
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Figure 13.2. The Mandelbrot set is shown in red. The fringe just outside
the set, shown in black, is a region of rich structure.
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Figure 13.3. Two trajectories. z0 = .25-.54i generates a cycle of length
four, while nearby z0 = .22-.54i generates an unbounded trajectory.

Figure 13.2 shows the overall geometry of the Mandelbrot set. However, this
view does not have the resolution to show the richly detailed structure of the fringe
just outside the boundary of the set. In fact, the set has tiny filaments reaching into
the fringe region, even though the fringe appears to be solid black in the figure. It
has recently been proved that the Mandelbrot set is mathematically connected, but
the connected region is sometimes so thin that we cannot resolve it on a graphics
screen or even compute it in a reasonable amount of time.

To see how the definition works, enter

z0 = .25-.54i

z = 0

into Matlab. Then use the up-arrow key to repeatedly execute the statement

z = z^2 + z0

The first few lines of output are

0.2500 - 0.5400i

0.0209 - 0.8100i

-0.4057 - 0.5739i

0.0852 - 0.0744i

0.2517 - 0.5527i

...

The values eventually settle into a cycle

0.2627 - 0.5508i

0.0156 - 0.8294i

-0.4377 - 0.5659i

0.1213 - 0.0446i
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0.2627 - 0.5508i

...

This cycle repeats forever. The trajectory remains bounded. This tells us that the
starting value value, z0 = .25-.54i, is in the Mandelbrot set. The same cycle is
shown in the left half of figure 13.3.

On the other hand, start with

z0 = .22-.54i

z = 0

and repeatedly execute the statement

z = z^2 + z0

You will see

0.2200 - 0.5400i

-0.0232 - 0.7776i

-0.3841 - 0.5039i

0.1136 - 0.1529i

0.2095 - 0.5747i

...

Then, after 24 iterations,

...

1.5708 - 1.1300i

1.4107 - 4.0899i

-14.5174 -12.0794i

6.5064e+001 +3.5018e+002i

-1.1840e+005 +4.5568e+004i

The trajectory is blowing up rapidly. After a few more iterations, the floating point
numbers overflow. So this z0 is not in the Mandelbrot set. The same unbounded
trajectory is shown in the right half of figure 13.3. We see that the first value,
z0 = .25-.54i, is in the Mandelbrot set, while the second value, z0 = .22-.54i,
which is nearby, is not.

The algorithm doesn’t have to wait until z reachs floating point overflow. As
soon as z satisfies

abs(z) >= 2

subsequent iterations will essential square the value of |z| and it will behave like

22
k

.
Try it yourself. Put these statements on one line.

z0 = ...

z = 0;

while abs(z) < 2

z = z^2+z0;

disp(z),

end
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Use the up arrow and backspace keys to retrieve the statement and change z0 to
different values near .25-.54i. If you have to hit <ctrl>-c to break out of an
infinite loop, then z0 is in the Mandelbrot set. If the while condition is eventually
false and the loop terminates without your help, then z0 is not in the set.

The number of iterations required for z to escape the disc of radius 2 provides
the basis for showing the detail in the fringe. Let’s add an iteration counter to the
loop. A quantity we call depth specifies the maximum interation count and thereby
determines both the level of detail and the overall computation time. Typical values
of depth are several hundred or a few thousand.

z0 = ...

z = 0;

k = 0;

while abs(z) < 2 && k < depth

z = z^2+z0;

k = k + 1;

end

The maximum value of k is depth. If the value of k is less than depth, then z0

is outside the set. Large values of k indicate that z0 is in the fringe, close to the
boundary. If k reaches depth then z0 is declared to be inside the Mandelbrot set.

Here is a small table of iteration counts s z0 ranges over complex values near
0.22-0.54i. We have set depth = 512.

0.205 0.210 0.215 0.220 0.225 0.230 0.235 0.240 0.245

-0.520 512 512 512 512 512 512 44 512 512

-0.525 512 512 512 512 512 36 51 512 512

-0.530 512 512 512 512 35 31 74 512 512

-0.535 512 512 512 512 26 28 57 512 512

-0.540 512 139 113 26 24 73 56 512 512

-0.545 512 199 211 21 22 25 120 512 512

-0.550 33 25 21 20 20 25 63 85 512

-0.555 34 20 18 18 19 21 33 512 512

-0.560 62 19 17 17 18 33 162 40 344

We see that about half of the values are less than depth; they correspond to points
outside of the Mandelbrot set, in the fringe near the boundary. The other half of
the values are equal to depth, corresponding to points that are regarded as in the
set. If we were to redo the computation with a larger value of depth, the entries
that are less than 512 in this table would not change, but some of the entries that
are now capped at 512 might increase.

The iteration counts can be used as indices into an RGB color map of size
depth-by-3. The first row of this map specifies the color assigned to any points on
the z0 grid that lie outside the disc of radius 2. The next few rows provide colors
for the points on the z0 grid that generate trajectories that escape quickly. The
last row of the map is the color of the points that survive depth iterations and so
are in the set.
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The map used in figure 13.2 emphasizes the set itself and its boundary. The
map has 12 rows of white at the beginning, one row of dark red at the end, and
black in between. Images that emphasize the structure in the fringe are achieved
when the color map varies cyclicly over a few dozen colors. One of the exercises
asks you to experiment with color maps.

Figure 13.4. Improving resolution.

Array operations.
Our script mandelbrot_recap shows how Matlab array arithmetic operates a grid
of complex numbers simultaneously and accumulates an array of iteration counters,
producing images like those in figure 13.4 The code begins by defining the region
in the complex plane to be sampled. A step size of 0.05 gives the coarse resolution
shown on the right in the figure.

x = 0: 0.05: 0.80;

y = x’;

The next section of code uses an elegant, but tricky, bit of Matlab indexing
known as Tony’s Trick. The quantities x and y are one-dimensional real arrays of
length n, one a column vector and the other a row vector. We want to create a two-
dimensional n-by-n array with elements formed from all possible sums of elements
from x and y.

zk,j = xk + yji, i =
√−1, k, j = 1, ..., n

This can be done by generating a vector e of length n with all elements equal to one.
Then the quantity x(e,:) is a two-dimensional array formed by using x, which is the
same as x(1,:), n times. Similarly, y(:,e) is a two-dimensional arrray containing
n copies of the column vector y.
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n = length(x);

e = ones(n,1);

z0 = x(e,:) + i*y(:,e);

If you find it hard to remember Tony’s indexing trick, the function meshgrid

does the same thing in two steps.

[X,Y] = meshgrid(x,y);

z0 = X + i*Y;

Now initialize two more arrays, one for the complex iterates and one for the
counts.

z = zeros(n,n);

c = zeros(n,n);

Here is the Mandelbrot iteration repeated depth times. With each iteration we also
keep track of the iterates that are still within the circle of radius 2.

depth = 32;

for k = 1:depth

z = z.^2 + z0;

c(abs(z) < 2) = k;

end

We are now finished with z. The actual values of z are not important, only the
counts are needed to create the image. Our grid is small enough that we can actually
print out the counts c.

c

The results are

c =

32 32 32 32 32 32 11 7 6 5 4 3 3 3 2 2 2

32 32 32 32 32 32 32 9 6 5 4 3 3 3 2 2 2

32 32 32 32 32 32 32 32 7 5 4 3 3 3 2 2 2

32 32 32 32 32 32 32 32 27 5 4 3 3 3 2 2 2

32 32 32 32 32 32 32 32 30 6 4 3 3 3 2 2 2

32 32 32 32 32 32 32 32 13 7 4 3 3 3 2 2 2

32 32 32 32 32 32 32 32 14 7 5 3 3 2 2 2 2

32 32 32 32 32 32 32 32 32 17 4 3 3 2 2 2 2

32 32 32 32 32 32 32 16 8 18 4 3 3 2 2 2 2

32 32 32 32 32 32 32 11 6 5 4 3 3 2 2 2 2

32 32 32 32 32 32 32 19 6 5 4 3 2 2 2 2 2

32 32 32 32 32 32 32 23 8 4 4 3 2 2 2 2 2

32 32 32 19 11 13 14 15 14 4 3 2 2 2 2 2 2

22 32 12 32 7 7 7 14 6 4 3 2 2 2 2 2 2

12 9 8 7 5 5 5 17 4 3 3 2 2 2 2 2 1

32 7 6 5 5 4 4 4 3 3 2 2 2 2 2 1 1

17 7 5 4 4 4 4 3 3 2 2 2 2 2 2 1 1
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We see that points in the upper left of the grid, with fairly small initial z0 values,
have survived 32 iterations without going outside the circle of radius two, while
points in the lower right, with fairly large initial values, have lasted only one or two
iterations. The interesting grid points are in between, they are on the fringe.

Now comes the final step, making the plot. The image command does the
job, even though this is not an image in the usual sense. The count values in c are
used as indices into a 32-by-3 array of RGB color values. In this example, the jet

colormap is reversed to give dark red as its first value, pass through shades of green
and yellow, and finish with dark blue as its 32-nd and final value.

image(c)

axis image

colormap(flipud(jet(depth)))

Exercises ask you to increase the resolution by decreasing the step size, thereby
producing the other half of figure 13.4, to investigate the effect of changing depth,
and to invesigate other color maps.

Mandelbrot GUI
The exm toolbox function mandelbrot is your starting point for exploration of the
Mandelbrot set. With no arguments, the statement

mandelbrot

provides thumbnail icons of the twelve regions featured in this chapter. The state-
ment

mandelbrot(r)

with r between 1 and 12 starts with the r-th region. The statement

mandelbrot(center,width,grid,depth,cmapindx)

explores the Mandelbrot set in a square region of the complex plane with the speci-
fied center and width, using a grid-by-grid grid, an iteration limit of depth, and
the color map number cmapindx. The default values of the parameters are

center = -0.5+0i

width = 3

grid = 512

depth = 256

cmapindx = 1

In other words,

mandelbrot(-0.5+0i, 3, 512, 256, 1)

generates figure 13.2, but with the jets color map. Changing the last argument
from 1 to 6 generates the actual figure 13.2 with the fringe color map. On my
laptop, these computations each take about half a second.

A simple estimate of the execution time is proportional to
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grid^2 * depth

So the statement

mandelbrot(-0.5+0i, 3, 2048, 1024, 1)

could take

(2048/512)2 · (1024/256) = 64

times as long as the default. However, this is an overestimate and the actual exe-
cution time is about 11 seconds.

Most of the computational time required to compute the Mandelbrot set is
spent updating two arrays z and kz by repeatedly executing the step

z = z.^2 + z0;

j = (abs(z) < 2);

kz(j) = d;

This computation can be carried out faster by writing a function mandelbrot_step

in C and creating as a Matlab executable or c-mex file. Different machines and
operating systems require different versions of a mex file, so you should see files
with names like mandelbrot_step.mexw32 and mandelbrot_step.glnx64 in the
exm toolbox.

The mandelbrot gui turns on the Matlab zoom feature. The mouse pointer
becomes a small magnifying glass. You can click and release on a point to zoom by
a factor of two, or you can click and drag to delineate a new region.

The mandelbrot gui provides several uicontrols. Try these as you read along.

The listbox at the bottom of the gui allows you to select any of the predefined
regions shown in the figures in this chapter.

depth. Increase the depth by a factor of 3/2 or 4/3.

grid. Refine the grid by a factor of 3/2 or 4/3. The depth and grid size are
always a power of two or three times a power of two. Two clicks on the depth or
grid button doubles the parameter.

color. Cycle through several color maps. jets and hots are cyclic repetitions
of short copies of the basic Matlab jet and hot color maps. cmyk cycles through
eight basic colors, blue, green, red, cyan, magenta, yellow, gray, and black. fringe
is a noncyclic map used for images like figure 13.2.

exit. Close the gui.

The Mandelbrot set is self similar. Small regions in the fringe reveal features
that are similar to the original set. Figure 13.6, which we have dubbed “Mandelbrot
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Figure 13.5. The figures in this chapter, and the predefined regions in our
mandelbrot program, show these regions in the fringe just outside the Mandelbrot
set.

Junior”, is one example. Figure 13.7, which we call the “‘Plaza”, uses our flag

colormap to reveal fine detail in red, white and blue.
The portion of the boundary of the Mandelbrot set between the two large,

nearly circular central regions is known as “The Valley of the Seahorses”. Fig-
ure 13.8 shows the result of zooming in on the peninsula between the two nearly
circular regions of the set. The figure can be generated directly with the command

mandelbrot(-.7700-.1300i,0.1,1024,512)

We decided to name the image in figure 13.9 the “West Wing” because it resembles
the X-wing fighter that Luke Skywalker flies in Star Wars and because it is located
near the leftmost, or far western, portion of the set. The magnification factor is a
relatively modest 104, so depth does not need to be very large. The command to
generate the West Wing is

mandelbrot(-1.6735-0.0003318i,1.5e-4,1024,160,1)

One of the best known examples of self similarity, the “Buzzsaw”, is shown in
figure 13.11. It can be generated with

mandelbrot(0.001643721971153+0.822467633298876i, ...
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4.0e-11,1024,2048,2)

Taking width = 4.0e-11 corresponds to a magnification factor of almost 1011. To
appreciate the size of this factor, if the original Mandelbrot set fills the screen
on your computer, the Buzzsaw is smaller than the individual transistors in your
machine’s microprocessor.

We call figure 13.12 “Nebula” because it reminds us of interstellar dust. It is
generated by

mandelbrot(0.73752777-0.12849548i,4.88e-5,1024,2048,3)

The next three images are obtained by carefully zooming on one location. We
call them the “Vortex”, the “Microbug”, and the “Nucleus”.

mandelbrot(-1.74975914513036646-0.00000000368513796i, ...

6.0e-12,1024,2048,2)

mandelbrot(-1.74975914513271613-0.00000000368338015i, ...

3.75e-13,1024,2048,2)

mandelbrot(-1.74975914513272790-0.00000000368338638i, ...

9.375e-14,1024,2048,2)

The most intricate and colorful image among our examples is figure 13.16,
the “Geode”. It involves a fine grid and a large value of depth and consequently
requires a few minutes to compute.

mandelbrot(0.28692299709-0.01218247138i,6.0e-10,2048,4096,1)

These examples are just a tiny sampling of the structure of the Mandelbrot
set.

Further Reading
We highly recommend a real time fractal zoomer called “XaoS”, developed by
Thomas Marsh, Jan Hubicka and Zoltan Kovacs, assisted by an international group
of volunteers. See

http://wmi.math.u-szeged.hu/xaos/doku.php

If you are expert at using your Web browser and possibly downloading an
obscure video codec, take a look at the Wikipedia video

http://commons.wikimedia.org/wiki/ ...

Image:Fractal-zoom-1-03-Mandelbrot_Buzzsaw.ogg

It’s terrific to watch, but it may be a lot of trouble to get working.

Recap
%% Mandelbrot Chapter Recap

% This is an executable program that illustrates the statements
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% introduced in the Mandelbrot Chapter of "Experiments in MATLAB".

% You can access it with

%

% mandelbrot_recap

% edit mandelbrot_recap

% publish mandelbrot_recap

%

% Related EXM programs

%

% mandelbrot

%% Define the region.

x = 0: 0.05: 0.8;

y = x’;

%% Create the two-dimensional complex grid using Tony’s indexing trick.

n = length(x);

e = ones(n,1);

z0 = x(e,:) + i*y(:,e);

%% Or, do the same thing with meshgrid.

[X,Y] = meshgrid(x,y);

z0 = X + i*Y;

%% Initialize the iterates and counts arrays.

z = zeros(n,n);

c = zeros(n,n);

%% Here is the Mandelbrot iteration.

depth = 32;

for k = 1:depth

z = z.^3 + z0;

c(abs(z) < 2) = k;

end

%% Create an image from the counts.

c

image(c)

axis image

%% Colors

colormap(flipud(jet(depth)))
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Exercises

13.1 Explore. Use the mandelbrot gui to find some interesting regions that, as far
as you know, have never been seen before. Give them your own names.

13.2 depth. Modify mandelbrot_recap to reproduce our table of iteration counts
for x = .205:.005:.245 and y = -.520:-.005:-.560. First, use depth = 512.
Then use larger values of depth and see which table entries change.

13.3 Resolution. Reproduce the image in the right half of figure 13.4.

13.4 Big picture. Modify mandelbrot_recap to display the entire Mandelbrot set.

13.5 Color maps. Investigate color maps. Use mandelbrot_recap with a smaller
step size and a large value of depth to produce an image. Find how mandelbrot

computes the cyclic color maps called jets, hots and sepia. Then use those maps
on your image.

13.6 p-th power. In either mandelbrot_recap or the mandelbrot gui, change the
power in the Mandelbrot iteration to

zk+1 = zpk + z0

for some fixed p �= 2. If you want to try programming Handle Graphics, add a
button to mandelbrot that lets you set p.

13.7 Too much magnification. When the width of the region gets to be smaller than
about 10−15, our mandelbrot gui does not work very well. Why?

13.8 Spin the color map. This might not work very well on your computer because it
depends on what kind of graphics hardware you have. When you have an interesting
region plotted in the figure window, bring up the command window, resize it so that
it does not cover the figure window, and enter the command

spinmap(10)

I won’t try to describe what happens – you have to see it for yourself. The effect is
most dramatic with the “seahorses2” region. Enter

help spinmap

for more details.
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Figure 13.6. Region #2, “Mandelbrot Junior”. The fringe around the
Mandelbrot set in self similar. Small versions of the set appear at all levels of
magnification.

Figure 13.7. Region #3, “Plaza”, with the flag color map.
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Figure 13.8. Region #4. “Valley of the Seahorses”.

Figure 13.9. Region #5. Our “West Wing” is located just off the real axis
in the thin far western portion of the set, near real(z) = -1.67.



178 Chapter 13. Mandelbrot Set

Figure 13.10. Region #6. “Dueling Dragons”.

Figure 13.11. Region #7. The “Buzzsaw” requires a magnification factor
of 1011 to reveal a tiny copy of the Mandelbrot set.
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Figure 13.12. Region #8. “Nebula”. Interstellar dust.

Figure 13.13. Region #9. A vortex, not far from the West Wing. Zoom
in on one of the circular “microbugs” near the left edge.
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Figure 13.14. Region #10. A 1013 magnification factor reveals a “mi-
crobug” within the vortex.

Figure 13.15. Region #11. The nucleus of the microbug.
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Figure 13.16. Region #12. “Geode”. This colorful image requires a 2048-
by-2048 grid and depth = 8192.
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Chapter 15

Ordinary Differential
Equations

Mathematical models in many different fields.

Systems of differential equations form the basis of mathematical models in a
wide range of fields – from engineering and physical sciences to finance and biological
sciences. Differential equations are relations between unknown functions and their
derivatives. Computing numerical solutions to differential equations is one of the
most important tasks in technical computing, and one of the strengths of Matlab.

If you have studied calculus, you have learned a kind of mechanical process for
differentiating functions represented by formulas involving powers, trig functions,
and the like. You know that the derivative of x3 is 3x2 and you may remember that
the derivative of tanx is 1 + tan2x. That kind of differentiation is important and
useful, but not our primary focus here. We are interested in situations where the
functions are not known and cannot be represented by simple formulas. We will
compute numerical approximations to the values of a function at enough points to
print a table or plot a graph.

Imagine you are traveling on a mountain road. Your altitude varies as you
travel. The altitude can be regarded as a function of time, or as a function of longi-
tude and latitude, or as a function of the distance you have traveled. Let’s consider
the latter. Let x denote the distance traveled and y = y(x) denote the altitude. If
you happen to be carrying an altimeter with you, or you have a deluxe GPS system,
you can collect enough values to plot a graph of altitude versus distance, like the
first plot in figure 15.1.

Suppose you see a sign saying that you are on a 6% uphill grade. For some
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Figure 15.1. Altitude along a mountain road, and derivative of that alti-
tude. The derivative is zero at the local maxima and minima of the altitude.

value of x near the sign, and for h = 100, you will have

y(x+ h)− y(x)

h
= .06

The quotient on the left is the slope of the road between x and x+ h.
Now imagine that you had signs every few meters telling you the grade at

those points. These signs would provide approximate values of the rate of change
of altitude with respect to distance traveled, This is the derivative dy/dx. You
could plot a graph of dy/dx, like the second plot in figure 15.1, even though you do
not have closed-form formulas for either the altitude or its derivative. This is how
Matlab solves differential equations. Note that the derivative is positive where the
altitude is increasing, negative where it is decreasing, zero at the local maxima and
minima, and near zero on the flat stretches.

Here is a simple example illustrating the numerical solution of a system of
differential equations. Figure 15.2 is a screen shot from Spacewar, the world’s
first video game. Spacewar was written by Steve “Slug” Russell and some of his
buddies at MIT in 1962. It ran on the PDP-1, Digital Equipment Corporation’s
first computer. Two space ships, controlled by players using switches on the PDP-1
console, shoot space torpedoes at each other.

The space ships and the torpedoes orbit around a central star. Russell’s
program needed to compute circular and elliptical orbits, like the path of the torpedo
in the screen shot. At the time, there was no Matlab. Programs were written in
terms of individual machine instructions. Floating-point arithmetic was so slow
that it was desirable to avoid evaluation of trig functions in the orbit calculations.
The orbit-generating program looked something like this.

x = 0

y = 32768
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Figure 15.2. Spacewar, the world’s first video game. The gravitational
pull of the central star causes the torpedo to move in an elliptical orbit.

L: plot x y

load y

shift right 2

add x

store in x

change sign

shift right 2

add y

store in y

go to L

What does this program do? There are no trig functions, no square roots, no
multiplications or divisions. Everything is done with shifts and additions. The
initial value of y, which is 215, serves as an overall scale factor. All the arithmetic
involves a single integer register. The “shift right 2” command takes the contents
of this register, divides it by 22 = 4, and discards any remainder.

If Spacewar orbit generator were written today in Matlab, it would look
something the following. We are no longer limited to integer values, so we have
changed the scale factor from 215 to 1.

x = 0;

y = 1;

h = 1/4;

n = 2*pi/h;

plot(x,y,’.’)

for k = 1:n
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Figure 15.3. The 25 blue points are generated by the Spacewar orbit gen-
erator with a step size of 1/4. The 201 green points are generated with a step size
of 1/32.

x = x + h*y;

y = y - h*x;

plot(x,y,’.’)

end

The output produced by this program with h = 1/4 and n = 25 is shown by the
blue dots in figure 15.3. The blue orbit is actually an ellipse that deviates from
an exact circle by about 7%. The output produced with h = 1/32 and n = 201 is
shown by the green dots. The green orbit is another ellipse that deviates from an
exact circle by less than 1%.

Think of x and y as functions of time, t. We are computing x(t) and y(t) at
discrete values of t, incremented by the step size h. The values of x and y at time
t+ h are computed from the values at time t by

x(t+ h) = x(t) + hy(t)

y(t+ h) = y(t)− hx(t+ h)

This can be rewritten as

x(t+ h)− x(t)

h
= y(t)

y(t+ h)− y(t)

h
= −x(t+ h)

You have probably noticed that the right hand side of this pair of equations involves
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two different values of the time variable, t and t + h. That fact turns out to be
important, but let’s ignore it for now.

Look at the left hand sides of the last pair of equations. The quotients are
approximations to the derivatives of x(t) and y(t). We are looking for two functions
with the property that the derivative of the first function is equal to the second and
the derivative of the second function is equal to the negative of the first.

In effect, the Spacewar orbit generator is using a simple numerical method
involving a step size h to compute an approximate solution to the system of differ-
ential equations

ẋ = y

ẏ = −x
The dot over x and y denotes differentiation with respect to t.

ẋ =
dx

dt

The initial values of x and y provide the initial conditions

x(0) = 0

y(0) = 1

The exact solution to the system is

x(t) = sin t

y(t) = cos t

To see why, recall the trig identities

sin (t+ h) = sin t cosh+ cos t sinh

cos (t+ h) = cos t cosh− sin t sinh

For small values of h,

sinh ≈ h,

cosh ≈ 1

Consequently

sin (t+ h)− sin t

h
≈ cos t,

cos (t+ h)− cos t

h
≈ − sin t,

If you plot x(t) and y(t) as functions of t, you get the familiar plots of sine
and cosine. But if you make a phase plane plot, that is y(t) versus x(t), you get a
circle of radius 1.

It turns out that the solution computed by the Spacewar orbit generator with
a fixed step size h is an ellipse, not an exact circle. Decreasing h and taking more
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steps generates a better approximation to a circle. Actually, the fact that x(t+ h)
is used instead of x(t) in the second half of the step means that the method is not
quite as simple as it might seem. This subtle change is responsible for the fact that
the method generates ellipses instead of spirals. One of the exercises asks you to
verify this fact experimentally.

Mathematical models involving systems of ordinary differential equations have
one independent variable and one or more dependent variables. The independent
variable is usually time and is denoted by t. In this book, we will assemble all the
dependent variables into a single vector y. This is sometimes referred to as the state
of the system. The state can include quantities like position, velocity, temperature,
concentration, and price.

In Matlab a system of odes takes the form

ẏ = F (t, y)

The function F always takes two arguments, the scalar independent variable, t,
and the vector of dependent variables, y. A program that evaluates F (t, y) hould
compute the derivatives of all the state variables and return them in another vector.

In our circle generating example, the state is simply the coordinates of the
point. This requires a change of notation. We have been using x(t) and y(t) to
denote position, now we are going to use y1(t) and y2(t). The function F defines
the velocity.

ẏ(t) =

(

ẏ1(t)
ẏ2(t)

)

=

(

y2(t)
−y1(t)

)

Matlab has several functions that compute numerical approximations to solu-
tions of systems of ordinary differential equations. The suite of ode solvers includes
ode23, ode45, ode113, ode23s, ode15s, ode23t, and ode23tb. The digits in the
names refer to the order of the underlying algorithms. The order is related to the
complexity and accuracy of the method. All of the functions automatically deter-
mine the step size required to obtain a prescribed accuracy. Higher order methods
require more work per step, but can take larger steps. For example ode23 compares
a second order method with a third order method to estimate the step size, while
ode45 compares a fourth order method with a fifth order method.

The letter “s” in the name of some of the ode functions indicates a stiff solver.
These methods solve a matrix equation at each step, so they do more work per step
than the nonstiff methods. But they can take much larger steps for problems where
numerical stability limits the step size, so they can be more efficient overall.

You can use ode23 for most of the exercises in this book, but if you are
interested in the seeing how the other methods behave, please experiment.

All of the functions in the ode suite take at least three input arguments.

• F, the function defining the differential equations,

• tspan, the vector specifying the integration interval,
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Figure 15.4. Graphs of sine and cosine generated by ode23.

• y0, the vector of initial conditions.

There are several ways to write the function describing the differential equa-
tion. Anticipating more complicated functions, we can create a Matlab program
for our circle generator that extracts the two dependent variables from the state
vector. Save this in a file named mycircle.m.

function ydot = mycircle(t,y)

ydot = [y(2); -y(1)];

Notice that this function has two input arguments, t and y, even though the output
in this example does not depend upon t.

With this function definition stored in mycircle.m, the following code calls
ode23 to compute the solution over the interval 0 ≤ t ≤ 2π, starting with x(0) = 0
and y(0) = 1.

tspan = [0 2*pi];

y0 = [0; 1];

ode23(@mycircle,tspan,y0)

With no output arguments, the ode solvers automatically plot the solutions.
Figure 15.4 is the result for our example. The small circles in the plot are not
equally spaced. They show the points chosen by the step size algorithm.

To produce the phase plot plot shown in figure 15.5, capture the output and
plot it yourself.

tspan = [0 2*pi];

y0 = [0; 1];

[t,y] = ode23(@mycircle,tspan,y0)

plot(y(:,1),y(:,2)’-o’)
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Figure 15.5. Graph of a circle generated by ode23.

axis([-1.1 1.1 -1.1 1.1])

axis square

The circle generator example is so simple that we can bypass the creation of
the function file mycircle.m and write the function in one line.

acircle = @(t,y) [y(2); -y(1)]

The expression created on the right by the “@” symbol is known as an anonymous
function because it does not have a name until it is assigned to acircle. Since the
“@” sign is included in the definition of acircle, you don’t need it when you call
an ode solver.

Once acircle has been defined, the statement

ode23(acircle,tspan,y0)

automatically produces figure 15.4. And, the statement

[t,y] = ode23(acircle,tspan,y0)

captures the output so you can process it yourself.
Many additional options for the ode solvers can be set via the function odeset.

For example

opts = odeset(’outputfcn’,@odephas2)

ode23(acircle,tspan,y0,opts)

axis square

axis([-1.1 1.1 -1.1 1.1])
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will also produce figure 15.5.
Use the command

doc ode23

to see more details about the Matlab suite of ode solvers. Consult the ODE
chapter in our companion book, Numerical Computing with MATLAB, for more of
the mathematical background of the ode algorithms, and for ode23tx, a textbook
version of ode23.

Here is a very simple example that illustrates how the functions in the ode suite
work. We call it “ode1” because it uses only one elementary first order algorithm,
known as Euler’s method. The function does not employ two different algorithms
to estimate the error and determine the step size. The step size h is obtained by
dividing the integration interval into 200 equal sized pieces. This would appear to
be appropriate if we just want to plot the solution on a computer screen with a
typical resolution, but we have no idea of the actual accuracy of the result.

function [t,y] = ode1(F,tspan,y0)

% ODE1 World’s simplest ODE solver.

% ODE1(F,[t0,tfinal],y0) uses Euler’s method to solve

% dy/dt = F(t,y)

% with y(t0) = y0 on the interval t0 <= t <= tfinal.

t0 = tspan(1);

tfinal = tspan(end);

h = (tfinal - t0)/200;

y = y0;

for t = t0:h:tfinal

ydot = F(t,y);

y = y + h*ydot;

end

However, even with 200 steps this elementary first order method does not have
satisfactory accuracy. The output from

[t,y]] = ode1(acircle,tspan,y0)

is

t =

6.283185307179587

y =

0.032392920185564

1.103746317465277

We can see that the final value of t is 2*pi, but the final value of y has missed
returning to its starting value by more than 10 percent. Many more smaller steps
would be required to get graphical accuracy.
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Recap
%% Ordinary Differential Equations Chapter Recap

% This is an executable program that illustrates the statements

% introduced in the Ordinary Differential Equations Chapter

% of "Experiments in MATLAB".

% You can access it with

%

% odes_recap

% edit odes_recap

% publish odes_recap

%

% Related EXM programs

%

% ode1

%% Spacewar Orbit Generator.

x = 0;

y = 1;

h = 1/4;

n = 2*pi/h;

plot(x,y,’.’)

hold on

for k = 1:n

x = x + h*y;

y = y - h*x;

plot(x,y,’.’)

end

hold off

axis square

axis([-1.1 1.1 -1.1 1.1])

%% An Anonymous Function.

acircle = @(t,y) [y(2); -y(1)];

%% ODE23 Automatic Plotting.

figure

tspan = [0 2*pi];

y0 = [0; 1];

ode23(acircle,tspan,y0)

%% Phase Plot.

figure

tspan = [0 2*pi];

y0 = [0; 1];

[t,y] = ode23(acircle,tspan,y0)
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plot(y(:,1),y(:,2),’-o’)

axis square

axis([-1.1 1.1 -1.1 1.1])

%% ODE23 Automatic Phase Plot.

opts = odeset(’outputfcn’,@odephas2)

ode23(acircle,tspan,y0,opts)

axis square

axis([-1.1 1.1 -1.1 1.1])

%% ODE1 implements Euler’s method.

% ODE1 illustrates the structure of the MATLAB ODE solvers,

% but it is low order and employs a coarse step size.

% So, even though the exact solution is periodic, the final value

% returned by ODE1 misses the initial value by a substantial amount.

type ode1

[t,y] = ode1(acircle,tspan,y0)

err = y - y0

Exercises

15.1 Walking to class. You leave home (or your dorm room) at the usual time in the
morning and walk toward your first class. About half way to class, you realize that
you have forgotten your homework. You run back home, get your homework, run
to class, and arrive at your usual time. Sketch a rough graph by hand showing your
distance from home as a function of time. Make a second sketch of your velocity
as a function of time. You do not have to assume that your walking and running
velocities are constant, or that your reversals of direction are instantaneous.

15.2 Divided differences. Create your own graphic like our figure 15.1. Make up
your own data, x and y, for distance and altitude. You can use

subplot(2,1,1)

and

subplot(2,1,2)

to place two plots in one figure window. The statement

d = diff(y)./diff(x)

computes the divided difference approximation to the derivative for use in the second
subplot. The length of the vector d is one less than the length of x and y, so you
can add one more value at the end with
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d(end+1) = d(end)

For more information about diff and subplot, use

help diff

help subplot

15.3 Orbit generator. Here is a complete Matlab program for the orbit generator,
including appropriate setting of the graphics parameters. Investigate the behavior
of this program for various values of the step size h.

axis(1.2*[-1 1 -1 1])

axis square

box on

hold on

x = 0;

y = 1;

h = ...

n = 2*pi/h;

plot(x,y,’.’)

for k = 1:n

x = x + h*y;

y = y - h*x;

plot(x,y,’.’)

end

15.4 Modified orbit generator. Here is a Matlab program that makes a simpler
approximation for the orbit generator. What does it do? Investigate the behavior
for various values of the step size h.

axis(1.5*[-1 1 -1 1])

axis square

box on

hold on

x = 0;

y = 1;

h = 1/32;

n = 6*pi/h;

plot(x,y,’.’)

for k = 1:n

savex = x;

x = x + h*y

y = y - h*savex;

plot(x,y,’.’)

end
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15.5 Linear system Write the system of differential equations

ẏ1 = y2

ẏ2 = −y1
in matrix-vector form,

ẏ = Ay

where y is a vector-valued function of time,

y(t) =

(

y1(t)
y2(t)

)

and A is a constant 2-by-2 matrix. Use our ode1 as well as ode23 to experiment
with the numerical solution of the system in this form.

15.6 Example from ode23. The first example in the documentation for ode23 is

ẏ1 = y2 y3

ẏ2 = −y1 y3
ẏ3 = −0.51 y1 y2

with initial conditions

y1(0) = 0

y2(0) = 1

y3(0) = 1

Compute the solution to this system on the interval 0 ≤ t ≤ 12. Reproduce the
graph included in the documentation provided by the command

doc ode23

15.7 A cubic system. Make a phase plane plot of the solution to the ode system

ẏ1 = y32

ẏ2 = −y31
with initial conditions

y1(0) = 0

y2(0) = 1

on the interval

0 ≤ t ≤ 7.4163

What is special about the final value, t = 7.4163?
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15.8 A quintic system. Make a phase plane plot of the solution to the ode system

ẏ1 = y52

ẏ2 = −y51
with initial conditions

y1(0) = 0

y2(0) = 1

on an interval

0 ≤ t ≤ T

where T is the value between 7 and 8 determined by the periodicity condition

y1(T ) = 0

y2(T ) = 1

15.9 A quadratic system. What happens to solutions of

ẏ1 = y22

ẏ2 = −y21
Why do solutions of

ẏ1 = yp2
ẏ2 = −yp1

have such different behavior if p is odd or even?
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Predator-Prey Model

Models of population growth.

The simplest model for the growth, or decay, of a population says that the
growth rate, or the decay rate, is proportional to the size of the population itself.
Increasing or decreasing the size of the population results in a proportional increase
or decrease in the number of births and deaths. Mathematically, this is described
by the differential equation

ẏ = ky

The proportionality constant k relates the size of the population, y(t), to its rate
of growth, ẏ(t). If k is positive, the population increases; if k is negative, the
population decreases.

As we know, the solution to this equation is a function y(t) that is proportional
to the exponential function

y(t) = ηekt

where η = y(0).
This simple model is appropriate in the initial stages of growth when there are

no restrictions or constraints on the population. A small sample of bacteria in a large
Petri dish, for example. But in more realistic situations there are limits to growth,
such as finite space or food supply. A more realistic model says that the population
competes with itself. As the population increases, its growth rate decreases linearly.
The differential equation is sometimes called the logistic equation.

ẏ = k(1− y

μ
)y

Copyright c© 2011 Cleve Moler
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Figure 16.1. Exponential growth and logistic growth.

The new parameter μ is the carrying capacity. As y(t) approaches μ the growth
rate approaches zero and the growth ultimately stops. It turns out that the solution
is

y(t) =
μηekt

ηekt + μ− η

You can easily verify for yourself that as t approaches zero, y(t) approaches η and
that as t approaches infinity, y(t) approaches μ. If you know calculus, then with
quite a bit more effort, you can verify that y(t) actually satisfies the logistic equation.

Figure 16.1 shows the two solutions when both η and k are equal to one. The
exponential function

y(t) = et

gives the rapidly growing green curve. With carrying capacity μ = 20, the logistic
function

y(t) =
20et

et + 19

gives the more slowly growing blue curve. Both curves have the same initial value
and initial slope. The exponential function grows exponentially, while the logistic
function approaches, but never exceeds, its carrying capacity.

Figure 16.1 was generated with the following code.

k = 1

eta = 1

mu = 20

t = 0:1/32:8;



215

y = mu*eta*exp(k*t)./(eta*exp(k*t) + mu - eta);

plot(t,[y; exp(t)])

axis([0 8 0 22])

If you don’t have the formula for the solution to the logistic equation handy,
you can compute a numerical solution with ode45, one of the Matlab ordinary
differential equation solvers. Try running the following code. It will automatically
produce a plot something like the blue curve in figure 16.1.

k = 1

eta = 1

mu = 20

ydot = @(t,y) k*(1-y/mu)*y

ode45(ydot,[0 8],eta)

The @ sign and @(t,y) specify that you are defining a function of t and y. The t

is necessary even though it doesn’t explicitly appear in this particular differential
equation.

The logistic equation and its solution occur in many different fields. The
logistic function is also known as the sigmoid function and its graph is known as
the S-curve.

Populations do not live in isolation. Everybody has a few enemies here and
there. The Lotka-Volterra predator-prey model is the simplest description of com-
petition between two species. Think of rabbits and foxes, or zebras and lions, or
little fish and big fish.

The idea is that, if left to themselves with an infinite food supply, the rabbits
or zebras would live happily and experience exponential population growth. On the
other hand, if the foxes or lions were left with no prey to eat, they would die faster
than they could reproduce, and would experience exponential population decline.

The predator-prey model is a pair of differential equations involving a pair of
competing populations, y1(t) and y2(t). The growth rate for y1 is a linear function
of y2 and vice versa.

ẏ1 = (1− y2
μ2

)y1

ẏ2 = −(1− y1
μ1

)y2

We are using notation y1(t) and y2(t) instead of, say, r(t) for rabbits and f(t) for
foxes, because our Matlab program uses a two-component vector y.

The extra minus sign in the second equation distinguishes the predators from
the prey. Note that if y1 ever becomes zero, then

ẏ2 = −y2
and the predators are in trouble. But if y2 ever becomes zero, then

ẏ1 = y1

and the prey population grows exponentially.
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We have a formula for the solution of the single species logistic model. However
it is not possible to express the solution to this predator-prey model in terms of
exponential, trigonmetric, or any other elementary functions. It is necessary, but
easy, to compute numerical solutions.
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Figure 16.2. A typical solution of the predator-prey equations.

There are four parameters, the two constants μ1 and μ2, and the two initial
conditions,

η1 = y1(0)

η2 = y2(0)

If we happen to start with η1 = μ1 and η2 = μ2, then both ẏ1 and ẏ2 are zero and
the populations remain constant at their initial values. In other words, the point
(μ1, μ2) is an equilibrium point. The origin, (0, 0) is another equilibrium point, but
not a very interesting one.

The following code uses ode45 to automatically plot the typical solution shown
in figure 16.2.

mu = [300 200]’

eta = [400 100]’

signs = [1 -1]’

pred_prey_ode = @(t,y) signs.*(1-flipud(y./mu)).*y

period = 6.5357

ode45(pred_prey_ode,[0 3*period],eta)
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There are two tricky parts of this code. Matlab vector operations are used to
define pred_prey_ode, the differential equations in one line. And, the calculation
that generates figure 16.3 provides the value assigned to period. This value specifies
a value of t when the populations return to their initial values given by eta. The
code integrates over three of these time intervals, and so at the end we get back to
where we started.

The circles superimposed on the plots in figure 16.2 show the points where
ode45 computes the solution. The plots look something like trig functions, but
they’re not. Notice that the curves near the minima are broader, and require more
steps to compute, then the curves near the maxima. The plot of sin t would look
the same at the top as the bottom.
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Figure 16.3. The predprey experiment.

OurMatlab program exm/predprey shows a red dot at the equilibrium point,
(μ1, μ2), and a blue-green dot at the initial point, (η1, η2). When you drag either
dot with the mouse, the solution is recomputing by ode45 and plotted. Figure 16.3
shows that two plots are produced — a phase plane plot of y2(t) versus y1(t) and
a time series plot of y1(t) and y2(t) versus t. Figures 16.2 and 16.3 have the same
parameters, and consequently show the same solution, but with different scaling of
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the axes.
The remarkable property of the Lotka-Volterra model is that the solutions are

always periodic. The populations always return to their initial values and repeat
the cycle. This property is not obvious and not easy to prove. It is rare for nonlinear
models to have periodic solutions.

The difficult aspect of computing the solution to the predator-prey equations
is determining the length of the period. Our predprey program uses a feature of the
Matlab ODE solvers called “event handling” to compute the length of a period.

If the initial values (η1, η2) are close to the equilibrium point (μ1, μ2), then
the length of the period is close to a familar value. An exercise asks you to discover
that value experimentally.

Recap
%% Predator-Prey Chapter Recap

% This is an executable program that illustrates the statements

% introduced in the Preditor Prey Chapter of "Experiments in MATLAB".

% You can access it with

%

% predprey_recap

% edit predprey_recap

% publish predprey_recap

%

% Related EXM programs

%

% predprey

%% Exponential and Logistic Growth.

close all

figure

k = 1

eta = 1

mu = 20

t = 0:1/32:8;

y = mu*eta*exp(k*t)./(eta*exp(k*t) + mu - eta);

plot(t,[y; exp(t)])

axis([0 8 0 22])

title(’Exponential and logistic growth’)

xlabel(’t’)

ylabel(’y’)

%% ODE45 for the Logistic Model.

figure

k = 1
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eta = 1

mu = 20

ydot = @(t,y) k*(1-y/mu)*y

ode45(ydot,[0 8],eta)

%% ODE45 for the Predator-Prey Model.

figure

mu = [300 200]’

eta = [400 100]’

signs = [1 -1]’

pred_prey_ode = @(t,y) signs.*(1-flipud(y./mu)).*y

period = 6.5357

ode45(pred_prey_ode,[0 3*period],eta)

%% Our predprey gui.

figure

predprey

Exercises

16.1 Plot. Make a more few plots like figures 16.1 and 16.2, but with different values
of the parameters k, η, and μ.

16.2 Decay. Compare exponential and logistic decay. Make a plot like figure 16.1
with negative k.

16.3 Differentiate. Verify that our formula for y(t) actually satisfies the logistic
differential equations.

16.4 Easy as pie. In predprey, if the red and blue-green dots are close to each
other, then the length of the period is close to a familar value. What is that value?
Does that value depend upon the actual location of the dots, or just their relative
closeness?

16.5 Period. In predprey, if the red and blue-green dots are far apart, does the
length of the period get longer or shorter? Is it possible to make the period shorter
than the value it has near equilibrium?

16.6 Phase. If the initial value is near the equilibrium point, the graphs of the
predator and prey populations are nearly sinusoidal, with a phase shift. In other
words, after the prey population reaches a maximum or minimum, the predator
population reaches a maximum or minimum some fraction of the period later. What
is that fraction?
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16.7 Pitstop. The predprey subfunction pitstop is involved in the “event han-
dling” that ode45 uses to compute the period. pitstop, in turn, uses atan2 to
compute angles theta0 and theta1. What is the difference between the two Mat-
lab functions atan2, which takes two arguments, and atan, which takes only one?
What happens if atan2(v,u) is replaced by atan(v/u) in predprey?
Draw a sketch showing the angles theta0 and theta1.

16.8 tfinal. The call to ode45 in predprey specifies a time interval of [0 100]. What
is the significance of the value 100? What happens if you change it?

16.9 Limit growth. Modify predprey to include a growth limiting term for the prey,
similar to one in the logistic equation. Avoid another parameter by making the
carrying capacity twice the initial value. The equations become

ẏ1 = (1− y1
2 η1

)(1− y2
μ2

)y1

ẏ2 = −(1− y1
μ1

)y2

What happens to the shape of the solution curves? Are the solutions still periodic?
What happens to the length of the period?



Chapter 17

Orbits

Dynamics of many-body systems.

Many mathematical models involve the dynamics of objects under the influ-
ence of both their mutual interaction and the surrounding environment. The objects
might be planets, molecules, vehicles, or people. The ultimate goal of this chapter is
to investigate the n-body problem in celestial mechanics, which models the dynamics
of a system of planets, such as our solar system. But first, we look at two simpler
models and programs, a bouncing ball and Brownian motion.

The exm program bouncer is a model of a bouncing ball. The ball is tossed
into the air and reacts to the pull of the earth’s gravitation force. There is a
corresponding pull of the ball on the earth, but the earth is so massive that we can
neglect its motion.

Mathematically, we let v(t) and z(t) denote the velocity and the height of the
ball. Both are functions of time. High school physics provides formulas for v(t) and
z(t), but we choose not to use them because we are anticipating more complicated
problems where such formulas are not available. Instead, we take small steps of size
δ in time, computing the velocity and height at each step. After the initial toss,
gravity causes the velocity to decrease at a constant rate, g. So each step updates
v(t) with

v(t+ δ) = v(t)− δ g

The velocity is the rate of change of the height. So each step updates z(t) with

z(t+ δ) = z(t) + δ v(t)

Here is the core of bouncer.m.

Copyright c© 2011 Cleve Moler
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[z0,h] = initialize_bouncer;

g = 9.8;

c = 0.75;

delta = 0.005;

v0 = 21;

while v0 >= 1

v = v0;

z = z0;

while all(z >= 0)

set(h,’zdata’,z)

drawnow

v = v - delta*g;

z = z + delta*v;

end

v0 = c*v0;

end

finalize_bouncer

The first statement

[z0,h] = initialize_bouncer;

generates the plot of a sphere shown in figure 17.1 and returns z0, the z-coordinates
of the sphere, and h, the Handle Graphics “handle” for the plot. One of the exer-
cises has you investigate the details of initialize_bouncer. The figure shows the
situation at both the start and the end of the simulation. The ball is at rest and so
the picture is pretty boring. To see what happens during the simulation, you have
to actually run bouncer.

The next four statements in bouncer.m are

g = 9.8;

c = 0.75;

delta = 0.005;

v0 = 21;

These statements set the values of the acceleration of gravity g, an elasticity coef-
ficient c, the small time step delta, and the initial velocity for the ball, v0.

All the computation in bouncer is done within a doubly nested while loop.
The outer loop involves the initial velocity v0.

while v0 >= 1

...

v0 = c*v0;

end

To achieve the bouncing affect, the initial velocity is repeatedly multiplied by c =
0.75 until it is less than 1. Each bounce starts with a velocity equal to 3/4 of the
previous one.

Within the outer loop, the statements
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Figure 17.1. Initial, and final, position of a bouncing ball. To see what
happens in between, run bouncer.

v = v0;

z = z0;

initialize the velocity v to v0 and the height z to z0. Then the inner loop

while all(z >= 0)

set(h,’zdata’,z)

drawnow

v = v - delta*g;

z = z + delta*v;

end

proceeds until the height goes negative. The plot is repeatedly updated to reflect
the current height. At each step, the velocity v is decreased by a constant amount,
delta*g, thereby affecting the gravitational deceleration. This velocity is then used
to compute the change in the height z. As long as v is positive, the z increases with
each step. When v reaches zero, the ball has reached its maximum height. Then v

becomes negative and z decreases until the ball returns to height zero, terminating
the inner loop.

After both loops are complete, the statement

finalize_bouncer

activates a pushbutton that offers you the possibility of repeating the simulation.
Brownian motion is not as obvious as gravity in our daily lives, but we do

encounter it frequently. Albert Einstein’s first important scientific paper was about
Brownian motion. Think of particples of dust suspended in the air and illuminated
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by a beam of sunlight. Or, diffusion of odors throughout a room. Or, a beach ball
being tossed around a stadium by the spectators.

In Brownian motion an object – a dust particle, a molecule, or a ball – reacts
to surrounding random forces. Our simulation of these forces uses the built-in
MATLAB function randn to generate normally distributed random numbers. Each
time the statement

randn

is executed a new, unpredictable, value is produced. The statement

randn(m,n)

produces an m-by-n array of random values. Each time the statement

hist(randn(100000,1),60)

is executed a histogram plot like the one in figure 17.2 is produced. Try executing
this statement several times. You will see that different histograms are produced
each time, but they all have the same shape. You might recognize the “bell-shaped
curve” that is known more formally as the Gaussian or normal distribution. The
histogram shows that positive and negative random numbers are equally likely and
that small values are more likely than large ones. This distribution is the mathe-
matical heart of Brownian motion.
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Figure 17.2. Histogram of the normal random number generator.

A simple example of Brownian motion known as a random walk is shown in
figure 17.3. This is produced by the following code fragment.

m = 100;

x = cumsum(randn(m,1));

y = cumsum(randn(m,1));
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plot(x,y,’.-’)

s = 2*sqrt(m);

axis([-s s -s s]);
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Figure 17.3. A simple example of Brownian motion.

The key statement is

x = cumsum(randn(m,1));

This statement generates the x-coordinates of the walk by forming the successive
cumulative partial sums of the elements of the vector r = randn(m,1).

x1 = r1

x2 = r1 + r2

x3 = r1 + r2 + r3

...

A similar statement generates the y-coordinates. Cut and paste the code fragment
into the Matlab command window. Execute it several times. Try different values
of m. You will see different random walks going off in different random directions.
Over many executions, the values of x and y are just as likely to be positive as
negative. We want to compute an axis scale factor s so that most, but not all, of
the walks stay within the plot boundaries. It turns out that as m, the length of the
walk, increases, the proper scale factor increases like

√
m.

A fancier Brownian motion program, involving simultaneous random walks of
many particles in three dimensions, is available in brownian3.m. A snapshot of the
evolving motion is shown in figure 17.4. Here is the core of brownian3.m.
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Figure 17.4. A snapshot of the output from brownian3, showing simulta-
neous random walks of many particules in three dimensions.

n = 50; % Default number of particles

P = zeros(n,3);

H = initialize_graphics(P);

while ~get(H.stop,’value’)

% Obtain step size from slider.

delta = get(H.speed,’value’);

% Normally distributed random velocities.

V = randn(n,3);

% Update positions.

P = P + delta*V;

update_plot(P,H);

end

The variable n is the number of particles. It is usually equal to 50, but some other
number is possible with brownian3(n). The array P contains the positions of n
particles in three dimensions. Initially, all the particles are located at the origin,
(0, 0, 0). The variable H is a Matlab structure containing handles for all the user
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interface controls. In particular, H.stop refers to a toggle that terminates the while
loop and H.speed refers to a slider that controls the speed through the value of the
time step delta. The array V is an n-by-3 array of normally distributed random
numbers that serve as the particle velocities in the random walks. Most of the
complexity of brownian3 is contained in the subfunction initialize_graphics.
In addition to the speed slider and the stop button, the GUI has pushbuttons or
toggles to turn on a trace, zoom in and out, and change the view point.

We are now ready to tackle the n-body problem in celestial mechanics. This is
a model of a system of planets and their interaction described by Newton’s laws of
motion and gravitational attraction. Over five hundred years ago, Johannes Kepler
realized that if there are only two planets in the model, the orbits are ellipses with a
common focus at the center of mass of the system. This provides a fair description
of the moon’s orbit around the earth, or of the earth’s orbit around the sun. But if
you are planning a trip to the moon or a mission to Mars, you need more accuracy.
You have to realize that the sun affects the moon’s orbit around the earth and that
Jupiter affects the orbits of both the earth and Mars. Furthermore, if you wish to
model more than two planets, an analytic solution to the equations of motion is not
possible. It is necessary to compute numerical approximations.

Our notation uses vectors and arrays. Let n be the number of bodies and,
for i = 1, . . . , n, let pi be the vector denoting the position of the i-th body. For
two-dimensional motion the i-th position vector has components (xi, yi). For three-
dimensional motion its components are (xi, yi, zi). The small system shown in
figure 17.5 illustrates this notation. There are three bodies moving in two dimen-
sions. The coordinate system and units are chosen so that initially the first body,
which is gold if you have color, is at the origin,

p1 = (0, 0)

The second body, which is blue, is one unit away from the first body in the x
direction, so

p2 = (1, 0)

The third body, which is red, is one unit away from the first body in the y direction,
so

p3 = (0, 1)

We wish to model how the position vectors pi vary with time, t. The velocity
of a body is the rate of change of its position and the acceleration is the rate of
change of its velocity. We use one and two dots over pi to denote the velocity and
acceleration vectors, ṗi and p̈i. If you are familiar with calculus, you realize that
the dot means differentiation with respect to t. For our three body example, the
first body is initially heading away from the other two bodies, so its velocity vector
has two negative components,

ṗ1 = (−0.12,−0.36)

The initial velocity of the second body is all in the y direction,

ṗ2 = (0, 0.72)
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Figure 17.5. Initial positions and velocities of a small system with three
bodies in two-dimensional space.

and the initial velocity of the third body is sending it towards the second body,

ṗ3 = (0.36,−0.36)

Newton’s law of motion, the famous F = ma, says that the mass of a body
times its acceleration is proportional to the sum of the forces acting on it. Newton’s
law of gravitational says that the force between any two bodies is proportional to
the product of their masses and inversely proportional to the square of the distance
between them. So, the equations of motion are

mip̈i = γ
∑

j �=i
mimj

pj − pi
||pj − pi||3 , i = 1, . . . , n

Here γ is the gravitational constant, mi is the mass of the i-th body, pj − pi is the
vector from body i to body j and ||pj − pi|| is the length or norm of that vector,
which is the distance between the two bodies. The denominator of the fraction
involves the cube of the distance because the numerator contains the distance itself
and so the resulting quotient involves the inverse of the square of the distance.

Figure 17.6 shows our three body example again. The length of the vector
r23 = p3−p2 is the distance between p2 and p3. The gravitation forces between the
bodies located at p2 and p3 are directed along r23 and −r23.

To summarize, the position of the i-th body is denoted by the vector pi. The
instantaneous change in position of this body is given by its velocity vector, denoted
by ṗi. The instantaneous change in the velocity is given by its acceleration vector,
denoted by p̈i. The acceleration is determined from the position and masses of all
the bodies by Newton’s laws of motion and gravitation.

The following notation simplifies the discussion of numerical methods. Stack
the position vectors on top of each other to produce an n-by-d array where n is the
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Figure 17.6. The double arrow depicts the vectors r23 = p3−p2 and −r32.
The length of this arrow is the distance between p2 and p3.

number of bodies and d = 2 or 3 is the number of spatial dimensions..

P =

⎛

⎜

⎜

⎜

⎝

p1
p2
...
pn

⎞

⎟

⎟

⎟

⎠

Let V denote a similar array of velocity vectors.

V =

⎛

⎜

⎜

⎜

⎝

ṗ1
ṗ2
...
ṗn

⎞

⎟

⎟

⎟

⎠

And, let G(P ) denote the array of gravitation forces.

G(P ) =

⎛

⎜

⎜

⎜

⎝

g1
g2
...
gn

⎞

⎟

⎟

⎟

⎠

where

gi = γ
∑

j �=i
mj

pj − pi
||pj − pi||3

With this notation, the equations of motion can be written

Ṗ = V

V̇ = G(P )
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For our three body example, the initial values of P and V are

P =

⎛

⎝

0 0
1 0
0 1

⎞

⎠

and

V =

⎛

⎝

−0.12 −0.36
0 0.72

0.36 −0.36

⎞

⎠

The masses in our three body example are

m1 = 1/2, m2 = 1/3, m3 = 1/6

From these quantities, we can compute the initial value of the gravitation forces,
G(P ).

We will illustrate our numerical methods by trying to generate a circle. The
differential equations are

ẋ = y

ẏ = −x
With initial conditions x(0) = 0, y(0) = 1, the exact solution is

x(t) = sin t, y(t) = cos t

The orbit is a perfect circle with a period equal to 2π.
The most elementary numerical method, which we will not actually use, is

known as the forward or explicit Euler method. The method uses a fixed time step
δ and simultaneously advances both the positions and velocities from time tk to
time tk+1 = tk + δ.

Pk+1 = Pk + δ Vk

Vk+1 = Vk + δ G(Pk)

The forward Euler’s method applied to the circle generator problem becomes

xk+1 = xk + δ yk

yk+1 = yk − δ xk

The result for δ = 2π/30 is shown in the first plot in figure 17.7. Instead of a circle
we get a growing spiral. The method is unstable and consequently unsatisfactory,
particularly for long time periods. Smaller time steps merely delay the inevitable.
We would see more complicated, but similar, behavior with the n-body equations.

Another elementary numerical method is known as the backward or implicit
Euler method. In general, it involves somehow solving a nonlinear system at each
step.

Pk+1 − δ Vk+1 = Pk

Vk+1 − δ G(Pk+1) = Vk
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Figure 17.7. Three versions of Euler’s method for generating a circle.
The first plot shows that the forward method is unstable. The second plot shows that
the backward method has excessive damping. The third plot shows that symplectic
method, which is a compromise between the first two methods, produces a nearly
perfect circle.

For our simple circle example the implicit system is linear, so xk+1 and yk+1 are
easily computed by solving the 2-by-2 system

xk+1 − δ yk+1 = xk

yk+1 + δ xk+1 = yk

The result is shown in the second plot in figure 17.7. Instead of a circle we get a
decaying spiral. The method is stable, but there is too much damping. Again, we
would see similar behavior with the n-body equations.

The method that we actually use is a compromise between the explicit and
implicit Euler methods. It is the most elementary instance of what are known as
symplectic methods. The method involves two half-steps. In the first half-step, the
positions at time tk are used in the gravitation equations to update of the velocities.

Vk+1 = Vk + δ G(Pk)

Then, in the second half-step, these “new” velocities are used to update the posi-
tions.

Pk+1 = Pk + δ Vk+1

The novel feature of this symplectic method is the subscript k + 1 instead of k on
the V term in the second half-step.

For the circle generator, the symplectic method is

xk+1 = xk + δ yk

yk+1 = yk − δ xk+1

The result is the third plot in figure 17.7. If you look carefully, you can see that the
orbit in not quite a circle. It’s actually a nearly circular ellipse. And the final value
does not quite return to the initial value, so the period is not exactly 2π . But the
important fact is that the orbit is neither a growing nor a decaying spiral.
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Figure 17.8. The first few steps of our example system.

There are more complicated symplectic algorithms that are much more accu-
rate per step than this symplectic Euler. But the symplectic Euler is satisfactory
for generating well behaved graphical displays. Most well-known numerical meth-
ods, including Runge-Kutta methods and traditional multistep methods, do not
have this symplectic stability property and, as a result, are not as satisfactory for
computing orbits over long time spans.

Figure 17.8 shows the first few steps for our example system. As we noted
earlier, the initial position and velocity are

P =

0 0

1.0000 0

0 1.0000

V =

-0.1200 -0.3600

0 0.7200

0.3600 -0.3600

After one step with δ = 0.20 we obtain the following values.

P =

-0.0107 -0.0653

0.9776 0.1464

0.0767 0.9033

V =

-0.0533 -0.3267

-0.1118 0.7318
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0.3836 -0.4836

The three masses, 1/2, 1/3, and 1/6, are not equal, but are comparable, so all three
bodies have significant affects on each other and all three move noticeable distances.
We see that the initial velocity of the first body causes it to move away from the
other two. In one step, its position changes from (0, 0) to small negative values,
(−0.0107,−0.0653) The second body is initially at position (1, 0) with velocity (0, 1)
in the positive y direction. In one step, its position changes to (0.9776, 0.1464). The
x-coordinate has changed relatively little, while the y-coordinate has changed by
roughly 0.72 δ. The third body moves in the direction indicated by the velocity
vector in figure 17.5.

After a second step we have the following values. As expected, all the trends
noted in the first step continue.

P =

-0.0079 -0.1209

0.9325 0.2917

0.1589 0.7793

V =

0.0136 -0.2779

-0.2259 0.7268

0.4109 -0.6198

−1.5 −1 −0.5 0 0.5 1 1.5
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Figure 17.9. The initial trajectories of our example system.

Figure 17.9 shows an initial section of the trajectories. You should run our
Experiments program orbits(3) to see the three bodies in motion. The small
body and the large body orbit in a clockwise direction around each other while the
medium-size body orbits in a counter-clockwise direction around the other two.
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Figure 17.10. The solar system, with the initial positions of all the planets
and the orbits of the outer planets, Jupiter, Saturn, Uranus, and Neptune.

Our Experiments program orbits models nine bodies in the solar system,
namely the sun and eight planets. Figures 17.10 and 17.11 show snapshots of the
output from orbits with two different zoom factors that are necessary to span the
scale of the system. The orbits for all the planets are in the proper proportion.
But, obviously, the symbols for the sun and the planets do not have the same scale.
Web sources for information about the solar system are provided by the University
Corporation for Atmospheric Research, the Jet Propulsion Laboratory, and the US
National Air and Space Museum,

http://www.windows.ucar.edu

http://www.jpl.nasa.gov/solar_system

http://airandspace.si.edu:80/etp/ss/index.htm
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Figure 17.11. Zooming in by a factor of 16 reveals the orbits of the inner
planets, Mercury, Venus, Earth and Mars.

Recap
%% Orbits Chapter Recap

% This is an executable program that illustrates the statements

% introduced in the Orbits Chapter of "Experiments in MATLAB".

% You can access it with

%

% orbits_recap

% edit orbits_recap

% publish orbits_recap

%

% Related EXM programs

%

% bouncer

% orbits
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%% Core of bouncer, simple gravity. no gravity

% Initialize

z0 = eps;

g = 9.8;

c = 0.75;

delta = 0.005;

v0 = 21;

y = [];

% Bounce

while v0 >= 1

v = v0;

z = z0;

while z >= 0

v = v - delta*g;

z = z + delta*v;

y = [y z];

end

v0 = c*v0;

end

% Simplified graphics

close all

figure

plot(y)

%% Normal random number generator.

figure

hist(randn(100000,1),60)

%% Snapshot of two dimensional Brownian motion.

figure

m = 100;

x = cumsum(randn(m,1));

y = cumsum(randn(m,1));

plot(x,y,’.-’)

s = 2*sqrt(m);

axis([-s s -s s]);
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%% Snapshot of three dimensional Brownian motion, brownian3

n = 50;

delta = 0.125;

P = zeros(n,3);

for t = 0:10000

% Normally distributed random velocities.

V = randn(n,3);

% Update positions.

P = P + delta*V;

end

figure

plot3(P(:,1),P(:,2),P(:,3),’.’)

box on

%% Orbits, the n-body problem.

%{

% ORBITS n-body gravitational attraction for n = 2, 3 or 9.

% ORBITS(2), two bodies, classical elliptic orbits.

% ORBITS(3), three bodies, artificial planar orbits.

% ORBITS(9), nine bodies, the solar system with one sun and 8 planets.

%

% ORBITS(n,false) turns off the uicontrols and generates a static plot.

% ORBITS with no arguments is the same as ORBITS(9,true).

% n = number of bodies.

% P = n-by-3 array of position coordinates.

% V = n-by-3 array of velocities

% M = n-by-1 array of masses

% H = graphics and user interface handles

if (nargin < 2)

gui = true;

end

if (nargin < 1);

n = 9;

end

[P,V,M] = initialize_orbits(n);

H = initialize_graphics(P,gui);

steps = 20; % Number of steps between plots
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t = 0; % time

while get(H.stop,’value’) == 0

% Obtain step size from slider.

delta = get(H.speed,’value’)/(20*steps);

for k = 1:steps

% Compute current gravitational forces.

G = zeros(size(P));

for i = 1:n

for j = [1:i-1 i+1:n];

r = P(j,:) - P(i,:);

G(i,:) = G(i,:) + M(j)*r/norm(r)^3;

end

end

% Update velocities using current gravitational forces.

V = V + delta*G;

% Update positions using updated velocities.

P = P + delta*V;

end

t = t + steps*delta;

H = update_plot(P,H,t,gui);

end

finalize_graphics(H,gui)

end

%}

%% Run all three orbits, with 2, 3, and 9 bodies, and no gui.

figure

orbits(2,false)

figure

orbits(3,false)

figure

orbits(9,false)
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Exercises

17.1 Bouncing ball.
(a) What is the maximum height of the bouncing ball?
(b) How many times does the ball bounce?
(c) What is the effect of changing each of the four bouncer values g, c, delta, and
v0.

17.2 Pluto and Ceres. Change orbits to orbits11 by adding the erstwhile planet
Pluto and the recently promoted dwarf planet Ceres. See Wikipedia:

http://en.wikipedia.org/wiki/Planet

http://en.wikipedia.org/wiki/Ceres_(dwarf_planet)

and

http://orbitsimulator.com/gravity/articles/ceres.html

17.3 Comet. Add a comet to orbits. Find initial conditions so that the comet
has a stable, but highly elliptical orbit that extends well beyond the orbits of the
planets.

17.4 Twin suns. Turn the sun in orbits into a twin star system, with two suns
orbiting each other out of the plane of the planets. What eventually happens to the
planetary orbits? For example, try

sun1.p = [1 0 0];

sun1.v = [0 0.25 0.25];

sun1.m = 0.5;

sun2.p = [-1 0 0];

sun2.v = [0 -0.25 -0.25];

sun2.m = 0.5;

Try other values as well.
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Symbolic Math Toolbox Product Description
Perform symbolic math computations

Key Features



 Access Symbolic Math Toolbox Functionality

Access Symbolic Math Toolbox Functionality

In this section...

Work from MATLAB

Work from MuPAD
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Create Symbolic Numbers, Variables, and Expressions

Create Symbolic Numbers

sym

sym

sym(1/3)
1/3

ans =
1/3
ans =
    0.3333

sin(pi)

sin(sym(pi))
sin(pi)

ans =
0
ans =
   1.2246e-16



 Create Symbolic Numbers, Variables, and Expressions

Create Symbolic Variables

syms sym syms
sym

x y syms sym

syms x
y = sym('y')

x
x x y

y

syms a b
c

syms a b c

syms
syms sym

a1, ..., a20

A = sym('a', [1 20])

A =
[ a1, a2, a3, a4, a5, a6, a7, a8, a9, a10,...
 a11, a12, a13, a14, a15, a16, a17, a18, a19, a20]

syms sym sym

sym(5)

Create Symbolic Expressions

j =
+1 5
2
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phi = (1 + sqrt(sym(5)))/2;

phi

f = phi^2 - phi - 1

f =
(5^(1/2)/2 + 1/2)^2 - 5^(1/2)/2 - 3/2

f ax bx c
a b c x

syms a b c x

f

f = a*x^2 + b*x + c;

Tip sym syms

5 f = sym(5) f = 5 f

Reuse Names of Symbolic Objects

syms

syms a b
f = a + b

f =
a + b



 Create Symbolic Numbers, Variables, and Expressions

syms f
f

a + b f

f =
f

syms
syms
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Create Symbolic Functions
sym syms

f(x, y) x y
syms

syms f(x, y)

f x y

syms x y

f(x, y) = x^3*y^3

f(x, y) =
x^3*y^3

f(x,y) = 1

f(x, y) y
d2fy

d2fy = diff(f, y, 2)

d2fy(x, y) =
6*x^3*y

f(x, y) x = y + 1

f(y + 1, y)

ans =
y^3*(y + 1)^3



 Create Symbolic Matrices

Create Symbolic Matrices

In this section...

Use Existing Symbolic Variables

a b c

syms a b c
A = [a b c; c a b; b c a]

A =
[ a, b, c]
[ c, a, b]
[ b, c, a]

A

sum(A(1,:))

ans =
a + b + c

isAlways

isAlways(sum(A(1,:)) == sum(A(:,2)))

ans =
     1
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Generate Elements While Creating a Matrix

sym
sym

sym

isvarname sym

A A1_1, ..., A2_4

A = sym('A', [2 4])

A =
[ A1_1, A1_2, A1_3, A1_4]
[ A2_1, A2_2, A2_3, A2_4]

%d

A = sym('A%d%d', [2 4])

A =
[ A11, A12, A13, A14]
[ A21, A22, A23, A24]

Create Matrix of Symbolic Numbers

sym

A = hilb(3)

A =
    1.0000    0.5000    0.3333
    0.5000    0.3333    0.2500
    0.3333    0.2500    0.2000

sym A

A = sym(A)
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A =
[   1, 1/2, 1/3]
[ 1/2, 1/3, 1/4]
[ 1/3, 1/4, 1/5]
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Perform Symbolic Computations

In this section...

Differentiate Symbolic Expressions

Expressions with One Variable

diff

syms x
f = sin(x)^2;
diff(f)

ans =
2*cos(x)*sin(x)

Partial Derivatives

x
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syms x y
f = sin(x)^2 + cos(y)^2;
diff(f)

ans =
2*cos(x)*sin(x)

f y

syms x y
f = sin(x)^2 + cos(y)^2;
diff(f, y)

ans =
-2*cos(y)*sin(y)

Second Partial and Mixed Derivatives

f y

syms x y
f = sin(x)^2 + cos(y)^2;
diff(f, y, 2)

ans =
2*sin(y)^2 - 2*cos(y)^2

diff(diff(f, y))

syms x y
f = sin(x)^2 + cos(y)^2;
diff(diff(f, y), x)

ans =
0

Integrate Symbolic Expressions
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int

Indefinite Integrals of One-Variable Expressions

syms x
f = sin(x)^2;

int(f)

ans =
x/2 - sin(2*x)/4

Indefinite Integrals of Multivariable Expressions

x

syms x y n
f = x^n + y^n;
int(f)

ans =
x*y^n + (x*x^n)/(n + 1)

f = x^n + y^n y

syms x y n
f = x^n + y^n;
int(f, y)

ans =
x^n*y + (y*y^n)/(n + 1)

n
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syms x y n
f = x^n + y^n;
int(f, n)

ans =
x^n/log(x) + y^n/log(y)

Definite Integrals

int

syms x y n
f = x^n + y^n;
int(f, 1, 10)

ans =
piecewise([n == -1, log(10) + 9/y],...
          [n ~= -1, (10*10^n - 1)/(n + 1) + 9*y^n])

If MATLAB Cannot Find a Closed Form of an Integral

int

syms x
int(sin(sinh(x)))

ans =
int(sin(sinh(x)), x)

Solve Equations

Solve Algebraic Equations with One Symbolic Variable

solve
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syms x
solve(x^3 - 6*x^2 == 6 - 11*x)

ans =
 1
 2
 3

solve

syms x
solve(x^3 - 6*x^2 + 11*x - 6)

ans =
 1
 2
 3

Solve Algebraic Equations with Several Symbolic Variables

y

syms x y
solve(6*x^2 - 6*x^2*y + x*y^2 - x*y + y^3 - y^2 == 0, y)

ans =
    1
  2*x
 -3*x

x

Solve Systems of Algebraic Equations

syms x y z
[x, y, z] = solve(z == 4*x, x == y, z == x^2 + y^2)

x =
 0
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 2

y =
 0
 2

z =
 0
 8

Simplify Symbolic Expressions

phi

phi = sym('(1 + sqrt(5))/2');
f = phi^2 - phi - 1

f =
(5^(1/2)/2 + 1/2)^2 - 5^(1/2)/2 - 3/2

simplify(f)

ans =
0

expand



1 Getting Started

syms x
f = (x ^2- 1)*(x^4 + x^3 + x^2 + x + 1)*(x^4 - x^3 + x^2 - x + 1);
expand(f)

ans =
x^10 - 1

factor
factor

syms x
g = x^3 + 6*x^2 + 11*x + 6;
factor(g)

ans =
[ x + 3, x + 2, x + 1]

syms x
h = x^5 + x^4 + x^3 + x^2 + x;
horner(h)

ans =
x*(x*(x*(x*(x + 1) + 1) + 1) + 1)

Substitutions in Symbolic Expressions

Substitute Symbolic Variables with Numbers

subs
f x

syms x
f = 2*x^2 - 3*x + 1;
subs(f, 1/3)

ans =
2/9
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subs f

f

f =
2*x^2 - 3*x + 1

Substitute in Multivariate Expressions

x

syms x y
f = x^2*y + 5*x*sqrt(y);

subs(f, x, 3)

ans =
9*y + 15*y^(1/2)

Substitute One Symbolic Variable for Another

y x

subs(f, y, x)

ans =
x^3 + 5*x^(3/2)

Substitute a Matrix into a Polynomial

Element-by-Element Substitution

subs

syms x
f = x^3 - 15*x^2 - 24*x + 350;
A = [1 2 3; 4 5 6];
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subs(f,A)

ans =
[ 312, 250,  170]
[  78, -20, -118]

Substitution in a Matrix Sense

A f

1

syms x
f = x^3 - 15*x^2 - 24*x + 350;

2

A = magic(3)

A =
     8     1     6
     3     5     7
     4     9     2

3 f

b = sym2poly(f)

b =
     1   -15   -24   350

4 A f A
x eye(3)

f

A^3 - 15*A^2 - 24*A + 350*eye(3)

ans =
   -10     0     0
     0   -10     0
     0     0   -10

polyvalm
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polyvalm(b,A)

ans =
   -10     0     0
     0   -10     0
     0     0   -10

Substitute the Elements of a Symbolic Matrix

subs

syms a b c
A = [a b c; c a b; b c a]

A =
[ a, b, c]
[ c, a, b]
[ b, c, a]

A beta b
alpha

alpha = sym('alpha');
beta = sym('beta');
A(2,1) = beta;
A = subs(A,b,alpha)

A =
[     a, alpha,     c]
[  beta,     a, alpha]
[ alpha,     c,     a]

Plot Symbolic Functions
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Explicit Function Plot

ezplot

syms x
ezplot(x^3 - 6*x^2 + 11*x - 6)
hold on

hold on
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hold off

xlabel('x axis')
ylabel('no name axis')
title('Explicit function: x^3 - 6*x^2 + 11*x - 6')
grid on
hold off

Implicit Function Plot

ezplot
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syms x y
ezplot((x^2 + y^2)^4 == (x^2 - y^2)^2, [-1 1])
hold on
xlabel('x axis')
ylabel('y axis')
grid on
hold off

3-D Plot

ezplot3
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syms t
ezplot3(t^2*sin(10*t), t^2*cos(10*t), t)

Surface Plot

ezsurf

syms x y
ezsurf(x^2 + y^2)
hold on
zlabel('z')
title('z = x^2 + y^2')
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hold off



 Use Assumptions on Symbolic Variables

Use Assumptions on Symbolic Variables

In this section...

Default Assumption

z

syms z

z
assumptions z

assumptions(z)

assumptions(z)

ans =
Empty sym: 1-by-0

Set Assumptions

assume
x

syms x
assume(x >= 0)

assume
assumeAlso

x x

assumeAlso(x,'integer')
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assume assumeAlso

sym syms a b
c

a = sym('a', 'real');
b = sym('b', 'real');
c = sym('c', 'positive');

syms a b real
syms c positive

sym syms

Check Existing Assumptions

assumptions

x

assumptions(x)

assumptions

assumptions

Delete Symbolic Objects and Their Assumptions

x

syms x
assume(x,'real')
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x

clear x

x
x x

x x
x

syms x real
clear x
syms x
solve(x^2 + 1 == 0, x)

ans =
Empty sym: 0-by-1

x
x

assume(x,'clear')

1

assume(x,'clear')

2

clear x


